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Abstract: Machine learning has only recently begun to see its application in medicine and is still
facing quite a few challenges that prevent it from being more widely used. Problems such as
high data dimensionality and the lack of a common data schema still remain relevant. It is worth
examining the usage of machine learning in the context of healthcare and deploying selected machine
learning algorithms on the problem of cardiovascular disease diagnosis. Cardiovascular diseases are
currently the most common cause of death in the world. Many of them develop for a long time in an
asymptomatic way, and when the first symptoms become visible, it is often too late to implement
effective treatment. For this reason, it is important to carry out regular diagnostic tests that will
allow you to detect a given disease at an early stage. It is then possible to implement appropriate
treatment that will prevent the occurrence of an advanced form of the disease. While doing so, it
attempts to analyse data from different sources and utilizing natural language processing to combat
data heterogeneity. The paper assesses the efficiency of various approaches of machine learning
(i.e., TR-SVM (Terminated Ramp–Support Vector Machine), TWNFI (Transductive Neuro-Fuzzy
Inference), Naive Bayes) when applied in the healthcare field and proposes the solutions to the
problem of plain text data transformation and data heterogeneity with the help of natural language
processing. The algorithms used for diagnosis were implemented, tested and their performance
compared, with their parameters also investigated, making it easier to choose an algorithm better
suited for a specific case. Whereas TRSVM is better suited for smaller datasets with a high amount of
dimensions, TWNFI performs better on larger ones and does not have the performance problems.

Keywords: machine learning; data management; natural language processing; healthcare systems

1. Introduction

Despite the growing usage of machine learning in medical systems, there are multiple
inconveniences that prevent its widespread usage. Different types of approaches may
not perform as accurately as desired in the field of healthcare, or perform better or worse
on different types of data [1–4]. In addition to that, existing solutions cannot always be
applied efficiently due to the lack of common data schema for healthcare organizations to
rely on [5–7]. This requires conversion between different data formats, and the rarity of
solutions that automate those things make it a serious obstacle.

One of the more frequently used formats is plain text, in the form of patient notes,
making it even more difficult for AI (Artificial Intelligence) and automatic health systems
to make use of existing data without it being transformed manually. As a result, the task
of automating the conversion of this data still remains important to this day [8]. Different
possibilities of handling this task are still being explored, but the results of this research
are both scary and largely remain hidden from the public eye (with larger companies and
organizations preferring not to share their patents and studies). These factors cause the
question of parsing patient notes into more computer-friendly formats to stay open for now.
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Natural language processing might be a possible solution to the problem of hetero-
geneity if it could be forced to analyse column labels in the data structure itself. Assuming
that familiar columns are named similarly, we could potentially detect features that are
dependent on each other. As a continuation of said idea, language processing could help
detect related features that are expressed in different units and help convert them [9,10].

Unit conversion within the context of heterogeneous datasets is yet another issue
that requires exploration. While the extracted labels may contain clues as to what units
were used for the individual dataset, this is not always the case. Due to this, this paper
proposes a similarity-based approach towards unit conversion in features, where a feature
conversion rate for new data is being approximated based on samples from existing data
that are most similar in regard to features that we know to be equivalent [11,12].

Another problem with regard to medical data is that different diagnoses is the multi-
collinearity, which can distort the end result due to the classifiers receiving the same data
twice. Difficulties may arise when merging datasets, with different default values being
assigned to the samples in missing fields, making the features look more different than
they are as a result of an assumption, which gives us a problem of finding default values
that will distort the data the least [13–15].

The main contribution of the paper relates to the application of selected machine
learning methods in healthcare for the transformation of medical data regarding the cardio-
vascular problem, with particular emphasis on the heterogeneity of medical data sources,
which were addressed in [10,16–21] in a manner different from the approach described in
our approach, i.e., as follows:

1. Assesses the efficiency of various approaches of machine learning when applied in
healthcare field, with particular emphasis on the heterogeneity of medical data sources;

2. Uses existing Machine Learning classification algorithms with NLP for the medical
data transformation on the problem of cardiovascular in healthcare systems;

3. Proposes the solutions to the problem of plain text data transformation and data
heterogeneity with the help of natural language processing.

The paper is structured as follows: Section 2 presents the related work on machine
learning for medical system. Section 3 gives the outline of health data formats in medical
systems. Section 4 features the proposal in data transformation for tables and text to resolve
incompatibilities between medical formats. Section 5 describes the created prototype of
algorithms and data conversion while Section 6 deals with analysis of experiment results,
and Section 7 concludes the presented studies.

2. Related Work on Machine Learning for Medical Systems

Machine learning these days is one of the many technologies employed in medicine
and particularly medical data analysis. To this day, there are countless approaches of
machine learning that are applied in various medical problems, whether it is hospital
readmission, diagnosis or treatment plans, and even newer methods and applications are
being developed as of now [22–25].

Machine learning is predicted to create processes performed by both humans and com-
puters. In these instances, there is a need to achieve an optimal combination by leveraging
human abilities of hypotheses generation, collaboration and AI systems oversight along
with the AI abilities of analysis of large volumes of data, finding associations with predictive
power, or optimization against a success criterion [26]. The basic used algorithms are Linear
Regression, Logistic Regression, Decision Tree, Support Vector Machines (SVM), K-means,
Random Forest (or Random Decision Forests), k-Nearest Neighbors algorithm (kNN),
Dimensionality Reduction, Gradient Boosting and Extreme Gradient Boosting (XGBoost),
variations of Neural Networks, Logistic Regression, and Naive Bayes Classifiers [27].

A support vector machine (SVM) is a supervised machine learning algorithm that
classifies data into two categories. It uses a series of data already sorted into two classes
and builds its model of it during training, drawing lines between established categories.
The Naive Bayes classifier is a well-known approach in machine learning that has been
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applied in healthcare for some time, is a modification of the normal Bayes classifier, and
uses probability to solve the task of classification. Its basic principle is building probability
distributions per trait for each class.

Despite the discussed benefits [28] of Fuzzy Inference Systems (FIS) and the related
Adaptive-Network-based Fuzzy Inference System (ANFIS) in healthcare, in recent years,
they are not as frequently mentioned in scientific literature. FIS are built upon ideas such
as fuzzy sets, fuzzy control and fuzzy-logic systems and use fuzzy theory for mapping
inputs to outputs. There are two known conventional types of FIS: Mamdani and Sugeno.
The Mamdani fuzzy inference system was designed with the purpose of operating a
steam engine and boiler combination, and it was meant to utilize sets of linguistic control
rules obtained from the experienced human operators. The purpose of the Sugeno fuzzy
inference system was to develop a systematic approach of fuzzy rules generation from a
given input–output dataset.

Despite the evident benefits of the usage of machine learning systems in the field of
healthcare, the technology is still facing many problems in practice, such as data hetero-
geneity and a lack of good enough hardware [29–32], as well as general human distrust
towards machine assistance [24,33,34].

Data heterogeneity refers to the issue of coming from different, disparate data sources.
The data collected from different resources come in a wide variety of data formats and
types [35], and as a result, requires additional transformation before they can be utilized
in any automation or calculations. Data heterogeneity has been a major problem in fields
such as statistics, computer science, Internet of Things, and, essentially, machine learning,
which includes, but is not limited to, machine learning in the context of healthcare. An-
other problem that is prevalent in machine learning-based health systems is the difference
between various approaches in purpose, performance, and computational requirements.
More computation-heavy techniques like deep learning may not be fit for organizations
that do not have powerful hardware to run these programs efficiently [23,36,37].

Finally, there is a psychological problem that lies in a certain amount of mistrust
towards machine learning in fields as crucial as medicine [38–41]. People outside the
technological fields show reluctance to use methods that cannot be easily explained to them.
With machine learning being a highly researched discipline in recent years, newer methods
and approaches appear every day. Although a lot of them seem to draw from the more
widely known approaches in the field, different kinds of modifications are being made to
them to fit various applications of artificial intelligence. Healthcare is no exception in this
regard, with different kinds of algorithms being made to tailor various problems medical
professionals may be facing in their jobs [25,34]

With Support Vector Machines being a widely used technique due to them handling
data with high dimensionality extremely well, newer algorithms are being proposed basing
off that concept, with one of them being the Terminated Ramp–Support Vector Machine
(TR–SVM) [42]. TR-SVM is a type of Support Vector Machines that is inspired by geometric
considerations. The kernel is automatically built as a function of simple classifiers and
generalized terminated ramp functions determined by the training data, which are obtained
through a separation of oppositely labelled pairs of training points. Although not as popular
in health systems as the SVMs, fuzzy inference systems seem to have been studied in the
context of healthcare, with modifications being made to the conventional FIS structure
specifically for their application in the field of healthcare.

The Transductive Neuro-Fuzzy Inference system (TWNFI) is a transductive neuro-
fuzzy inference model with weighted data normalization, which, unlike the inductive
learning and inference methods, predicts the model value for a single data sample, using the
available information related to this point [28]. TWNFI seems to better fit the applications
of machine learning in healthcare and medicine, where most of the focus is placed on the
individual patient rather than the model. The logic can be applied to both the Mamdani
and the Sugeno FIS, which makes it more adaptable.
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Named Entity Recognition (NER) is one of the known approaches of semantic analysis.
It is a technique that analyses text by automatically identifying named entities in it and
classifying them into established categories, such as by names of people, organizations,
locations, times, quantities, monetary values, percentages, etc. Two important NLP tech-
niques are stemming and lemmatization, both of which aim to return the word to its “base”
form by chopping off the endings and prefixes. Stemming methods approach this through
heuristic processes that chop off both ends of the words, while lemmatization methods
aim to use the vocabulary to correctly achieve that. Not so long ago, NLP and semantic
analysis experienced several breakthroughs, one of them being word vectors. Word vectors
aim to represent meanings of words with vectors of numbers. With the model being a set
of vectors positioned in vector space, word vectors that share contexts are located closer
to each other. The way the data are organized, operations with the word vectors such as
subtraction and addition give us words with related meanings [25,43].

The study on ML techniques aiming to improve cardiovascular disease outcomes
makes a mention of several systems that utilize SVMs, various types of neural networks,
or a combination of both, with the latter currently being one of the most commonly used
approaches in healthcare. The approach [44] proposes the usage of multiple fuzzy neural
networks for creating models with sparse data, which switches between multiple networks
and uses kernel regression to generate more training data for them. The authors of [45]
focused the challenge of Combined Algorithm Selection and Hyper-parameter tuning
(CASH) in relation to multiple techniques such as meta-learning methods, black box
optimization and neural architecture search mentions solutions such as SmartML, ML-Plan,
and Auto-Sklearn, which are designed to tackle the said problem, indicating an interest
in the usage of multiple algorithms together. Another approach [43] reviews modern
developments in NLP in the context of healthcare, showing that the recent medical NLP
systems have been focused on techniques that rely on deeper understanding of the language
and knowledge-oriented approaches, such as Metamap and Gene TUC. The paper also
mentions NLP systems deploying several levels of analysis to extract information. However,
current systems still face multiple challenges, such as incompatible vocabularies developing
in the field of healthcare, the presence of spelling errors, and problems with parsing
uncertainty and negation in text. The authors of [46] describe the usage of text mining
for cases of respiratory diseases. It describes a more complex model where, alongside
entity recognition, entity traits and the amount of information on them are stored. Machine
learning has different approaches, applications and setbacks. However, in the context
of healthcare systems, problems arise in its application due to data heterogeneity. This
problem and its variations are examined more closely in the following part [47–51].

3. Health Data Formats in Medical Systems

The application of machine learning in healthcare very often greatly depends on the
format in which medical data are supplied to the system. The success of a machine learning
model may be determined by how relevant and how well the data are represented. As
a result, different formats are used to tailor to specific purposes. The formats in which
medical data are stored still remain very different and somewhat disorganized in the
context of usage for machine learning. To combat heterogeneity, such data are normally
integrated into existing dataset through different points, all for different types of data. In
the context of health systems, the data that get used in machine learning, most health data
used can be split into three major types: tables, images and plain text (patient records).

With tables being the most friendly format for machine learning out of three, it is no
surprise that most systems, both in healthcare and in general, are accustomed to accepting
this type of data. However, in healthcare, it is more of a “middleman” between machines
and humans, and tables have to be filled with data from other (likely non-table) sources
before they can be passed to an AI.

Images can present all kinds of scans and diagrams received from patient testing (CT,
X-rays, ultrasound, etc.). Along with the text files, they are one of the primary sources
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of information for physicians, since a lot of data about the patient’s disease is usually
discovered through tests. They are also the hardest to automate due to an individual
solution having to be built for a specific purpose. They are mostly processed with neural
networks due to Convolutional Neural Networks (CNN) excelling at image processing and
their ability to learn smallest details.

Finally, plain text, aka patient records, is a format where the physician leaves most of
their observations. It can be difficult to process for machine learning systems due to the fact
that most of the records contain natural language. Transformation of such data from text to
organized tables is a relatively new task in the machine learning field. Multiple approaches
should be used and/or combined here to ensure that the medical data are processed and
transformed accurately. However, each of the formats has its own problems one must be
on the lookout for when designing a health system (Figure 1).

Figure 1. Example of medical record with plain text in it [52].

While the common data types used in healthcare being well-known for some time,
there are numerous problems in the case of each when it comes to their usage in machine
learning, due to the fact that even the data of the same format can still deal with the problem
of heterogeneity.

As already mentioned, heterogeneity is the issue of data having high variability of
types and formats. Ambiguity and low quality may be present due to missing values, high
data redundancy, and untruthfulness. The integration of heterogeneous data remains a
challenging task these days. There are the following types of data: heterogeneity [35]:

• Syntactic heterogeneity happens if data sources are expressed in different languages;
• Conceptual heterogeneity, alternatively known as semantic heterogeneity or logical

mismatch, stands for differences in modelling the same domain of interest;
• Terminological heterogeneity represents differences in names and labels for the same

entities when referring from different data sources;
• Semiotic heterogeneity, or pragmatic heterogeneity, denotes different interpretation of

entities by people.

Tables are most likely to manifest at least one of these types of heterogeneity, due to
usually being derivative from other data formats. Even similarly structured tables may
be rendered unusable together due to frequent cases of terminological heterogeneity. In
different sources, features may be named differently or with different units. An even bigger
problem can be encountered in the form of semantic heterogeneity, which may arise as a
result of different units being used to describe numerical data. Machine learning systems
tend to not see the unit difference, leading to wildly inaccurate predictions.

Alternatively, semantic heterogeneity can occur when traits that are present in one
table, but missing in another (such as gender, weight, or whether the patient had alcohol
problems in the past), may be important to the existing model of the system with the
previous trainings, but difficult to auto-assign, since a guessed value that is far from the
truth could lead to further errors. Text processing may require very detailed descriptions to
work properly. Since the patients may not always talk about every symptom or detail the
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systems rely on, even the more accurate NLP systems may yield a result of low quality or
ambiguous data.

Image-based medical data are, by their very nature, prone to conceptual heterogeneity,
due to the fact that all kinds of scans and diagrams that are contained in it demand a
separate algorithm for each kind of image. This makes it extremely difficult to find extra
traits in images with the help of machine learning or to attempt classification of medical
data images. There is no way to transform the data in this instance either, due to the
differing nature of medical tests.

Another image-related problem that is worth noting is that, while images such as
scans and diagrams can be mined for additional traits with solutions tailored specifically to
particular problems, such a task is usually best trusted to convolutional neural networks
and deep learning. Due to these approaches being extremely computation heavy, mining a
lot of images for additional features can be too time-consuming to be reasonably useful.
While classical image processing algorithms could be applied to them instead for faster
computation, the implementation of such systems may be troublesome due to a huge
amount of diversity in human anatomy and the number of different diseases that may
cause the system to produce inaccurate results.

However, another complexity of image data processing in the context of medicine
is that the best approaches require a lot of data samples to train on. As a result, any
organization to use such a system would have to obtain countless samples from willing
patients before such a system becomes efficient. As a result, a lot of potential users might
decide an image-based healthcare system is not worth it due to the amount of investment
required for it to become efficient.

The studies [53] apply Deterministic Sensitivity Analysis and Probabilistic Sensitivity
Analysis to combat stochastic heterogeneity; however, the author notes that the complexity
of the model largely depends on decisions made concerning the patient’s treatment. An-
other approach [54] proposes an algorithm to help structure medical big data. It relies on
the Apache HBase database and relies on transforming the data several times and applying
text mining to it before transforming it to a common format; however, it makes very little
mention of data formats that are not tables. The authors of [55] describe an approach to
classify unlabelled data called inter-training that revolves around using multiple classifiers.
The algorithm revolves around iteratively training multiple classifiers and adjusting them
based on dataset members that have a higher amount of prediction agreement between
classifiers [56–58].

All in all, regardless of the data type or format, heterogeneity remains a major problem
in healthcare systems, preventing them from being used to their full efficiency. Due to
different types of heterogeneity requiring different handling, automation of managing such
data remains difficult to this day. In addition, data formats like images are difficult to work
with in terms of universal solutions, due to images representing a wide variety of traits.
To add to that, in a lot of cases, data have to be mined from text due to not all hospitals
using automated or categorized solutions. These problems together make medical data
difficult to operate with, especially in cases of patients who previously had differently
formatted records.

4. Proposal for Data Transformation to Resolve Incompatibilities between
Medical Formats

With different types of heterogeneity, it becomes increasingly difficult to manage
patient data in health systems, especially in large amounts. As a result, different solutions
are still being proposed for various applications, and ways to automate data transformation
and normalization for usage in machine learning systems are still sought after. This
section covers performance comparison of machine learning methods, as well as possible
suggestions on such data transformation in the context of diagnosis with the application of
NLP, as well as possible problems in data transformation requiring further research.
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Many new algorithms have recently been developed, but have not seen a practical
application yet. This experiment aims to put novel modifications of machine learning
methods to use by evaluating them against a more "classic" approach, to see how different
algorithms act in the case of data with missing values, as well as to help to test the NLP-
based data transformation part. Particularly interesting in the context of heterogeneous
data, however, are the novel modifications to fuzzy logic systems, with their fuzzy logic
being interesting to observe within the context of incomplete or ambiguous samples. At
the same time, Support Vector Machines have other draws when it comes to dealing
with a large amount of data, making their performance in the context of an expanding
dataset interesting.

For these reasons, the three algorithms chosen to be tested in this study are TWNFI,
TR-SVM and Naive Bayes classifier, as a component to evaluate cardiovascular disease
risk based on transformed data that were taken from various sources and automatically
transformed [50,59,60].

TWNFI is also interesting to study in this context due to the individual quirks each
algorithm possesses. TWNFI tailors its current model to the input, and it would take
fewer steps to load during the feature changes too. To go with the experiment, a more
conventional machine learning method—the Naive Bayes classifier—has also been chosen
along with these.

The primary reason to evaluate cardiovascular disease risk is to identify those individ-
uals who may be at an increased risk of developing this condition. Early identification of
individuals at risk can lead to earlier interventions which can reduce the risk of developing
cardiovascular disease, and can also help to identify those individuals who may need to
make lifestyle changes in order to reduce their risk. Additionally, assessing cardiovascular
disease risk can help to guide treatment decisions for those already diagnosed.

4.1. Data Transformation and Representation

Due to the aforementioned problem of data heterogeneity, the data must be trans-
formed in different ways to combat it. However, with all the different formats available
out there, it is impossible to write individual converters for absolutely every possible type
and format. The proposed solution, in this case, is instead of converting formats from
one another, the system could convert different types of data to a single format with the
usage of NLP, all while attempting to make the method accept as many types of data
as possible, which is later on used as a direct input for diagnosis, disease prediction or
treatment plan assignment.

Due to a lot of machine learning algorithms dealing with vectors, the proposed
schema is a vector representation of the data, with each sample of data presented as an
N-dimensional vector, where N is the number of all accounted traits, which represent
symptoms and patient characteristics ever stored in the system and can be either numerical
or Boolean (represented as 1 and 0 in the implementation).

When the system is running, the data are processed according to its type, transformed
with the help of semantic analysis (if structured differently), normalized and saved in a
format accepted by processing system. Newer traits can be added by analysing different
sources, text and images at the processing stage. Old and new data are then merged and
updated automatically, with the missing values being replaced by either “0” (if Boolean) or
the mean of all entries in the training set (if numerical). There is a problem arising from it,
though, as too much analysis can result in data with a high amount of dimensions.

When a diagnosis algorithm of choice is used, distance can be evaluated between
the samples with any possible distance score due to the vector representation of the data,
making such a schema easy to use with most of the existing algorithms.

4.2. Feature Extraction

For formats other than tables, specific approaches have to be used to extract features.
Due to patient records in the form of raw text being a common data format, NLP and
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semantic analysis seem like logical choices to turn to when it comes to text analysis and
feature extraction. When importing a table from a new source, it will be organized unlike
our existing schema. However, due to a lot of labels often resembling natural language
phrases or words, it might be possible to find a similar phrase to them and transform
them into analysable phrases. In turn, these could provide hints about which features are
equivalent and how data should be transformed (Figure 2).

Figure 2. Transformation of text with patient notes to table with features represented as column (left)
and application of NLP for analysis of table labels (right).

A similar logic could be applied to patient record-based data. As the raw text gets
processed, it is interpreted by semantic analysis algorithms such as NER and word vectors,
which help recognize entities and find related terms. As a possibility, the words for units
measuring the same thing could be related in the model.

Feature extraction through NLP requires the application of multiple steps
(Figure 3 [10,16–19,22]):

1. Find all entities in column names;
2. For each entity, check the existing labels for similarity using stemming and/or lemma-

tization. If they do, move on to step 3, otherwise assume there is no equivalent feature,
fill the missing values with defaults and proceed to step 6;

3. If nearby words exist, perform semantic analysis. They might contain units. If
the target dataset also has a unit specified in column name, utilize word vectors to
establish a relation between them;

4. Assign a dependency between the two features, then proceed to step 6;
5. Repeat step 2 until all columns either have a dependency, or are marked to not have it;
6. Save the dependency list for possible future usage and merge the tables in accordance

with it.

With the merge complete, the entire dataset can now be saved for later usage by the
core system.

4.3. Unit Discrepancy Identification and Automatic Conversion

The most intuitive way to solve the discrepancy between different units in data would
be to assign each possible unit certain limits and check at the beginning of each processing
which one the first data rows fit most. However, that would be not the most reliable
approach, since developers and medical professionals cannot always account for all the
units that ever exist in the world and ensure their correct conversion. In addition, even
then, the difference in some units may not always be clear to a machine.
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Figure 3. Scheme for an experimental unit conversion approach.

Alternatively, semantic analysis could be used on the labels to extract the possible
units that may have been described in the label itself. This is not a very reliable method
either, since column labels may not always indicate any units, leaving the system with no
hints. In addition, still, we might have to deal with unfamiliar units.

For the biggest likelihood of catching such errors, multiple precautions, but better
resolutions of this problem are still a point for future research.

4.4. Missing Values and Their Replacement

While adding entries from a differently organized table dataset to our own, it is
inevitable that we are going to have to deal with missing values, due to the tables having
different features. To avoid throwing away entire features (and potentially important
components of our model), we have to assign the missing fields some default value instead.

As it was mentioned above, such default values are “0” for Boolean values and the
mean of all entries for numerical (or otherwise represented by numerical values) features.
This is based on the assumption that this should have the least effect on the variance
value of a particular feature compared to other values. Unfortunately, the same cannot be
achieved for Boolean values. Since not all systems may support uncertainties, one cannot
make any assumptions about Boolean traits. As a result, it may be better to assume the trait
is not present until there is proof that it is, which lead to “0” being the proposed value for
the experiments.
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The machine learning algorithms for missing data imputation, such as Mean/mode
replacement, k-nearest neighbours, multiple imputation, linear regression, MICE (Mul-
tivariate Imputation by Chained Equations), decision tree regression, Bayesian network,
k-means clustering, could be used here. These algorithms use statistical methods to fill in
missing data in a dataset. This is achieved by using the existing data to learn the patterns
and trends within the dataset, and then using those patterns and trends to estimate the
missing values.

4.5. Multicollinearity and Its Detectability after Data Transformation

Data transformation and merging present problems with its detection. Let x1, x2 be
features that belong to datasets D1 and D2 respectively, and have no direct equivalents
inside each other, but in reality present dependent features. As we attempt to merge them
into the table D3, we will obtain a result similar to what is shown in Figure 4.

Figure 4. Two dependent features end up in one table, with filled values obscuring their dependency,
making it a potential problem for the system.

The resulting table’s filled spaces will obscure multicollinearity, especially if there
are many samples to fill. It will prevent the conventional feature selection methods from
discovering them and would decrease the quality of a built model if encountered. This
paper does not provide a definite solution to this problem; however, it should be looked at
in future research.

4.6. Experimental Approach to Unit Conversion

The proposed technique takes inspiration from similarity-based recommendation
algorithm and draws from the idea that the “converted” value for the feature in a sample
could be predicted by basing it off similar data in the dataset it is being merged with. The
step-by-step explanation of this idea is as follows:

Let N and k are hyper-parameters, then:
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1. Choose N samples from the dataset with the column that needs converting;
2. For Ni in N, choose k most similar samples in the dataset that is being merged with,

according to features that either match or have already been transformed;
3. Take the values of the feature that needs conversion and calculate an average between

them. This will be the predicted “converted” result;
4. Use the result from the previous step to and the value of Ni to calculate an estimated

conversion rate;
5. Repeat steps 2–4 until all N samples have an estimated conversion rate;
6. Calculate an average of the estimates and assign it as a final conversion rate.

Such an approach is purely experimental. The initial suspicions are that it may give not
very accurate results due to people being generally diverse. However, the idea that patients
with similar disease history may share similar traits, and therefore a unit conversion rate
could be accurately predicted based on similarity, was considered worth putting to a test.
Another problem with such an approach would also be the computation time, due to the
amount of time it would take for the program to go through a large dataset N times.

Finally, there is no guarantee that the datasets presented will contain features that
share the same units. In this case, there may not be enough similar data for the method
to base coefficients off, making this approach most effective when used in conjunction
with the other methods. Furthermore, the units of matched columns may not always have
linear dependency.

4.7. Boolean-Non-Boolean Discrepancy and Possible Fixes

It is possible that the values that need aggregating may come in both Boolean and
non-Boolean formats with given data. In that case, putting them together may pose yet
another difficult problem due to the system’s uncertainty of how should different values
should be translated from non-Boolean to Boolean and vice versa. While human medical
experts may know the fitting values, they are not able to update the machine’s functionality
by themselves to get accustomed to the new value.

A simple fix for this may be normalizing the non-Boolean data. Unlike numeric
qualities, the minimum and maximum of Boolean are always “0” and “1”, respectively. As
a variant, the normalized data may be assigned “0” if it is below average and “1” if it is
above. This approach may, however, carry its own weakness, due to its assumption that
the threshold determining the presence or absence of a certain trait may not always be
the average.

4.8. Possible Application of Polynomial for Dependent Trait Calculation

While dependent variables normally reduce the usability of data in machine learning,
it is possible that they could actually help establish values for the dependent variables
that are not present in the data being aggregated by applying polynomial regression and
calculating the exact dependency (Figure 5). This theory will be tested in the implemented
prototype, to recognize dependent traits in the table labels (such as the obesity trait being
calculated from BMI, and therefore related to height and width).

Unfortunately, this theory was not tested in the implemented prototype, due to a lack
of available word vector models that would recognize dependent traits in the table labels
(such as the obesity trait being calculated from BMI, and therefore related to height and
width). This could still serve, however, as further research subject, or tested independently
from these presented works.
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Figure 5. Three features end up in one table, with application of polynomials for dependent trait calculation.

4.9. NLP Parser Details

Due to the scarcity of trained medical NER models, a decision was made to move
away from simply analysing the text with NER, in favour of deploying several approaches
at once. The NLP implemented in the prototype in particular combines NER, word vectors
and rule-based matching in an attempt to maximize the recognition of important details,
with the techniques being applied in the following order:

Let there be hyperparameters S that indicate how synonyms for the program load,
coefficients k1, k2, . . ., kN , lower and upper thresholds l1, l2, . . ., lN and u1, u2, . . ., uN , where
i = 1, 2, . . ., N is the unique number for each NLP model, then:

1. Load the program’s schema stored in file and NLP models, as well as second instances
of these models with NER disabled. Look through the feature labels and their units in
the schema;

2. If all labels have been processed, proceed to step 5. Otherwise, load the next label and
proceed to step 3;

3. Check the label name and assigned unit in the file. If a recognized feature is a
collection or a Boolean, load S label synonyms from the word vector model, else
check a numerical value’s unit. If there is one, select the names of all the units with
compatible dimensionality;

4. Create extra entities and entity recognition rules based on the findings in step 3, replace
the missing NER component in the previously loaded model instances with the entity
rulers based on our newly created rules;

5. Perform NER, group each recognized phrase by entity. Have the models that discov-
ered respective entities compare it to the existing schema labels. If similarity reaches
the given lower threshold value li, its values are passed on for further selection as
potential entries to fill the missing values;

6. Selected values are now sorted by their similarity score to a certain feature label. The
similarity score is also modified by a coefficient ki that is unique to the model that
discovered the value. Values with scores of “1” and above are automatically assigned
to the features. If there is more than one value like that, the one with maximum score
is always assigned;

7. If all the labels have assigned values, proceed to step 10. Otherwise, proceed to step 9;
8. Process values with the score below “1” by comparing the highest score among a

label’s assigned values to the upper threshold numbers. If the score is greater or equal
than ui, where i is the number of the model that discovered the value, proceed to
step 9. Otherwise, repeat with the next label;

9. Parse the selected value depending on whether it is a numerical value, Boolean, or a
connection of values. Numerical values (both with assigned units and without them)
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are processed using a special function that parses the string, collections are processed
by finding a collection value most similar to the discovered one, and Booleans are
parsed by discovering negation in the sentences;

10. Assign the parsed result to the feature currently being processed;
11. Return to step 8 if there are more feature labels to be analysed, otherwise finish parsing.

4.10. On the Possibility of a Medical Image Classifier

As mentioned above, medical image data are difficult to work with due to its diversity.
A separate system has to be made for processing different types of these images. However,
a degree of automation could be achieved if the data could be organized into categories if a
classifier was created to automatically sort images and send them to the appropriate system.
It is difficult to speak of the intricacies of such a task without knowing the intricacies of
human anatomy and medicine in general, and the many specifics of particular human
organs will likely take numerous amounts of data, but if achieved, it could help combat
the problem of heterogeneity in the context of healthcare greatly. It could be a future
research direction.

To conclude, various problems that arise with merging and transforming data require
different types of processing for the results to be usable. The solutions described in
this section aim to automate this process as much as possible by analysing table column
labels and their contents, as well as assigning default values to missing data. However,
generalizations made in such cases may come at the cost of prediction accuracy. Whether
the end results of such automated manipulations are acceptable or not is to be determined
in the following sections.

5. Prototype of Algorithms and Data Conversion

This section presents the specifics pertaining to the implementation of the prototype
that makes use of the ideas described in the previous section. The prototype runs on
Python 3.7. It was chosen due to the language’s simple syntax and support of many
scientific computation libraries. The following libraries were used in the implementation:
SciKit-learn (for various utilities and an implementation of Naive Bayes classifier) [61],
Pandas (for random sample selection and other various utilities [62], NumPy (for general-
purpose calculation functions and faster two-dimensional arrays) [63], spaCy (for natural
language processing) [64–66], statsmodels (to detect multicollinearity) [67], simpy (additional
mathematical functions). The experiments were performed in the Standard, medium-size
performance system.

5.1. Datasets for Testing the Methods

The datasets used in this research were two cardiovascular disease datasets. The first
was a dataset with 11 features and a binary target (“Presence or absence of cardiovascular
disease”) by Svetlana Ulianova, and was provided in a csv table [68]. The features of this
dataset are as follows:

• Age–Objective Feature–age–int (days);
• Height–Objective Feature–height–int (cm);
• Weight–Objective Feature–weight–float (kg);
• Gender–Objective Feature–gender–categorical code;
• Systolic blood pressure–Examination Feature–ap_hi–int;
• Diastolic blood pressure–Examination Feature–ap_lo–int;
• Cholesterol–Examination Feature–cholesterol–1: normal, 2: above normal, 3: well

above normal;
• Glucose–Examination Feature–gluc–1: normal, 2: above normal, 3: well above normal;
• Smoking–Subjective Feature–smoke–binary;
• Alcohol intake–Subjective Feature–alco–binary;
• Physical activity–Subjective Feature–active–binary;
• Presence or absence of cardiovascular disease–Target Variable–cardio–binary.
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The second dataset was made by Yassine Hamdaoui, had nine features and a binary
target, only featured male patients and was provided in a txt file [69]. The features of this
dataset are as follows:

• sbp–systolic blood pressure;
• tobacco–cumulative tobacco (kg);
• ldl–low density lipoprotein cholesterol;
• adiposity–a numeric vector;
• famhist–family history of heart disease, a factor with levels “Absent” and “Present”;
• typea–type-A behaviour;
• obesity–a numeric vector;
• alcohol–current alcohol consumption;
• age–age at onset;
• chd–response, coronary heart disease.

Both of the sets were obtained on Kaggle. The structure of the features resembles the
format described in previous section, making it easy to apply for testing, but both datasets
have differently named columns and express some properties differently, making them
viable for testing heterogeneity solutions. The latter set had to be converted to csv due to
time constraints that prevented additional automation in this instance. For the purposes
of testing, the word vector-based label parsing and giving the similarity-based algorithm
more data, variants of both datasets with differently named labels were created and used
alongside the originals. In addition to that, procedurally generated spiral datasets, as well
as scikit-learn’s breast cancer dataset, were used.

The data are normalized after import. The normalization values are stored during
execution in case we ever need to return the data to its original look. During the testing,
it was revealed that the first dataset contains outlier entries that contain unrealistic val-
ues of features, distorting the result of the algorithms. To solve this, a separate module
was implemented specifically to fix or delete entries that are outside previously passed
parameter boundaries.

The text entries are written based on the samples inside the aforementioned datasets,
due to the difficulty of obtaining actual patient records connected with data confidentiality.
It should be noted that, due to our inability to obtain an actual data, the results with the text
parser are an approximation of how it would actually work. For the NLP part, a dataset of
medical abbreviations is used to help the program create custom NER rules based on the
data columns, which are discussed further.

5.2. Implementation Structure

The program implements several algorithms to test their performance in comparison
with a relatively well-known method, the Naive Bayes classifier. The root directory of
the implementation is organized to separate different Python files by function. The files
launcher.py and launcher2.py are located in the root directory, with the former contain-
ing functions that are used to measure average execution time and a mean square error for
a certain amount of experiments) and call methods implemented in all the other files. This
is the file that should be used to run the program, and the latter containing functions used
to generate synthetic datasets and help pick parameters for TRSVM.

Alongside launcher.py, there is a core subdirectory containing all the implemented
methods, as well as a file with necessary utility functions. The following modules inside the
core folder separate the implemented methods by type and purpose: fuzz1.py (contains
the code for fuzzy inference systems, such as basic Type 1 Mamdani and Sugeno systems,
as well as TWNFI), svm.py (implements TR-SVM), bayes.py (used to call Skikit-learn’s
implementation of Gaussian Naive Bayes classifier), text.py (implements the data transfor-
mation procedures related to NLP), similarity.py (implements the experimental method
discussed in previous section), tests.py, utils.py, multicollinearity.py (implements
multicollinearity detection), anomalies.py, conversion.py (implements additional con-
version methods that utilize NLP on feature labels), clustering.py (implements the ECM
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clustering method TWNFI uses for creating local models), optimization.py (implements
the steepest descent method). The modules are all imported to launcher.py, with their
functions used in there.

5.3. Implementation Details and Problems

Before proceeding to testing, a few implementation-specific things have to be ad-
dressed. Due to the general unavailability of medical patient notes to train a new model
or customize an existing one, the implementation instead uses several NER models, ex-
amining the entities recognized by each of them. As a result, the text parsing part of the
prototype combines multiple NLP approaches and is tested on what is an approximation of
the real data.

Due to the general unavailability of medical patient notes to train a new model or
customize an existing one, the implementation instead uses several NER models, examining
the entities recognized by each of them. As a result, the text parsing part of the prototype
is not perfect, but instead combines multiple NLP approaches and is tested on what is an
approximation of the real data.

The unknown data are represented by “−1” during the merging as a way of expressing
uncertainty. The value of “−1” allows the program to quickly separate the uncertain values
from the rest of the data (which is normalized in the range of [0, 1]), simplifying the
implementation of the methods we need to process data, particularly unit conversion, and
in case unknown values remain in the sample after the conversion, they get replaced with
the values mentioned in the previous section before the program proceeds to check the
data for multicollinearity.

Multicollinearity in the prototype is detected using Variance Inflation Factor (VIF), the
function for which is provided by the statsmodels library. There may be more efficient ways
to detect it, but as of the time of the writing of this paper, VIF seems to be a pretty popular
method. Having finally checked everything, the data are passed to one of the methods.

The experiments for diagnosis methods are performed by calling the appropriate
function within the tests.py module from TestLauncher function, which then splits off
a subset according to one of the batch sizes mentioned in previous section, and trains
the method with it. Afterwards, a sample is randomly picked from the data that was
not used for training and its value is predicted. The experiments are repeated a given
number of times, which can be specified as a parameter for TestLauncher. Meanwhile,
unit conversion and NLP have their own experiment launcher within the tests.py module
that needs to be called directly.

Due to the overall computational complexity of the TR-SVM method, an implementa-
tion of the pruning heuristic described in [42] alongside it was necessary. It is a heuristic for
reducing the number of terminated ramp functions without relevant loss of information.
Let ft = (Kt(xi))i=1,...,N be a vector representing the feature induced by the terminated
ramp function Kt and st is the fraction of components of ft equal to 1 or −1:

St =
Card{i|Kt(xi) = 1}

N
The st can be used as an indicator of the relevance of feature.
The first set of the TRSVM experiments uses the hyperparameter C = 0.01, which

was experimentally determined to be more optimal, and calculates S in accordance with
the formula:

S = max
(

0, 1− 200
n

)
to decrease the computational time on a higher amount of samples (Figure 6).
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Figure 6. Output of implemented prototype to display results of NLP in medical data transformations.

5.4. NLP Parser Details

Due to the scarcity of trained medical NER models, a decision was made to move
away from simply analysing the text with NER, in favour of deploying several approaches
at once. The NLP implemented in the prototype in particular combines NER, word vectors
and rule-based matching in an attempt to maximize the recognition of important details,
with the techniques being applied in the following order:

Let there are hyperparameters S that indicates how synonyms for the program to load,
coefficients k1, k2, . . ., kN , lower and upper thresholds l1, l2, . . ., lN and u1, u2, . . ., uN , where
i = 1, 2, . . ., N is the unique number for each NLP model, then:

1. Load the program’s schema stored in file and NLP models, as well as second instances
of these models with NER disabled. Look through the feature labels and their units in
the schema.

2. If all labels have been processed, proceed to step 5. Otherwise, load the next label and
proceed to step 3.

3. Check the label name and assigned unit in the file. If a recognized feature is a
collection or a Boolean, load S label synonyms from the word vector model, else
check a numerical value’s unit. If there is one, select the names of all the units with
compatible dimensionality.

4. Create extra entities and entity recognition rules based on the findings in step 3, replace
the missing NER component in the previously loaded model instances with the entity
rulers based on our newly created rules.

5. Perform NER, group each recognized phrase by entity. Have the models that discov-
ered respective entities compare it to the existing schema labels. If similarity reaches
the given lower threshold value li, it’s values are passed on for further selection as
potential entries to fill the missing values.

6. Selected values are now sorted by their similarity score to a certain feature label. The
similarity score is also modified by a coefficient ki that is unique to the model that
discovered the value. Values with scores of "1" and above are automatically assigned
to the features. If there is more than one value like that, the one with maximum score
is always assigned.
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7. If all the labels have assigned values, proceed to step 10. Otherwise, proceed to step 9.
8. Process values with the score below “1” by comparing the highest score among a

label’s assigned values to the upper threshold numbers. If the score is greater or equal
than ui, where i is the number of the model that discovered the value, proceed to step
9. Otherwise repeat with the next label.

9. Parse the selected value depending on whether it is a numerical value, Boolean, or a
connection of values. Numerical values (both with assigned units and without them)
are processed using a special function that parses the string, collections are processed
by finding a collection value most similar to the discovered one, and Booleans are
parsed by discovering negation in the sentences.

10. Assign the parsed result to the feature currently being processed.
11. Return to step 8 if there are more feature labels to be analysed, otherwise finish parsing.

5.5. Testing Methods

To test the prototype’s diagnosis methods on tables, we have used different subsets
of the datasets mentioned at the beginning of this section. For these experiments, we
have picked subsets of 100, 250, 500, 1000, 2500, 5000, 10,000 samples, as well as the
entire set, i.e., 70,000 records of patients data for the first set and 20,000 records of patients
data for the second set. The results are compared between the four approaches (i.e.,
TWNFI, TR-SVM and Naive Bayes classifier, Gaussian and Complement) by accuracy
percentage, average fitting time, average prediction time, total time and mean square error.
In TWNFI’s case, additional testing was achieved to see how a number of local model
samples would affect the results, since it appears to affect both the quality of the model
and the computational time.

In addition to the aforementioned tests, the TRSVM was tested on a program-generated
two-feature dataset representing spirals, to compare the algorithm’s performance on synthetic
datasets against natural ones, as well as dimensionality and its effect on prediction accuracy.

For the NLP part, the entire batch of written notes was used, due to the scarcity of such
data. Instead, for testing purposes, a sample has been written by hand based on a random
sample from either of the datasets, which are subjected to text parsing. The resulting data
are afterwards compared to the pre-transformation data, and an accuracy percentage is
calculated based on all samples. To test the unit conversion approach, a different amount
of similar samples for comparison was taken to observe how their number affected the
overall prediction of missing features. The same applies to the number of runs for which
the similarity-based unit conversion was run.

Another experiment has an existing dataset split in two, and a random trait of it
converted into new units. That way, the program is forced to approximate a conversion
rate using the experimental method described in the previous section. After doing this, a
random sample is picked from one of them and is subjected to this method with various
numbers of similar samples as the parameter. This allows for showing how the number of
similar samples may affect the performance of a similarity-based method.

Finally, we merge two tables into one while utilizing the methods mentioned in this
paper, and have the machine run the implemented diagnosis methods with the merged
table. The accuracy and computation time are then compared to the same values achieved
by non-merged datasets. With the datasets and the program ready, it is possible to proceed
to the experiments and the analysis of their results. The aforementioned resources should
now let us compare the algorithms.

6. Analysis of Experiment Results

Having built and tested the prototype, we have achieved comparable results. This
section covers the discussion of results obtained, as well as conclusions drawn from them,
and elaborates on future research potential.
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6.1. Algorithm Accuracy

Tables 1–6 present the results of TWNFI, TR-SVM and Naive Bayes classifier evaluation
testing of accuracy for a different amount of samples in a subset of data on the first
cardiovascular disease dataset, for 100, 250, 500, 1000, 2500, 5000, 1000 samples and the
whole set, respectively.

For 100 samples, the TRSVM performs with the best accuracy (at 72%), followed by
the Complement Naive Bayes classifier, followed by TWNFI, followed by the Gaussian
Naive Bayes classifier. While the TRSVM is shown to be the most accurate, it also takes
the most time to both fit and train its model. The Complement NB classifier is second in
accuracy, and computes a lot faster, but loses to TRSVM by an entire 12%. TWNFI and
Gaussian NB classifier both lose in this scenario, with the latter’s accuracy going below
50%, and its benefits of a faster computation time being rendered irrelevant (Table 1).

Table 1. Comparison of chosen machine learning algorithms for 100 samples.

TR-SVM TWNFI NB Classifier (Gaussian) NB Classifier (Complement)

Accuracy percentage 75% 50% 42% 60%

Avg. fitting time (ms) 106,353.96 27,047.08 0.6966 0.9453

Avg. prediction time (ms) 53,244.02 1.4250 0.1470 0.1038

Mean square error (for 50 experiments) 0.28 0.5 0.58 0.4

For 500 and 1000 samples, we observe a situation, with both the TRSVM and the
TWNFI coming out with better results, with the former’s computational times increasing
further, and the latter’s computational times decreasing bit by bit. The NB classifiers,
however, in addition to computational time increase, perform considerably worse here,
with their accuracy decreasing by 6–14% and 2–8%, respectively (Tables 2 and 3).

Table 2. Comparison of chosen machine learning algorithms for 500 samples.

TR-SVM TWNFI NB Classifier (Gaussian) NB Classifier (Complement)

Accuracy percentage 70% 66% 54% 52%

Avg. fitting time (ms) 4,629,342.37 20,456.25 1.2287 1.2396

Avg. prediction time (ms) 425,968.14 0.5530 0.1445 0.07388

Mean square error (for 50 experiments) 0.3 0.34 0.46 0.48

Table 3. Comparison of chosen machine learning algorithms for 1000 samples.

TR-SVM TWNFI NB Classifier (Gaussian) NB Classifier (Complement)

Accuracy percentage 70% 64% 46% 58%

Avg. fitting time (ms) 12,611,525.95 5604.68 1.9520 2.070

Avg. prediction time (ms) 543,569.71 0.4675 0.1426 0.0760

Mean square error (for 50 experiments) 0.3 0.36 0.54 0.42

For 2500 samples, we see that the TRSVM begins to perform worse, with it coming
second to the TWNFI (itself at 76%) with 68%. Its training time also reaches approximately
9 h at this point, making further deployment impractical. On the other hand, the TWNFI
both decreases its computational time and increases its accuracy. Both NB classifiers,
meanwhile, despite remaining relatively fast, do not give satisfactory accuracy, with 54%
and 40% for Gaussian NB and Complement NB classifiers, respectively (Table 4).
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Table 4. Comparison of chosen machine learning algorithms for 2500 samples.

TR-SVM TWNFI NB Classifier (Gaussian) NB Classifier (Complement)

Accuracy percentage 68% 76% 54% 40%

Avg. fitting time (ms) 33,368,058.12 13,610.57 4.0899 4.1547

Avg. prediction time (ms) 388,989.52 0.4662 0.1471 0.0814

Mean square error (for 50 experiments) 0.32 0.24 0.46 0.6

For 5000 samples, we observe a similar situation to the one with 2500 samples, with
the TWNFI becoming even faster and more accurate on a larger subset, outputting 82%
correct predictions. The quality of TRSVM, meanwhile, continues to decrease, dropping to
around the same level as the NB classifiers, and further becoming slower compared to the
other algorithms, with its training time now reaching almost 2 days.

For 10,000 samples, the TRSVM run was terminated due to extremely long execution
times (the program did not compute after several days) and Python RuntimeError. In the
context of the implementation, it indicates that the program has found two vectors with
the same input values that belong to different classes, causing a division by zero in one of
the formulas used to calculate the terminated ramp functions the TRSVM uses. This causes
further questions regarding the dataset itself. Interestingly, TWNFI’s accuracy dropped by
18% compared to the 5000-sample run, for reasons unknown. Despite this, it still comes out
better than the Naive Bayes classifiers in terms of accuracy, all while maintaining around
the same computational times. Meanwhile, the NB classifiers see a greater increase in
computational times, while their accuracy remains relatively low (Table 5).

Table 5. Comparison of chosen machine learning algorithms for 10,000 samples.

TR-SVM TWNFI NB Classifier (Gaussian) NB Classifier (Complement)

Accuracy percentage N/A 64% 58% 48%

Avg. fitting time (ms) N/A 10,901.85 15.105 14.413

Avg. prediction time (ms) N/A 0.4151 0.1628 0.0863

Mean square error (for 50 experiments) N/A 0.36 0.42 0.52

For the whole set, we are also unable to compute TRSVM’s performance due to lacking
the RAM to store the entire Gram Matrix alone (the experiments were conducted on a laptop
with 16 GB RAM, whereas the entire Gram Matrix of the set would require approximately
36 GB RAM). TWNFI, meanwhile, sees an increase in accuracy once again, while retaining
a close computational time to the previous runs. The NB classifiers, on the other hand,
mostly repeat the situation with the 10,000-sample run, remaining low accuracy-wise and
having their computational times further increase (Table 6).

Table 6. Comparison of chosen machine learning algorithms for the whole set.

TR-SVM TWNFI NB Classifier (Gaussian) NB Classifier (Complement)

Accuracy percentage N/A 78% 56% 48%

Avg. fitting time (ms) N/A 12,122.58 110.80 102.51

Avg. prediction time (ms) N/A 0.4547 0.2075 0.1328

Mean square error (for 50 experiments) N/A 0.22 0.44 0.52

Figure 7 demonstrates the difference between the performance of the chosen algo-
rithms: accuracy, fitting time, prediction time and mean square error.



Appl. Sci. 2023, 13, 682 20 of 30

Figure 7. Comparison of accuracy, fitting time, prediction time and mean square error between the
chosen algorithm.

While the Naive Bayes classifier takes less time to compute than the others, it returns
pretty bad results, with accuracy fluctuating at 40–60% regardless of subset size. This
is likely due to the features being dependent on each other, since a known weakness
of the Naive Bayes classifier is that it assumes all features are independent from each
other. Although the current literature mentions Naive Bayes classifiers being used in the
medical field, it is likely that better multicollinearity detection methods are required for
optimal results.

TRSVM does not work on the whole set and a 10,000 sample subset, returning Mem-
oryError instead, which is caused by hardware limitations, and returns divide by zero
RuntimeErrors, which is caused by the normalization methods creating two samples with
identical feature values that belong to different classes (therefore causing a division by zero
in one of the formulae). While it does achieve better accuracy on smaller datasets, it does
take a dip on 250 samples for reasons unknown, and the accuracy is shown to decrease at
2500 and more samples due to a higher hyperparameter value in the pruning heuristic.

TWNFI’s computational time stays relatively the same regardless of the dataset size,
which can be attributed to it building smaller local models for each data sample. However,
its performance on smaller subsets appears to be worse than that of TRSVM, which could
be explained by SVMs generally working better on smaller datasets. Its dependency
on correctly chosen parameters may also complicate its deployment. However, it starts
showing better results on larger subsets, likely due to more relevant samples being available
for the construction of its local models.

Overall, the relatively low performance of all algorithms (including the ones provided
by scikit-learn) may indicate further undetected anomalies in the dataset, where further
testing of both TRSVM and TWNFI on different datasets has them show much better results.
Despite this, the performed calculations are enough to observe several patterns related to
the algorithm. While TRSVM performs pretty well on smaller datasets, its computational
time becomes impractical on larger ones, and the proposed solution by the original author
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trades off accuracy for speed, in ways that are not always acceptable. Meanwhile, TWNFI
can perform better in certain conditions, but its extreme dependence on external parameters
can make it more difficult to deploy, due to the difficulties of parameter picking in machine
learning algorithms.

6.2. TWNFI Hyperparameters and Their Effect on Performance

The quality and computation time of TWNFI may greatly depend on the amount of
samples chosen to build the local model. Several parameters specific to the algorithm affect
its performance, and therefore require further examination. One of such parameters is the
number of samples TWNFI uses to build a local model, the influence of which can be seen
in Table 7.

Table 7. TWNFI evaluation with a different number of local model samples, with Dthr = 0.2, on a
dataset of 250 samples.

Number of Similar
Samples

Accuracy Percentage
(ms)

Avg. Fitting Time
(ms)

Avg. Prediction Time
(ms)

Mean Square Error
(for 50 Experiments)

15 64% 5845.22 0.3516 0.36

20 76% 8022.30 0.3315 0.24

25 78% 9807.30 0.3514 0.22

30 66% 11,973.35 0.3356 0.34

35 72% 15,024.77 0.3408 0.28

The results show that a larger amount of samples may increase accuracy but also is
guaranteed to increase computation time. The accuracy, however, does not necessarily
increase with a larger number of samples, which could be due to the fact that a larger
amount of samples allows less relevant data vectors to be selected. As an example, from the
table, we can see that the accuracy percentage peaks at 25 similar samples and decreases at
higher values. Meanwhile, the time steadily increases from 5845.22 ms to 15,024.77 ms.

Another important parameter is the Dthr parameter in the ECM algorithm, which plays
an instrumental part in clustering according to radius length by serving as a comparison.
Due to TWNFI relying on ECM for clusterization and creation of rules, this parameter can
greatly affect the amount of rules created, which in turn can affect the accuracy. Table 8
demonstrates how it affects the overall performance.

One thing to note is that increasing the Dthr parameter decreases both prediction
and fitting time, with a larger Dthr parameter reducing the fitting time by more than two
times (from 20,404.17 ms to 9877.32 ms in this case), and the prediction time by more than
20 times (from 6.1129 ms to 0.3771 ms here). This is likely caused due to a smaller amount
of clusters created by ECM with a larger Dthr, and, by extension, a smaller amount of rules,
reducing the amount of extra variables in the program. The same, however, cannot be said
about the accuracy percentage, which appears to fluctuate through different parameter
numbers. The reason for such behavior remains unknown for now.
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Table 8. TWNFI evaluation depending on the ECM radius parameter, on a dataset of 250 samples.

Dthr Accuracy Percentage Avg. Fitting Time (ms) Avg. Prediction Time (ms) Mean Square Error (for 50 Experiments)

0.15 62% 20,404.17 6.1129 0.38

0.20 76% 9,877.32 0.3771 0.24

0.25 84% 9601 0.3363 0.16

0.30 78% 9464.78 0.3582 0.22

0.35 70% 9691.50 0.3607 0.3

0.40 80% 9561.18 0.3308 0.2

0.45 56% 9698.76 0.3391 0.44

0.50 66% 9483.88 0.3377 0.34

0.55 76% 9712.92 0.3506 0.24

0.60 78% 9490.59 0.3625 0.22

0.65 64% 9626.10 0.3368 0.36

0.70 80% 9321.10 0.3298 0.2

0.75 74% 9425.70 0.3219 0.26

0.80 82% 9703.71 0.3397 0.18

0.85 74% 9561.92 0.3265 0.26

0.90 74% 9360.46 0.3209 0.26

0.95 68% 9613.46 0.3274 0.32

1.0 68% 9658.99 0.3435 0.32

6.3. NLP Transformation Accuracy

Table 9 demonstrates the results obtained vian NLP-assisted transformation. It is
worth noting several assumptions that were made while taking this table into account.

It is visible that mostly numerical qualities are parsed correctly but seems to make
frequent mistakes in recognizing features represented by discrete numerical values, such
as gender. This is likely caused by sense2vec model’s general purpose, rather than it being
geared towards scientific language, which was evident during debug when it assigned
informal terms as synonyms for column labels. While the presence of these patterns in the
program does not necessarily reduce parsing quality, it greatly slows initialization time
and forces us to take more samples to have actually helpful words among them. Another
problem it appears to face is the detection of negation and uncertainty in the case of boolean
values, which is one of the challenges in contemporary medical NLP.

There is also a slight discrepancy in days between the parsed results and actual results,
caused by the values in text being expressed in years, rather than days. This discrepancy is
ignored when calculating accuracy, with the number being considered correctly parsed if it
is not far from the original value.

With the highest accuracy per sample at 100%, and lowest accuracy per sample at
45%, we can see that the approach demonstrates variable results from sample to sample,
performing on some better than the others. A likely cause of this is the approach recognizing
specific words better than the others, which once again comes back to the limited availability
of models.

Overall, the approach shows somewhat positive, although not accurate enough results
for the method to be applied on real data. There is a chance, however, that these results are
not indicative of the real life environment due to the data samples being created specifically
for testing purposes. Real patient note records may show results that are drastically different.
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Table 9. Results of NLP-assisted data transformation from patient notes.

Sample
Number Real Sample Actual Sample

Comp.
Time
(ms)

Accuracy
per
Sample

1 [18,262.5, 2, 168.0, 62.0, 110.0, 80.0, 0, 0, 0, 0, 1] [18,393, 2, 168, 62, 110, 80, 0, 0, 0, 0, 1] 2929.77 100%

2 [14,610.0, 2, 165.0, 60.0, 120.0, 80.0, 1, 1, 0, 0, 0] [14,791, 2, 165, 60, 120, 80, 0, 0, 0, 0, 0] 3030.48 82%

3 [21,184.5, 1, 170.0, 75.0, 130.0, 70.0, 0, 0, 0, 0, 0] [21,296, 1, 170, 75, 130, 70, 0, 0, 0, 0, 0] 2992.86 100%

4 [23,010.75, 2, 151.0, 92.0, 130.0, 90.0, 0, 1, 0, 0, 0] [23,204, 1, 151, 92, 130, 90, 0, 0, 0, 0, 0] 2992.74 82%

5 [15,705.75, 2, 185.0, 88.0, 133.0, 89.0, 1, 1, 0, 0, 0] [15,946, 2, 185, 88, 133, 89, 1, 1, 0, 0, 1] 2630.13 91%

6 [20,454.0, 2, 100.0, 78.0, 140.0, 90.0, 1, 1, 1, 0, 0] [20,627, 2, 168, 78, 140, 90, 1, 1, 1, 0, 1] 2844.75 82%

7 [21,915.0, 2, 176.0, 74.0, 120.0, 80.0, 0, 1, 0, 1, 0] [22,111, 1, 176, 74, 120, 80, 0, 0, 0, 0, 1] 2955.90 64%

8 [14,244.75, 2, 167.0, 66.0, 110.0, 70.0, 0, 0, 0, 0, 1] [14,493, 1, 167, 66, 110, 70, 0, 0, 0, 0, 1] 2875.22 91%

9 [23,376.0, 2, 169.0, 73.0, 140.0, 90.0, 0, 1, 0, 0, −1] [23,376, 2, 169, 73, 140, 90, 0, 0, 0, 0, 1] 2620.89 82%

10 [18,993.0, 2, 175.0, 53.0, 140.0, −1, 1, 1, 0, 0, 1] [19,081, 2, 175, 53, 140, 80, 0, 0, 1, 0, 1] 2492.70 64%

11 [21,549.75, 2, 174.0, 82.0, 120.0, 80.0, 1, 1, 0, 0, 1] [21,665, 2, 174, 82, 120, 80, 0, 0, 0, 0, 1] 2809.15 82%

12 [16,436.25, 2, 170.0, 68.0, 150.0, 90.0, 1, 1, 0, 0, 0] [16,608, 1, 170, 68, 150, 90, 1, 0, 0, 0, 1] 3074.92 73%

13 [−1, 1, 157.0, −1, 1, 130.0, 1, 1, 0, 0, 1] [22,608, 1, 157, 70, 130, 90, 0, 0, 0, 0, 1] 3003.69 45%

14 [23,376.0, 2, 1, 1, −1, −1, 1, 1, 0, 0, −1] [23,389, 1, 163, 63, 120, 80, 1, 1, 0, 0, 0] 2118.30 45%

15 [19,358.25, 2, 171.0, 79.0, 80.0, −1, 0, 1, 0, 0, 0] [19,668, 2, 171, 79, 120, 80, 0, 0, 0, 0, 1] 2475.30 64%

16 [20,454.0, 1, 180.0, 75.0, 1, −1, 0, 1, 0, 0, 1] [20,554, 2, 180, 75, 120, 80, 0, 0, 0, 0, 1] 2632.36 64%

17 [14,610.0, 2, 170.0, 68.0, 120.0, −1, 0, 1, 0, 0, 0] [14,798, 2, 170, 68, 120, 80, 0, 0, 0, 0, 0] 2524.41 82%

18 [23,010.75, 1, 155.0, 56.0, 120.0, 80.0, 0, 1, 0, 0, −1] [23,191, 1, 155, 56, 120, 80, 0, 0, 0, 0, 1] 3003.80 82%

19 [21,184.5, 2, 166.0, 101.0, 140.0, 90.0, 1, 1, 0, 1, 0] [21,270, 1, 166, 101, 140, 90, 1, 0, 0, 0, 1] 2910.77 64%

20 [23,010.75, 1, 164.0, 82.0, 130.0, 70.0, 1, 0, 0, 0, 0] [23,343, 1, 164, 82, 130, 70, 1, 0, 0, 0, 1] 2980.47 91%

Initialization time (ms): 8030.26

Total accuracy percentage: 76%

6.4. Unit Conversion Evaluation

Tables 10 and 11 display the results for similarity-based conversion evaluation for sets
with N = 100, 8 and 2 known features, respectively, with the age, height and weight in the
second dataset being in years, feet and pounds, as opposed to days, centimetres and kilogram.
The predicted values display the program-guessed conversion coefficients, as opposed to
the actual, known values of those units.

Table 10. Results for experimental unit conversion approach with 8 known traits and 100 experiments
depending on the number of similar samples.

Number of Similar Samples Predicted Values Actual Values

50 374.54, 2.55, 0.47 365.25, 2.54, 0.45

100 368.52, 2.56, 0.46 365.25, 2.54, 0.45

250 367.6, 2.54, 0.46 365.25, 2.54, 0.45

500 373.15, 2.54, 0.46 365.25, 2.54, 0.45

1000 375.35, 2.53, 0.47 365.25, 2.54, 0.45

2500 369.11, 2.55, 0.48 365.25, 2.54, 0.45
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Table 11. Results for experimental unit conversion approach with 2 known traits and 100 experiments
depending on the number of similar samples.

Number of Similar Samples Predicted Values Actual Values

50 370.20, 2.54, 0.48 365.25, 2.54, 0.45

100 370.82, 2.53, 0.46 365.25, 2.54, 0.45

250 371.17, 2.54, 0.47 365.25, 2.54, 0.45

500 372.60, 2.54, 0.44 365.25, 2.54, 0.45

1000 367.74, 2.55, 0.47 365.25, 2.54, 0.45

2500 370.81, 2.58, 0.47 365.25, 2.54, 0.45

In an environment without any prior manipulations to the data, with the formats
similar to each other, the approach yields pretty good results, with best values (367.6, 2.54,
and 0.46 for the first experiment, and 367.74, 2.54, 0.46 for the second one) achieved being
not far away from the expected coefficients. However, the optimal numbers of similar
samples (250 and 1000 in the cases of these experiments) appear to differ from case to case,
with a smaller amount of known traits possibly requiring larger samples.

While the similarity-based conversion method has proven to be relatively accurate
when tested on data with a high number of known traits without discrepancies, both the
simulated environment with split data and when used to merge two datasets alone, it has
proven to be more unstable and less effective. It is also clearly visible that, in the case of
the first table, amounts of samples greater than 250 distort the results due to less similar
samples influencing the calculation.

Upon a closer look at Table 12, where the datasets have been split and the program
was forced to reconstruct the values we know, we can see how certain data samples look
when extended, which reveals a few things. Depending on the parameters, the restored
sample may either get distorted by a large number of outliers as similar samples with a
smaller number, or will be too generalized under a larger number of similar samples, which
plays into the widely known problem of overfitting.

Table 12. Individual sample transformation, the experimental unit conversion approach.

Similar Samples Before Transformation After Transformation

50 [23,143.48, 1.0, 163.92, 73.96, 135.0,
80.0, 1.0, 2.0, 0.0, 0.0, 0.0]

[22,431.0, 1.0, 163.0, 72.0, 135.0, 80.0,
1.0, 2.0, 0.0, 0.0, 0.0]

100 [23,058.68, 1.0, 158.69, 128.300, 140.0,
90.0, 2.0, 2.0, 0.0, 0.0, 1.0]

[22,601.0, 1.0, 158.0, 126.0, 140.0, 90.0,
2.0, 2.0, 0.0, 0.0, 1.0]

250 [20,540.0, 1.0, 170.0, 72.0, 120.0, 80.0,
2.0, 1.0, 0.0, 0.0, 1.0]

[20740.02, 1.0, 169.60, 72.238, 120.0,
80.0, 2.0, 1.0, 0.0, 0.0, 1.0]

500 [19,401.56, 2.0, 182.63, 106.37, 180.0,
90.0, 3.0, 1.0, 0.0, 1.0, 0.0]

[19,066.0, 2.0, 183.0, 105.0, 180.0, 90.0,
3.0, 1.0, 0.0, 1.0, 0.0]

1000 [21,300.94, 1.0, 170.77, 71.54, 120.0,
80.0, 2.0, 1.0, 0.0, 0.0, 1.0]

[20,540.0, 1.0, 170.0, 72.0, 120.0, 80.0,
2.0, 1.0, 0.0, 0.0, 1.0]

2500 [20,737.45, 1.0, 171.37, 75.71, 120.0,
80.0, 2.0, 1.0, 0.0, 0.0, 1.0]

[20,540.0, 1.0, 170.0, 72.0, 120.0, 80.0,
2.0, 1.0, 0.0, 0.0, 1.0]

A similar trend can be observed in Table 13, which demonstrates how the number
of steps N impacts the overall performance. While the dependency between number of
steps and result quality does not appear to be linear, it shows that the best results are
also produced by the amount of steps around 50–100, while reducing in accuracy at larger
parameters. The amount of steps also seems to greatly increase computational time.
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Table 13. Evaluation of similarity-based conversion approach and effect of the experiment number N,
with 250 samples (k = 250) per experiment.

Number of Steps N Predicted Values Actual Values Computation Time

10 361.79, 2.57, 0.51 365.25, 2.54, 0.45 14,794.72

20 377.86, 2.56, 0.43 365.25, 2.54, 0.45 27,955.9273

30 380.79, 2.53, 0.47 365.25, 2.54, 0.45 40,537.82

40 373.96, 2.60, 0.47 365.25, 2.54, 0.45 57,885.87

50 370.09, 2.55, 0.45 365.25, 2.54, 0.45 67,754.48

100 368.08, 2.58, 0.46 365.25, 2.54, 0.45 143,455.42

250 373.50, 2.55, 0.46 365.25, 2.54, 0.45 328,075.21

As expected, the number of steps makes the computation time grow, but a larger
number of steps does not necessarily equal higher accuracy. Here, we see that the best
coefficient for years achieved in only 10 steps, whereas the better ones for inches and
pounds are achieved in 250 and 50 steps, respectively. A possible future improvement to
the method may be modifying it to use different amounts of steps for different features
(Table 12).

Depending on the parameters, the converted values suffer various degrees of distor-
tion, sometimes missing their mark by nearly two years. The distortion becomes even more
evident on the dataset merging test that did not include label interpretation (which was
switched off due to it automatically converting the example trait), where only two traits
used to for the method are achieved by converting the other sets’ numericals into booleans,
therefore adding a degree of inaccuracy, as shown in Table 14.

With the best result being a coefficient of 471.80, the worst one being that of 542.29,
and both being far from the intended coefficient of 365.25, it is clear that the approach is a
lot less reliable when preceded by multiple other transformations to the data, which have
already added a degree of distortion.

Table 14. Results for experimental unit conversion approach with two common traits matched from
previous methods and 100 steps depending on the number of similar samples.

Number of Similar Samples Predicted Values Actual Values

50 523.12 365.25

100 494.48 365.25

200 498.29 365.25

250 542.89 365.25

300 532.68 365.25

500 471.80 365.25

1000 509.07 365.25

2500 503.09 365.25

6.5. Combined Methods for Data Merging

Table 15 demonstrates the performance of algorithms on a dataset that has been
combined, on subsets of 250 samples, with average values from 50 experiments each. The
accuracy percentage computation time with merged and converted values may be lower
than with those that did not undergo this, they are still not very far off. As it seems, the
approach is usable. Interestingly, the Complement Naive Bayes classifier shows better
results than during tests on unmerged datasets.
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Table 15. Results of different models with experimental unit conversion approach.

TR-SVM TWNFI NB Classifier
(Gaussian)

NB Classifier
(Complement)

Accuracy percentage 65% 58% 59% 64%

Avg. fitting time (ms) 1,644,799.63 19,001.99 0.9101 0.9827

Avg. prediction time (ms) 625,832.98 0.7940 0.1361 0.0728

Mean square error 0.35 0.42 0.41 0.36

6.6. Results Discussion

As was obtained, Naive Bayes classifiers performed rather poorly on medical data, with
the results for both of classifiers fluctuating around 40–60%, which may be linked to the issue
of multicollinearity mentioned in the previous section, and the system’s inability to detect it
in all of the cases. Though the results appear to be better with feature selection, the classifier
as it is not enough to produce a reliably accurate diagnosis for usage in real-life cases.

In comparison, TWNFI performs poorly on smaller datasets, only reaching an accuracy
of 50% on a 100-sample subset, but seems to perform relatively well on larger datasets with
proper parameters, achieving the highest accuracy in the series of experiments at 82% for
5000 samples and further confirming the ideas mentioned in [28]. TWNFI’s fitting time also
decreases with a larger dataset, going from 20,456.25 ms to 12,122.58 ms, which could be
attributed to a larger amount of samples allowing the algorithm to pick a more precise set
that takes less time to tune, all local sub-models in testing being of relatively the same size,
and clustering being only applied to a local area. However, to adjust TWNFI to a specific
problem, one would have to pick suitable parameters (like number of samples) for it to
both make accurate predictions and perform within a reasonable time limit.

TR-SVM’s showcases better results on smaller datasets, achieving the highest accuracy
of 72% among all the algorithms on a subset of 100 samples, but it is impractical to use
on larger ones due to large computation times, which reached several days on a subset of
5000 samples, which can take days even on more powerful machines. While the pruning
heuristic does offer to decrease some of this time, it sacrifices a certain amount of accuracy
in favor of faster execution, with larger values of parameter S decreasing accuracy from
around 90% to only 60%, and is still not enough to make a great difference in the case of
larger datasets. As a result, it is best suited for the same cases as other SVM: small datasets
of high-dimensional data.

The NLP note parser appears to give tolerable results as of now, but still far from
being viable due to the way it is currently implemented, with accuracy per sample varying
from 100% to 45%, as well as the lack of available datasets containing patient notes. Its
inaccuracies are also partially due to a lack of publicly available data that features medical
notes, resulting in a worse recognition quality. In addition to that, while parsing itself only
takes approximately 2000–3000 ms, the same cannot be said about the initialization time,
which involves loading all the models. As a result, it may be more effective to parse several
notes simultaneously.

The experimental unit conversion works in most cases; however, its effectiveness
greatly depends on the parameters such as the number of similar neighbours and the
amount of steps. More experiments on different kinds of datasets are required to develop
it further. The quality of the conversion also appears to greatly decrease when applied
together with other methods, resulting in coefficients almost 1.5 times larger than the target
results, such as the amount of days in year being erroneously assumed to be closer to 500
instead of the intended 365.25.

6.7. Research Potential and Future Possibilities

Despite the aforementioned conclusions drawn in our research, new questions arise
both out of the theoretical implications and the results. Due to TWNFI’s transductive
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modelling logic, the algorithm can be further perfected by adding feature selection to one
of its steps, making it possible to eliminate the columns with fields that were assigned
placeholder values pre-training data mergers, further improving the performance of the
algorithm. In addition, the automation of parameter selection should be further looked into,
with methods such as cross-validation being of potential help in this case. With its speed
being TRSVM’s main drawback, the further research must be directed into its optimization,
as in [42].

With the application of data merging, the problem of multicollinearity still has not
been solved in this paper. Although feature selection may be applied to the tables, it may
not always detect multicollinear features if the tables have been merged. With no apparent
means to solve this problem as of now, further research in this direction is necessary to
make the diagnosis algorithms more efficient in cases of merged data. In addition to that,
there is a possibility that polynomial regression could be applied for merging variables that
do not have a linear dependency.

The NLP transformation could use further development and testing on real patient
data and research in collaboration with medical organizations. While it has been tested in
our research with tolerable results, the data used are still an approximation that may not
be completely reflective of real life data, which is why it would require further work later
on. It includes the threshold and coefficient parameters for different models involved in
the program, which were obtained experimentally for this research, but could be obtained
automatically instead if they are somehow translated into an optimization problem.

The idea of an image classifier mentioned back in Section 5 could be a topic for
an entirely different, much more comprehensive and in-depth research. The problems
regarding its implementation poses are multiple, and could not be covered by this paper,
making it a potential future research target.

7. Conclusions

The paper presented several solutions towards automating medical data transforma-
tion and tests on both natural and artificially created datasets. Selected algorithms used for
diagnosis were implemented, tested and had their performance compared in this paper,
with their parameters also investigated, making it easier to choose an algorithm better
suited for a specific case. Whereas TRSVM may be better suited for smaller datasets with a
high amount of dimensions, TWNFI performs better on larger ones, and does not have the
performance problem TRSVM does.

Since it appears that different datasets yield different accuracy rates across all methods,
unanswered questions remain about transforming them to improve algorithm accuracy.
While the subsets used in our research are all balanced with the exception of instances
where the entire datasets are being used, it does very little to improve the performance of
the methods. To improve overall algorithm performance, additional factors that influence
accuracy need to be identified.

Despite the scarcity of medical notes, an NLP parser was created, enabling transfor-
mation from text to table format, in an attempt to combat the problem of heterogeneity.
The parser combines several NLP techniques, such as NER, rule-based recognition and
word vectors to extract the necessary values from the text and fill an entry with them
in accordance with a schema specified in a file. Although its results are not perfect, it
still leaves room for improvement on natural datasets and actual patient notes. Another
possible improvement would be modifying the negation detection in the method to make
the recognition of Boolean values more effective.

While the experimental unit conversion method has been shown to work in cases
with a lot of known columns that are alike in both datasets being merged, it became a
lot less reliable when such columns were fewer, or when it was combined with other
data transformation methods. One question regarding the unit conversion method would
be its modification to allow different parameters per individual column, due to testing
results showing different parameters resulting in optimal values for different columns.
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This modification, however, would also involve solving the problem of picking optimal
parameters for such approach.

The research performed in turn puts more questions up for discussion and further
research, such as multicollinearity and ways to detect it, as well as the possibility of an
image classifier, and possible applications of polynomial regression to transform data. In
addition to that, the diagnosis methods could benefit from cross-validation, since it would
help even more to determine optimal parameters, These problems, as well as many other
related ones, should be further explored and solved, to continue where this research has left
off. Though the ideas described in the paper have been proven to work on the presented
datasets, they have quite a few drawbacks, leaving space for future research.
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