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Abstract: After the pandemic, global supply chains will be in the process of restructuring. The
relocation of production lines among countries is being considered for the purpose of sustainable
development. The problem of determining the most suitable destination for manufacturers’ invest-
ments will become important, especially in the field of manufacturing high-tech products, which
involves many complicated factors such as technological maturity, support policies, political issues,
and technology security. In that context, Southeast Asia is seen as one of the regions attracting
multinational manufacturers. To address this problem, a novel composited regret-theory-based spher-
ical fuzzy prioritization approach is proposed. On the one hand, the super-efficiency slack-based
model (super-SBM) of data envelopment analysis (DEA) is applied to evaluate efficiency, based
on indicators. On the other hand, the novel spherical fuzzy regret-theory-based decision-making
approach (SfRDMA) is developed and introduced to determine effectiveness, based on criteria. Then,
the efficiency and the effectiveness of countries are combined by a composite-score function that is
based on a geometric mean and an arithmetic mean. The findings imply that government policy,
political stability, and human resources availability are the three most important criteria. Moreover,
India, Thailand, Vietnam, Malaysia, and Indonesia are identified as promising destinations for the
world’s high-tech production lines.

Keywords: multiple criteria decision making; fuzzy theory; regret theory; spherical fuzzy; high-tech
manufacturing; production line moving

1. Introduction

Scientific revolutions and changes in industry have posed new challenges for countries
around the world. However, such changes also provide an opportunity for countries to
improve their competitiveness [1]. Over the past two decades, many growth feats in
countries have been the result of high-tech-based international trade activities. High-
tech products drive the performance of countries and lead to positive externalities and
dynamism in their economies [2]. Furthermore, many endogenous economic growth
theories emphasize that innovative products representing high-tech play an important
role in technological progress, creating comparative advantages in trade [3]. Beyond
the theoretical framework, many empirical studies have concluded that technological
progress promotes international trade, leading to higher economic growth [4]. Therefore,
the development of multinational high-tech companies is the means to achieve the above
goals. On the contrary, from the perspective of high-tech manufacturers, a right decision
on investment destination has a great impact on a company’s sustainable development, as
well as limiting risks and saving costs for investors. Therefore, this study aims to prioritize
investment destinations in the East Asia and South Asia regions for high-tech production
lines. This prioritization process determines both the efficiency and the effectiveness of
developing countries based on quantitative indicators and qualitative criteria, respectively.
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To address this prioritization problem, a novel composited regret-theory-based spher-
ical fuzzy prioritization approach is proposed. On the one hand, the super-efficiency
slack-based model (super-SBM) of data envelopment analysis (DEA) is applied to evaluate
the efficiency of thirteen countries in Southeast Asia, based on indicators such as inflation,
gross domestic products (GDPs), costs to export, high-technology exports records, and
ease-of-doing-business scores. On the other hand, the novel spherical fuzzy regret-theory-
based decision-making approach (SfRDMA) is developed and introduced to determine the
effectiveness of the thirteen countries, based on ten evaluation criteria. Then, the efficiency
and the effectiveness of the countries are combined by a composite-score function that is
based on a geometric mean and an arithmetic mean. The novel composited regret-theory-
based spherical fuzzy prioritization approach is the primary theoretical contribution of this
research to the field of decision science. Meanwhile, the results of destination preferences
for high-tech manufacturing moving to Southeast Asia provide the secondary practical
contribution of this study.

The remainder of this paper is set out as follows. A summary of relevant studies is
provided in Section 2; A detailed profile of the paper is presented in Section 3. Section 4
provides a discussion, as well as a description of the results of the study. Section 5 provides
the paper’s conclusions.

2. Related Works

Multiple-criteria decision making (MCDM) encompasses a variety of methods that
support decision makers in evaluating and choosing the most suitable decision from a set
of alternatives, based on multiple criteria. Over the years, many approaches have been
developed and proposed for MCDM problems, as presented in Table 1. A closer look at the
overview reveals that primitive methods tend to be used in an integrated manner [5]. Most
combinations of MCDM methods aim to individually perform the two tasks of determining
the importance of the criteria and prioritizing alternatives [6]. For example, Ilyas et al.
combined two MCDM methods—the Best-Worst method (BWM) and the Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS)—for the purpose of supplier
selection [7]. In that study, the criterion weight was calculated using the BWM method;
then, the ranking of risks affecting the supplier were calculated through the TOPSIS method.
Taddese et al. combined two MCDM methods as a combined AHP–VIKOR method for the
purpose of evaluating the sustainable performance of face-shield frame production [8]. A
new era in MCDM began when Zadeh introduced the concept of fuzzy sets [9]. Fuzzy set
theory has been proven to be powerful in dealing with various MCDM problems to over-
come uncertainty, inaccurate data, and unclear information. Fuzzy MCDM has been used in
a wide range of practical applications. For example, Yao analyzed environmental regulation
and green economic efficiency in China by applying the fuzzy analytical hierarchy process
(AHP) andthe fuzzy VIeKriterijumska Optimizacija I Kompromisno Resenje (VIKOR, a
Serbian term for “multi-criteria optimization and compromise solution”) [10]. Mahmut
Bakır et al. evaluated the quality of electronic services in the airline industry from the
consumer’s point of view, using an integrated fuzzy analytical hierarchy process (F-AHP)
and fuzzy Measurement of Alternatives and Ranking according to COmpromise Solution
(F-MARCOS) approach [11]. Liu et al. introduced an integrated approach—TODIM (an
acronym in Portuguese for interactive and multiple-attribute decision making)-ELECTER II
(elimination and choice translating reality II)—to solve technology selection problems [12].
In addition, extensions with fuzzy sets of the MCDM method are being introduced with
increasing popularity. Therefore, the development of fuzzy set types nearly parallels the
development of MCDM methods. The most recent fuzzy development is the introduction
of spherical fuzzy extensions of MCDM methods [13–15].

Recent studies show that evaluation based on distance from average solution (EDAS)
is emerging as one of the most effective assessment methods. This distance-based method
was introduced by Ghorabaee et al. in 2015 [16]. The EDAS method is a multi-criteria
distance-based decision-making methods similar to TOPSIS and VIKOR. However, the
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EDAS method simplifies the distance calculation to speed up the decision-making pro-
cess [17]. EDAS also outperforms TOPSIS and VIKOR in terms of complexity, due to the
elimination of unpromising candidates. In addition, this method is very convenient when
there is information about the preferred mean of the attribute evaluation [18].

Another popular MCDM method to identify potential relationships between factors
and weighting factors for the evaluation process is the decision-making trial and evaluation
laboratory (DEMATEL) method. This matrix-based method was first introduced in 1974
to solve complex and interdependent problems in various fields, such as manufacturing,
supply chain technology, and services [19–21]. As discussed above, fuzzy theory is con-
tinuously developed and applied to MCDM methods to deal with ambiguities in human
perspective. Among these applications, spherical fuzzy is one of the recently developed
and introduced fuzzy sets. The spherical fuzzy set is capable of expressing membership,
non-membership and hesitation in decision makers’ opinions. Therefore, spherical fuzzy
extensions of MCDM methods are introduced more and more in many fields [22–24]. In
addition, decision makers’ psychological behaviors, such as expectation, risk aversion,
and regret aversion, are also believed to have a significant impact on decisions. Therefore,
theories that describe the psychological behavior of decision makers, such as prospect
theory and regret theory, are increasingly applied in bounded rationality decision-making
processes [25–27]. For quantitative indicators, DEA models are considered as one of the
most powerful tools for assessing the efficiency of alternatives [6,28]. In some studies, DEA
has also been applied as a filter of alternatives in decision making [29]. For integrating
the results of many different methods, the geometric mean and the arithmetic mean are
common candidates for the task of aggregation operators [30].

The inspiration behind this article’s proposed approach came from those previous
studies. For the qualitative assessment of effectiveness, this study develops a matrix-based
and distance-based MCDM method in the spherical fuzzy environment that integrates the
principles of regret theory. For the quantitative assessment of efficiency, DEA’s super-SBM
model is applied. Finally, the effectiveness and efficiency scores of the alternatives are
combined to finalize prioritization by a composite-score function.

Table 1. Previous relevant studies.

No. Author Year Method Fuzzy Sets

1 S. Yao [10] 2021 AHP and VIKOR Triangular fuzzy
2 Bakir and Atalik [11] 2021 AHP and MARCOS Triangular fuzzy
3 Ilyas et al. [7] 2021 BWM and TOPSIS -
4 G. Taddese et al. [8] 2021 AHP and VIKOR -
5 Liu et al. [12] 2021 TODIM and ELECTRE II Hesitant fuzzy
6 Wanget al. [31] 2021 AHP and TOPSIS Triangular fuzzy
7 Valmohammadi et al. [32] 2021 AHP and TOPSIS Triangular fuzzy
8 Seker and Aydin [33] 2022 SWARA and WASPAS Intuitionistic fuzzy
9 Le et al. [34] 2022 DEA, AHP and CoCoSo Spherical fuzzy
10 Salimian et al. [35] 2022 VIKOR and MARCOS Intuitionistic fuzzy
11 Rezvani et al. [36] 2022 GIS and OWA -

This study Wang et al. 2022 SfRDMA and DEA Spherical fuzzy

Notations: SWARA—stepwise weight assessment ratio analysis; WASPAS—weighted aggregated sum product
assessment; CoCoSo—combined compromise solution; GIS—geographic information system; OWA—ordered
weighted averaging.

3. Methodology

As shown in Figure 1, at the pre-processing stage, experts and related documents are
assembled. Then, the super-efficiency of the alternatives is determined by the DEA model
based on the quantitative indicators. Simultaneously, the effectiveness of the alternatives
is calculated by the novel spherical fuzzy regret-theory-based decision-making approach,
based on qualitative criteria. Finally, the composite scoring function is used to aggregate
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the efficiency and effectiveness scores of alternatives. The higher the ultimate score, the
higher the alternative’s rank.
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3.1. Preliminaries
3.1.1. Spherical Fuzzy Sets

Spherical fuzzy sets (SFS), an extension of fuzzy sets, have recently been introduced
by Gundogdu et al. [23]. The decision-uncertain maker’s judgment is stated in each level
of membership, non-membership, and hesitance, as defined below.

Definition 1. The SFS Ã of the universe of L is described in Equation (1) [23]:

Ã =
{

l, ϑÃ(l), µÃ(l),πÃ(l)
∣∣l ∈ L

}
(1)

where ϑÃ, µÃ, πÃ(l) : L→ [0, 1] and 0 ≤ ϑ2
Ã
(l) + µ2

Ã
(l) + π2

Ã
(l) ≤ 1, ∀l ∈ L

The numbers ϑÃ(l), µÃ(l), πÃ(l) are the levels of membership, non-membership, and hesi-
tance of l to Ã.

Definition 2. The SFS of two values Ã =
(
ϑÃ, µÃ, πÃ

)
and B̃ =

(
ϑB̃, µB̃, πB̃

)
of the uni-

verse of L1 and L2 are illustrated based on some calculations demonstrated by the following
Equations (2)–(5) [23]:

Addition

Ã⊕ B̃ =

(√
ϑ2

Ã
+ ϑ2

B̃
− ϑ2

Ã
ϑ2

B̃
, µÃµB̃,

√(
1− ϑ2

B̃

)
π2

Ã
+
(

1− ϑ2
Ã

)
π2

B̃
− π2

Ã
π2

B̃

)
(2)
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Multiplication

Ã⊗ B̃ =

(
ϑÃϑB̃,

√
µ2

Ã
+ µ2

B̃
− µ2

Ã
µ2

B̃
,
√(

1− µ2
B̃

)
π2

Ã
+
(

1− µ2
Ã

)
π2

B̃
− π2

Ã
π2

B̃

)
(3)

Multiplication by a scalar (λ > 0)

λÃ =

(√
1− (1− ϑ2

Ã
)

λ, µλ
Ã

,

√
(1− ϑ2

Ã
)

λ − (1− ϑ2
Ã
− π2

Ã
)

λ

)
(4)

Power of Ã (λ > 0)

Ãλ =

(
ϑλ

Ã
,

√
1− (1− µ2

Ã
)

λ,

√(
1− µ2

Ã

)λ
− (1− µ2

Ã
− π2

Ã
)

λ

)
(5)

Definition 3. Spherical weighted geometric mean (SWG) and spherical weighted arithmetic mean
(SWA) are described through the weight vector ω = (ω1, ω2, . . . , ωn), where 0 ≤ ωi ≤ 1 and
∑n

i=1 ωi = 1 by the following Equations (6) and (7) [23]:

SWGω

(
Ã1, Ã2, . . . , Ãn

)
= Ã1

ω1 + Ã2
ω2 + . . . + Ãk

ωk

=

(
∏k

i=1 ϑωi

Ãi
,
√

1−∏k
i=1

(
1− µ2

Ãi

)ωi
,
√

∏k
i=1

(
1− µ2

Ãi

)ωi
−∏k

i=1 (1− µ2
Ãi
− π2

Ãi
)

ωi

) (6)

SWAω

(
Ã1, Ã2, . . . , Ãn

)
= ω1 Ã1 + ω2 Ã2 + . . . + ωk Ãk

=

(√
1−∏k

i=1

(
1− ϑ2

Ãi

)ωi
, ∏k

i=1 µωi

Ãi
,
√

∏k
i=1

(
1− ϑ2

Ãi

)ωi
−∏k

i=1 (1− ϑ2
Ãi
− π2

Ãi
)

ωi

) (7)

Definition 4. The SFS of two values Ã =
(
ϑÃ, µÃ, πÃ

)
and B̃ =

(
ϑB̃, µB̃, πB̃

)
of the expanse of

L1 and L2 under the condition λ, λ1, λ2 > 0, are represented in Equations (8)–(13) [23]:

Ã⊕ B̃ = B̃⊕ Ã (8)

Ã⊗ B̃ = B̃⊗ Ã (9)

λ
(

Ã⊕ B̃
)
= λÃ⊕ λB̃ (10)

λ1 Ã⊕ λ2 Ã = (λ1 + λ2)Ã (11)

(Ã⊗ B̃)
λ
= Ãλ ⊗ B̃λ (12)

Ãλ1 ⊕ Ãλ2 = Ãλ1+λ2 (13)

Definition 5. The defuzzied value of SFN Ã =
(
ϑÃ, µÃ, πÃ

)
is represented by the following

Equation (14):
A = (ϑÃ − πÃ)

2 + (µÃ − πÃ)
2 (14)

3.1.2. Regret Theory

Regret theory is a well-known behavioral decision theory in which humans’ bounded
rationality is considered. Accordingly, the decision maker will feel regretful when choosing
an alternative that is worse than others. Conversely, the decision maker will rejoice in the
choice. The findings of regret theory can be presented as the following definitions.
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Definition 6. Let x be a consequence of choosing alternative X, the utility value is obtained by
alternative X can be determined as follows:

u(x) = xϕ, 0 < ϕ < 1 (15)

where ϕ represents the decision maker’s risk-aversion coefficient. The larger the value of the
risk-aversion coefficient, the smaller the degree of the decision maker’s risk aversion. Based on
experiments, the value of ϕ is suggested to be 0.88.

Definition 7. Let x1 and x2 be consequences of choosing alternative X1 and X2. The regret–rejoice
value of choosing alternative X1 rather than X2 is determined as follows:

r(x1, x2) = 1− e−λ(u(x1)−u(x2)), λ > 0 (16)

where λ represents the decision maker’s regret-aversion coefficient. The smaller the value of the
regret-aversion coefficient, the smaller the degree of decision maker’s regret aversion. The value
of r(x1, x2) represents the regret value when u(x1) ≤ u(x2). Otherwise, it represents the rejoice
value. Based on experiments, the value of λ is suggested to be 0.3.

Definition 8. Let xi(i = 1 . . . n) be a consequence of choosing alternative Xi(i = 1 . . . n). The
overall utility value is obtained by alternative Xi and can be defined as:

v(xi) = u(xi) + r(xi, x∗) (17)

where
x∗ = max

1≤i≤n
xi and r(xi, x∗) ≤ 0 (18)

3.2. Composited Group Decision-Making Approach
3.2.1. Super-Efficiency Slack-Based Model (Super-SBM)

In 1978, DEA was first introduced as a method to measure the relative efficiency of
decision-making units (DMUs) [37]. DMUs can be companies, organizations, etc., that can
take multiple inputs and convert them to different outputs. Over the years, the development
of different models in DEA has evolved and is widely adopted by researchers in many
fields around the world [38]. The first model is the CCR model (Charnes, Cooper and
Rhodes), followed by the BBC model (Banker, Charnes and Cooper) [39]. In 2001, Tone
developed a slack-based performance measure (SBM) to evaluate the efficiency (ρ1) of
DMUk in n DMUs with s output and m inputs, according to Equation (19) [40]:

min ρ1 =
1− 1

m ∑m
i=1

s−i
xik

1+ 1
s ∑s

r=1
s+r
yrk

Subject to

xik =
n
∑

j=1
xikλj + s−i , i = 1, . . . , m

yrk =
n
∑

j=1
yrjλj − s+i , r = 1, . . . , s

λj ≥ 0, i = 1, . . . , n
s−i ≥ 0, i = 1, . . . , m
s+r ≥ 0, i = 1, . . . , s

(19)

where xij and yrj denote the ith input and the rth output of the DMUj, respectively. The λj

is a nonnegative vector with ∑n
j=1 λj = 1. Let x1

i = xik − s−i and y1
r = yrk − s+r . The SBM

model can be rewritten by Equation (20):
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min ρ1 =
1
m ∑m

i=1
x1

i
xik

1
s ∑s

r=1
y1

r
yrk

Subject to

x1
i ≥

n
∑

j=1
xikλj, i = 1, . . . , m

y1
r ≤

n
∑

j=1
yrjλj, r = 1, . . . , s

λj ≥ 0, i = 1, . . . , n
xik ≥ x1

i ≥ 0, i = 1, . . . , m
y1

r ≥ yrk, r = 1, . . . , s

(20)

However, demonstrating the efficiency of the DMUs, the SBM model uses a benchmark
of “1”. Due to this limitation, Tone developed a super-SBM model with unlimited scores to
evaluate the efficiency of a DMU [41]. The super-SBM DEA model is used to evaluate the
super-efficiency of DMUk (ρ2), according to Equation (21):

min ρ2 =
1
m ∑m

i=1
x2

i
xik

1
s ∑s

r=1
y2

r
yrk

Subject to

x2
i ≥

n
∑

j=1, j 6=k
xikλj, i = 1, . . . , m

y2
r ≤

n
∑

j=1,j 6=k
yrjλj, r = 1, . . . , s

λj ≥ 0, j = 1, . . . , n , j 6= k
xik ≤ x2

i , i = 1, . . . , m
0 ≤ y2

r ≤ yrk, r = 1, . . . , s

(21)

If the DMUk is determined as efficient by model (20), then model (21) is used to
calculate super-efficiency with any feasible solution

(
x2

i , y2
r
)
. The super-efficiency of DMUs

is denoted as efficiency score (ASα
i ) in this approach.

3.2.2. Spherical Fuzzy Regret-Theory-Based Decision-Making Approach (SfRDMA)

The growing trend of MCDM approaches is to combine different methods in roles such
as weighting criteria, prioritizing alternatives, and aggregating results [5]. For criterion
weighting, the robustness of the DEMATEL method, which is based on matrix calculations,
has been proven in many studies [13,14,21]. For the prioritization of alternatives, distance-
based methods such as TOPSIS and EDAS are widely applied [42,43]. On the other hand, for
integrating the results of many different methods, the geometric mean and the arithmetic
mean are common candidates for the task of aggregation operators [30,44]. Accordingly,
this study proposes novel approaches that combine the principles of matrix computation
and distance-based solution analysis in a spherical fuzzy environment. Moreover, the
proposed approach is reinforced by regret theory to evaluate the influence of behavior on
decision making. The proposed approach includes the following steps:

Step 1. A group of decision makers (k = 1 . . . K) is identified to contribute assessments.
Then, the weight of the kth decision maker (Ψk) is determined by Equation (22) based on
his/her expertise, which is presented as the given SFN Q̃k =

(
ϑQ̃k , µQ̃k , πQ̃k

)
[45]. The

expertise of decision makers is defined by higher-level decision makers in linguistics terms,
as shown in Table 2.

Ψk =

1−
√((

1− ϑ2
Q̃k

)
+ µ2

Q̃k + π2
Q̃k )/3

)
∑K

l=1

(
1−

√((
1− ϑ2

Q̃l

)
+ µ2

Ql + π2
Q̃l )/3

)) (22)
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where
K

∑
k=1

Ψk = 1 and 0 ≤ ϑ2
Q̃k + µ2

Q̃k + π2
Q̃k ≤ 1

Table 2. Linguistic terms for expertise’s decision makers.

Linguistic Term Spherical Fuzzy Number
(ϑ,µ,π)

Very high (0.85, 0.15, 0.45)
High (0.60, 0.20, 0.35)

Moderate (0.35, 0.25, 0.25)

Step 2. Decision makers define evaluation criteria (j = 1 . . . J) based on expertise,
experience, and references. Then, decision makers provide pairwise comparisons in the
form of linguistic terms about the influence among criteria. As shown in the scale presented
in Table 3, pairwise comparisons are converted to SFNs.

Table 3. Linguistic terms for criteria influence [22].

Linguistic Term Spherical Fuzzy Number
(ϑ,µ,π)

No influence (0.00, 0.30, 0.15)
Weak influence (0.35, 0.25, 0.25)

Moderate influence (0.60, 0.20, 0.35)
Strong influence (0.85, 0.15, 0.45)

As a result, the individual SF direct-influence matrices are established. The individual
SF direct-influence matrix of kth decision maker (Ãk) is represented as Equation (23).

Ãk =


ãk

11 ãk
12

ãk
21 ãk

22

· · · ãk
1J

· · · ãk
2J

...
...

ãk
J1 ãk

J2

. . .
...

· · · ãk
J J

 with ãk
jp =

(
ϑx̃k

jp
, µx̃k

jp
, πx̃k

jp

)
; j = 1 . . . J, p = 1 . . . J (23)

Step 3. To aggregate individual matrices, the spherical weight arithmetic mean is
used with decision makers’ weights (Ψk), as described in Equation (7). Hence, the SF
direct-influence matrix

(
Ã
)

is established, as represented in Equation (24).

Ã =


ã11 ã12
ã21 ã22

· · · ã1J
· · · ã2J

...
...

ãJ1 ãJ2

. . .
...

· · · ãJ J

 with ãjp =
(

ϑãjp
, µãjp

, πãjp

)
; j = 1 . . . J, p = 1 . . . J (24)

Step 4. To construct the SF initial direct-influence submatrices, the SF direct influence
matrix is separated into three submatrices corresponding to the three parameters of spheri-
cal fuzzy, as represented in Equation (25). Then, the submatrices are normalized according
to Equations (26)–(28).

Aϑ =


ϑã11

ϑã12

ϑã21
ϑã22

· · · ϑã1J

· · · ϑã2J

...
...

ϑãJ1
ϑãJ2

. . .
...

· · · ϑãJ J

, Aµ =


µã11

µã12

µã21
µã22

· · · µã1J

· · · µã2J

...
...

µãJ1
µãJ2

. . .
...

· · · µãJ J

, Aπ =


πã11

πã12

πã21
πã22

· · · πã1J

· · · πã2J

...
...

πãJ1
πãJ2

. . .
...

· · · πãJ J

 (25)
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Bϑ =


ϑb̃11

ϑb̃12

ϑb̃21
ϑb̃22

· · · ϑb̃1J

· · · ϑb̃2J

...
...

ϑb̃J1
ϑb̃J2

. . .
...

· · · ϑb̃J J

 where ϑb̃jp
= ϑãjp

×min

 1

max
1≤j≤J

∑J
p=1 ϑãjp

,
1

max
p1≤p≤J

∑J
j=1 ϑãjp

; j = 1 . . . J, p = 1 . . . J (26)

Bµ =


µb̃11

µb̃12

µb̃21
µb̃22

· · · µb̃1J

· · · µb̃2J

...
...

µb̃J1
µb̃J2

. . .
...

· · · µb̃J J

where µb̃jp
= µãjp

×min

 1

max
1≤j≤J

∑J
p=1 µãjp

,
1

max
1≤p≤J

∑J
j=1 µãjp

; j = 1 . . . J, p = 1 . . . J (27)

Bπ =


πb̃11

πb̃12

πb̃21
πb̃22

· · · πb̃1J

· · · πb̃2J

...
...

πb̃J1
πb̃J2

. . .
...

· · · πb̃J J

where πb̃jp
= πãjp

×min

 1

max
1≤j≤J

∑J
p=1 πãjp

,
1

max
1≤p≤J

∑J
j=1 πãjp

; j = 1 . . . J, p = 1 . . . J (28)

Step 5. The SF total-influence submatrices are calculated based on the SF initial direct-
influence submatrices, according to Equations (29)–(31) [21]. However, in some cases,
results that are inconsistent with the nature of the SFN appear by the conversation process.
To remedy this situation, the conversation results that are not consistent with the SFN
should be adjusted by Euclidean normalization. By concatenating submatrices, the SF total
influence matrix

(
C̃
)

is formed, as shown in Equation (32).

Cϑ = Bϑ + Bϑ′ = Bϑ
(

I − Bϑ
)−1

=


ϑc̃11

ϑc̃12
ϑc̃21

ϑc̃22

· · · ϑc̃1J

· · · ϑc̃2J
...

...
ϑc̃J1

ϑc̃J2

. . .
...

· · · ϑc̃J J

 (29)

Cµ = Bµ + Bµ′ = Bµ(I − Bµ)−1 =


µc̃11

µc̃12
µc̃21

µc̃22

· · · µc̃1J

· · · µc̃2J
...

...
µc̃J1

µc̃J2

. . .
...

· · · µc̃J J

 (30)

Cπ = Bπ + Bπ′ = Bπ(I − Bπ)−1 =


πc̃11

πc̃12
πc̃21

πc̃22

· · · πc̃1J

· · · πc̃2J
...

...
πc̃J1

πc̃J2

. . .
...

· · · πc̃J J

 (31)

C̃ =


c̃11 c̃12
c̃21 c̃22

· · · c̃1J
· · · c̃2J

...
...

c̃J1 c̃J2

. . .
...

· · · c̃J J

 with c̃jp =
(

ϑc̃jp
, µc̃jp

, πc̃jp

)
; j = 1 . . . J, p = 1 . . . J (32)
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Step 6. For criteria weighting, the SF total-influence matrix is defuzzied, according
to Equation (14) and represented as Equation (33). Then, the weights of the criteria are
determined according to Equations (34) and (35).

C =


c11 c12
c21 c22

· · · c1J
· · · c2J

...
...

cJ1 cJ2

. . .
...

· · · cJ J

 (33)

crow
j = ∑J

p=1 cjp; ccolumn
j = ∑J

p=1 cpj (34)

wj =
crow

j + ccolumn
j

∑J
j=1

(
crow

j + ccolumn
j

) (35)

Step 7. Decision makers provide linguistic evaluations of alternatives (i = 1 . . . I) for
each criterion. As shown in Table 4, linguistic evaluations are converted into corresponding
SFNs. As a result, the individual SF decision matrices

(
S̃k
)

are constructed, as shown in

Equation (36). Based on the decision makers’ weights (Ψk), the SF decision matrix
(

S̃
)

is
aggregated using the spherical weight arithmetic mean, as shown in Equation (37).

S̃k =


s̃k

11 s̃k
12

s̃k
21 s̃k

22

· · · s̃k
1J

· · · s̃k
2J

...
...

s̃k
I1 s̃k

I2

. . .
...

· · · s̃k
J J

 with s̃k
ij =

(
ϑs̃k

ij
, µs̃k

ij
, πs̃k

ij

)
; i = 1 . . . I, j = 1 . . . J (36)

S̃ =


s̃11 s̃12
s̃21 s̃22

· · · s̃1J
· · · s̃2J

...
...

s̃I1 s̃I2

. . .
...

· · · s̃I J

 with s̃ij =
(

ϑs̃ij
, µs̃ij

, πs̃ij

)
; i = 1 . . . I, j = 1 . . . J (37)

Table 4. Linguistic terms for decision matrix [42].

Linguistic Term Spherical Fuzzy Number
(ϑ,µ,π)

Linguistic Term Spherical Fuzzy Number
(ϑ,µ,π)

Absolutely Low (0.1, 0.9, 0.1) Slightly High (0.6, 0.4, 0.4)
Very Low (0.2, 0.8, 0.2) High (0.7, 0.3, 0.3)

Low (0.3, 0.7, 0.3) Very High (0.8, 0.2, 0.2)
Slightly Low (0.4, 0.6, 0.4) Absolutely High (0.9, 0.1, 0.1)

Neutral (0.5, 0.5, 0.5)

Step 8. The SF decision matrix (S) is then defuzzied, as represented in Equation (38).
Applying regret theory, the utility matrix (U) is constructed with the risk-aversion coeffi-
cient (ϕ) as Equation (39).

S =


s11 s12
s21 s22

· · · s1J
· · · s2J

...
...

sI1 sI2

. . .
...

· · · sI J

 (38)
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U =


u11 u12
u21 u22

· · · u1J
· · · u2J

...
...

uI1 uI2

. . .
...

· · · uI J

 with uij =
(
sij
)ϕ; i = 1 . . . I, j = 1 . . . J, 0 < ϕ < 1 (39)

Step 9. Based on the utility matrix, the vector of ideal points (U∗) is defined as
Equations (40) and (41). Hence, the regret matrix (T) is determined with the regret-aversion
coefficient (λ), according to Equation (42).

U∗ =
[
u∗1 u∗2 · · · u∗J

]
(40)

where
u∗j = max

1≤i≤I

(
uij
)
; j = 1 . . . J (41)

T =


t11 t12
t21 t22

· · · t1J
· · · t2J

...
...

tI1 tI2

. . .
...

· · · tI J

 with tij = 1− e−λ(uij−u∗j ); i = 1 . . . I, j = 1 . . . J, λ > 0 (42)

Step 10. The overall utility matrix (V) is defined according to Equation (43).

V =


v11 v12
v21 v22

· · · v1J
· · · v2J

...
...

vI1 vI2

. . .
...

· · · vI J

 with vij = uij + tij; i = 1 . . . I, j = 1 . . . J (43)

Step 11. The vector of average solution
(
V
)

is defined as Equations (44) and (45).

V =
[
v1 v2 · · · vJ

]
(44)

where
vj =

1
I ∑I

i=1 vij (45)

Step 12. The positive (V+) and negative distance (V−) from average solution matrices
are determined according to Equations (46) and (47).

V+ =


v+11 v+12
v+21 v+22

· · · v+1J
· · · v+2J

...
...

v+I1 v+I2

. . .
...

· · · v+I J

withv+ij = max
(
0,
(
vij − vj

))
; i = 1 . . . I, j = 1 . . . J (46)

V− =


v−11 v−12
v−21 v−22

· · · v−1J
· · · v−2J

...
...

v−I1 v−I2

. . .
...

· · · v−I J

withv−ij = max
(
0,
(
vj − vij

))
; i = 1 . . . I, j = 1 . . . J (47)

Step 13. The effectiveness appraisal scores
(

ASβ
i

)
of alternatives are determined

according to Equation (48). The alternative with a higher appraisal score is better.

ASβ
i =

1
2


 ∑J

j=1 wjv+ij

max
1≤i≤I

(
∑J

j=1 wjv+ij
)
+

1−
∑J

j=1 wjv−ij

max
1≤i≤I

(
∑J

j=1 wjv−ij
)

 (48)
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3.2.3. Composite-Scoring Function

The efficiency and effectiveness appraisal scores are normalized as Equations (49) and (50).
Finally, the ultimate score of an alternative (USi) is defined as Equation (51). The alternatives
are ranked in descending order, according to the values of the ultimate scores. In other words,
the greater the value of the ultimate score, the better the alternative.

NASα
i =

ASα
i − min

1≤i≤I

(
ASα

i
)

max
1≤i≤I

(
ASα

i
)
− min

1≤i≤I

(
ASα

i
) (49)

NASβ
i =

ASβ
i − min

1≤i≤I

(
ASβ

i

)
max
1≤i≤I

(
ASβ

i

)
− min

1≤i≤I

(
ASβ

i

) (50)

USi =

(
NASα

i + NASβ
i

2

)
+

√
NASα

i + NASβ
i (51)

4. Numerical Results

As discussed, the objective of this study is to prioritize countries in Southeast Asia as
destinations for high-tech production line displacement. Accordingly, thirteen countries
with great potential in Southeast Asia were considered as alternatives in the problem of
prioritization. This list included Brunei Darussalam, Vietnam, Lao PDR, Malaysia, India,
Indonesia, Philippines, Thailand, Myanmar, Singapore, Cambodia, Bangladesh, and Sri
Lanka. Then, the efficiency and effectiveness of these countries were determined, as shown
in Sections 4.1 and 4.2.

4.1. Efficiency Determination by Super-SBM

For efficiency, there are five proposed indicators to assess the efficiency of countries
according to expert’s suggestions. These indicators include inflation, export costs, GDPs,
high-tech export records, and ease-of-doing-business scores. These metrics are categorized
as the inputs and outputs of the super-SBM model. Accordingly, the outputs are indicators
for which the larger the value, the better. Conversely, indicators with as low a value as
possible are considered inputs. The data for these indicators were collected from the open
database of the World Bank and are presented in Table A1 in Appendix A [46].

By solving the super-SBM model, the efficiency of the countries is determined as de-
scribed in Table A2 and illustrated in Figure 2. Based on the efficiency scores, countries can
be divided into three groups. The first group—the countries with efficiency scores greater
than 1—included five countries: India, Thailand, Malaysia, Cambodia, and Singapore. They
were be considered to be countries on the way to fast economic development and convenient
transportation. They are most suitable for developing high-tech manufacturing projects,
in terms of efficiency. The second group—Vietnam, Philippines, and Indonesia—can also
attract attention because of the insignificant difference in assessment scores. In contrast, the
remaining countries, with scores close to zero, can be considered as inefficient for high-tech
production lines in the near future.

4.2. Effectiveness Determination by SfRDMA

For effectiveness, first, a group of ten experts was established with qualifications as
shown in Table A3. In step 1, because of differences in expertise, the weights of experts (Ψk)
were determined according to Equation (22), as illustrated in Figure 3. As suggested by experts
and references, ten criteria were identified to evaluate the effectiveness of countries, including
construction, installation costs (EFC-1) [47,48], diversity of transportation services (EFC-
2) [47,49,50], labor costs (EFC-3) [47,49,50], human resources availability (EFC-4) [47,49,50],
political stability (EFC-5) [47], environmental management systems (EFC-6) [47,48], logistics
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costs (EFC-7) [47,49], land costs (EFC-8) [47,50], government policies (EFC-9) [47], and climate
(EFC-10) [48].
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Figure 3. Experts’ weights.

In step 2, linguistic pairwise comparisons of influence across criteria were provided
by each expert. Then, the linguistic terms were converted into the scale SFNs, as shown in
Table 3. As a result, the individual SF direct-influence matrices were established. Based on
expert weights, the SF direct influence matrix was aggregated using the spherical weight
arithmetic mean as Equation (7) in step 3. The SF direct-influence matrix is shown in
Table A4. Based on that matrix, in step 4 and step 5, the SF total-influence matrix was
determined according to Equations (25)–(32), as shown in Table A5. In step 6, as shown in
Table 5, the defuzzied total influence matrix was formed according to Equation (14). Ac-
cording to Equations (34) and (35), the criteria weights were determined and are illustrated
in Figure 4. From the results, government policy (EFC-9), political stability (EFC-5), and
human resources availability (EFC-4) were the three most important criteria, with weights
of 0.128, 0.120, and 0.109, respectively. The weight of the environmental management



Appl. Sci. 2023, 13, 688 14 of 24

system criterion (EFC-6) had the lowest importance, with a weight of 0.073. Meanwhile,
the remaining criteria had no significant difference in weight.

Table 5. The defuzzied total influence matrix construction.

Criteria EFC-1 EFC-2 EFC-3 EFC-4 EFC-5 EFC-6 EFC-7 EFC-8 EFC-9 EFC-10

EFC-1 0.018 0.030 0.027 0.036 0.028 0.028 0.024 0.023 0.026 0.024
EFC-2 0.020 0.035 0.025 0.023 0.021 0.016 0.022 0.023 0.028 0.019
EFC-3 0.024 0.024 0.025 0.023 0.023 0.019 0.024 0.022 0.034 0.018
EFC-4 0.028 0.030 0.028 0.026 0.030 0.028 0.028 0.038 0.037 0.028
EFC-5 0.027 0.037 0.032 0.038 0.035 0.034 0.047 0.039 0.048 0.034
EFC-6 0.013 0.014 0.019 0.017 0.020 0.017 0.019 0.016 0.022 0.009
EFC-7 0.025 0.023 0.024 0.022 0.023 0.017 0.028 0.024 0.029 0.020
EFC-8 0.018 0.032 0.022 0.023 0.024 0.016 0.019 0.028 0.033 0.017
EFC-9 0.040 0.038 0.043 0.039 0.035 0.030 0.034 0.040 0.032 0.034

EFC-10 0.019 0.030 0.026 0.029 0.028 0.016 0.027 0.022 0.025 0.028
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Figure 4. Criteria weighting results.

In step 7, experts provided linguistic assessments of the alternatives corresponding to
the criteria. These linguistic assessments were converted into the individual SF decision
matrices, as shown in Table 3. Once again, the spherical weight arithmetic mean was
used for the aggregation of individual matrices. As a result, the SF decision matrix was
constructed as shown in Table A6. In steps 8–10, the SF decision matrix was then defuzzied,
according to Equation (14). The defuzzied results are shown in Table A7. According
to Equations (39) and (43), with the suggested risk-aversion coefficient (ϕ = 0.88) and
regret-aversion coefficient (λ = 0.3) [51], the utility matrix, the regret matrix, and the
overall utility matrix were established, as shown in Tables 6–8. Based on the overall utility
matrix, as shown in Table 8, the average solution vector was determined according to
Equations (44) and (45) in step 11. In step 12, the positive and negative distance from
average solution matrices was calculated as Equations (46) and (47). Finally, according to
Equation (48) in step 13, the effectiveness score was determined, as shown in Table A8 and
illustrated in Figure 5.
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Table 6. Utility matrix.

Country EFC-1 EFC-2 EFC-3 EFC-4 EFC-5 EFC-6 EFC-7 EFC-8 EFC-9 EFC-10

Brunei
Darussalam 0.074 0.190 0.315 0.167 0.171 0.211 0.135 0.139 0.180 0.266

Viet Nam 0.108 0.132 0.188 0.183 0.176 0.368 0.202 0.230 0.265 0.107
Lao PDR 0.185 0.092 0.291 0.168 0.151 0.141 0.187 0.193 0.123 0.241
Malaysia 0.219 0.146 0.133 0.046 0.329 0.157 0.275 0.243 0.149 0.089

India 0.079 0.247 0.068 0.423 0.149 0.482 0.135 0.120 0.187 0.164
Indonesia 0.211 0.210 0.235 0.178 0.266 0.203 0.165 0.023 0.318 0.258

Philippines 0.157 0.129 0.132 0.132 0.292 0.150 0.197 0.144 0.121 0.136
Thailand 0.211 0.199 0.065 0.208 0.272 0.111 0.182 0.230 0.218 0.265
Myanmar 0.100 0.125 0.221 0.152 0.062 0.281 0.154 0.269 0.238 0.083
Singapore 0.152 0.099 0.150 0.277 0.098 0.203 0.088 0.235 0.261 0.136
Cambodia 0.194 0.181 0.072 0.154 0.289 0.187 0.030 0.143 0.246 0.186

Bangladesh 0.107 0.128 0.120 0.208 0.328 0.123 0.240 0.092 0.161 0.303
Sri Lanka 0.168 0.195 0.293 0.219 0.065 0.185 0.353 0.174 0.176 0.126

Table 7. Regret matrix.

Country EFC-1 EFC-2 EFC-3 EFC-4 EFC-5 EFC-6 EFC-7 EFC-8 EFC-9 EFC-10

Brunei
Darussalam −0.045 −0.017 0.000 −0.080 −0.049 −0.085 −0.068 −0.040 −0.042 −0.011

Viet Nam −0.034 −0.035 −0.039 −0.075 −0.047 −0.035 −0.046 −0.012 −0.016 −0.061
Lao PDR −0.010 −0.048 −0.007 −0.080 −0.055 −0.108 −0.051 −0.023 −0.060 −0.019
Malaysia 0.000 −0.031 −0.056 −0.120 0.000 −0.102 −0.024 −0.008 −0.052 −0.066

India −0.043 0.000 −0.077 0.000 −0.055 0.000 −0.068 −0.046 −0.040 −0.043
Indonesia −0.003 −0.011 −0.024 −0.076 −0.019 −0.087 −0.058 −0.077 0.000 −0.014

Philippines −0.019 −0.036 −0.056 −0.091 −0.011 −0.104 −0.048 −0.038 −0.061 −0.051
Thailand −0.002 −0.014 −0.078 −0.067 −0.017 −0.118 −0.053 −0.012 −0.031 −0.011
Myanmar −0.037 −0.037 −0.029 −0.085 −0.083 −0.062 −0.061 0.000 −0.025 −0.068
Singapore −0.021 −0.045 −0.051 −0.045 −0.072 −0.087 −0.083 −0.010 −0.017 −0.051
Cambodia −0.008 −0.020 −0.076 −0.084 −0.012 −0.093 −0.102 −0.039 −0.022 −0.036

Bangladesh −0.034 −0.036 −0.060 −0.067 −0.001 −0.114 −0.034 −0.055 −0.048 0.000
Sri Lanka −0.016 −0.016 −0.007 −0.063 −0.082 −0.093 0.000 −0.029 −0.044 −0.055

Table 8. Overall utility matrix.

Country EFC-1 EFC-2 EFC-3 EFC-4 EFC-5 EFC-6 EFC-7 EFC-8 EFC-9 EFC-10

Brunei
Darussalam 0.029 0.172 0.315 0.087 0.122 0.126 0.067 0.099 0.138 0.255

Viet Nam 0.074 0.097 0.149 0.109 0.129 0.334 0.155 0.218 0.248 0.047
Lao PDR 0.175 0.044 0.283 0.088 0.097 0.033 0.135 0.170 0.063 0.222
Malaysia 0.219 0.115 0.077 −0.073 0.329 0.055 0.251 0.235 0.097 0.023

India 0.036 0.247 −0.009 0.423 0.094 0.482 0.068 0.074 0.147 0.121
Indonesia 0.208 0.199 0.211 0.102 0.247 0.116 0.107 −0.053 0.318 0.244

Philippines 0.138 0.093 0.076 0.040 0.281 0.046 0.149 0.105 0.060 0.084
Thailand 0.209 0.185 −0.012 0.141 0.255 −0.006 0.130 0.218 0.188 0.254
Myanmar 0.063 0.088 0.192 0.067 −0.021 0.219 0.093 0.269 0.213 0.015
Singapore 0.131 0.053 0.100 0.232 0.026 0.115 0.005 0.225 0.244 0.084
Cambodia 0.186 0.161 −0.003 0.070 0.277 0.094 −0.072 0.104 0.224 0.151

Bangladesh 0.072 0.092 0.059 0.141 0.327 0.009 0.206 0.037 0.113 0.303
Sri Lanka 0.153 0.180 0.287 0.156 −0.017 0.091 0.353 0.145 0.133 0.071

Average solution 0.130 0.133 0.133 0.122 0.165 0.132 0.127 0.142 0.168 0.144
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Figure 5. SfRDMA effectiveness map.

4.3. Final Prioritization by Composite Scoring Function

In this section, the efficiency and effectiveness score are aggregated by Equations (49)–(51).
As seen in Figure 6, the value amplitude of the ultimate score is relatively large. In other words,
the results of assessing the ability for moving high-tech production lines to Southeast Asia
show the differences in the suitability of countries. With high maturity in technology, India
is at the top of the list. Meanwhile, the rapidly growing economy, supportive policies, and
the young population structure are significant advantages for Thailand, Vietnam, Malaysia,
and Indonesia.
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4.4. Sensitivity Analysis
4.4.1. Criteria Weights

To analyze the sensitivity of the criteria weights to prioritization, first, the criteria are
classified into three groups—a cost-related group, a policy-related group, and a production-
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condition-related group. For these groups, four different criteria weight allocation scenarios
were constructed, as shown in Table 9. In scenario 1, the criteria were weighted equally.
Meanwhile, scenario 2 focused on cost-related criteria. Scenario 3 was concerned with policy
criteria, while scenario 4 was concerned with production conditions. As shown in Figure 7,
the sensitivity analysis results showed that the weight of the criteria had a significant
influence on the evaluation results of the proposed method. The ranking of countries did
not show a big difference between the base scenario, where the weights of the criteria
were determined by the proposed method, and scenario 1. Another finding was that the
rankings of India, Thailand, and Vietnam were always at the top, regardless of differences
in the allocation of weights. As the weight of the cost-related criteria decreased, Malaysia’s
ranking dropped significantly from 3rd to 7th place. In contrast, Singapore rose in rank as
decision makers became more concerned about the criteria for production conditions.

Table 9. Weighting scenarios.

Criteria Group
Scenarios

Base 1 2 3 4

Construction, installation cost Cost-related 0.094 0.1 +30% −10% −20%
Diversity of transportation services Production-condition-related 0.099 0.1 −20% −10% +30%

Labor cost Cost-related 0.096 0.1 +30% −10% −20%
Human resources availability Production-condition-related 0.109 0.1 −20% −10% +30%

Political stability Policy-related 0.120 0.1 −15% +30% −15%
Environmental management system Production-condition-related 0.073 0.1 −20% −10% +30%

Logistics cost Cost-related 0.095 0.1 +30% −10% −20%
Land cost Cost-related 0.095 0.1 +30% −10% −20%

Government policy Policy-related 0.128 0.1 −15% +30% −15%
Climate Production-condition-related 0.090 0.1 −20% −10% +30%
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4.4.2. Psychological Behavior Coefficients

The advantage of the proposed method is the reinforcement of regret theory in the
prioritization process. Therefore, the coefficients reflecting the psychological behavior of
decision makers should also be analyzed for sensitivity. As shown in Figure 8, the risk
aversion coefficient is believed to have an influence on the prioritization outcome. However,
the effect of this coefficient mainly swaps the rank of adjacent alternatives. For example,
when the risk-aversion coefficient is greater than or equal to 0.88, the rankings for India
and Thailand are interchangeable. Similarly, the rankings of Indonesia and Singapore swap
with very low or very high values of the risk-aversion coefficient.
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For the regret-aversion coefficient, the sensitivity analysis shows that this coefficient can
create a large disturbance in the results of the proposed method. As shown in Figure 9, the
ranking disturbance becomes larger with a larger regret-aversion coefficient, especially from
the threshold of 0.7. Accordingly, it can be concluded that the proposed method can effectively
reflect the psychological behavior of the decision maker in the evaluation process. As a result,
it is possible to determine the solution that best suits the context. In other words, while the
efficient-evaluation process, based on objective data, is optimized by the DEA model, the
effectiveness of subjective judgments is maximally tailored to the decision maker.
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4.5. Methodology Comparison

The most significant advantage of the proposed approach is the integration of both
objective data and subjective opinions in the evaluation process. Furthermore, for subjective
opinions, the prioritization considers the psychological behavior of the decision makers
through the risk-aversion coefficient and the regret-aversion coefficient. This advantage
makes decisions more consistent with the worldview of the decision maker.

To verify the quality of the solution, the proposed method was compared with the proven
powerful spherical fuzzy TOPSIS method, which is another distance-based method. In order
for the results to be comparable, the risk-aversion coefficient and the regret-aversion coefficient
in the proposed method were disabled (ϕ = 1, λ = 0). As shown in Figure 10, the ranking
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results were not significantly different. The difference mainly appeared in the adjacent ranks.
In other words, if the psycho-behavioral consideration feature is omitted, the results of the
proposed method are remarkably consistent with that of the proven similar method.
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5. Conclusions

The development of high-tech companies is a powerful means of creating job growth,
revitalizing a region’s economy, and enhancing national technological innovation rates
and cross-border competitiveness [52]. Selecting suitable destinations for overseas pro-
duction lines of multinational high-tech companies has a great impact on their sustainable
development, as well as limiting risks and saving costs. This study aimed to prioritize the
destinations, which are in the East Asia and South Asia regions, for high-tech production
lines. This prioritization process determined both the efficiency and the effectiveness of
developing countries, based on quantitative indicators and qualitative criteria, respectively.
Using a novel bounded rationality MCDM approach, thirteen countries in Southeast Asia
were prioritized according to different indicators and criteria. In the proposed approach, for
efficiency assessment, the super-SBM model was applied to evaluate the super-efficiency
countries for high-tech manufacturing. On the other hand, for assessing effectiveness, a
novel SfRDMA approach was developed and introduced for the first time to determine
effectiveness based on ten criteria. Finally, the efficiency and effectiveness were composited
for the prioritized countries. From these results, it was clear that India, Thailand, Vietnam,
Malaysia, and Indonesia are priority destinations for high-tech production lines.

In addition to making a practical contribution through our findings, the novel compos-
ited regret-theory-based spherical fuzzy prioritization approach was the primary theoretical
contribution of this research to the field of decision science. Furthermore, the findings of
this study could be valuable for researchers or investors in promoting the development of
high-tech. In future research, the performance of tests for the risk-aversion coefficient and
the regret-aversion coefficient is proposed.
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Appendix A

Table A1. Super-SBM Model’s Data.

Country

Inputs Outputs

Inflation
(%)

Cost to Export
(US$)

High-Technology
Exports (US$)

GDP
(US$)

Ease of Doing Business Score
(0 = Lowest Performance to

100 = Best Performance)

Brunei
Darussalam 15 340 15,965 14,007 70

Viet Nam 3 290 101,534,393 362,638 70
Lao PDR 4 140 235,751 18,827 51
Malaysia 6 213 108,683,180 372,701 81

India 10 212 27,446,654 3,173,398 71
Indonesia 6 211 7,492,073 1,186,093 70

Philippines 2 456 38,194,373 394,086 63
Thailand 2 223 45,837,990 505,982 80
Myanmar 5 432 296,936 65,068 47
Singapore 4 335 159,927,958 396,987 86
Cambodia 1 375 308,424 26,961 54

Bangladesh 4 408 93,608 416,265 45
Sri Lanka 8 366 94,326 84,519 62

Table A2. Super-SBM model results.

Country Efficiency Score Country Efficiency Score

Brunei Darussalam 0.00019 Philippines 0.59500
Viet Nam 0.84773 Thailand 1.28901
Lao PDR 0.00914 Myanmar 0.00432
Malaysia 1.14383 Singapore 1.08808

India 1.29069 Cambodia 1.09459
Indonesia 0.24190 Bangladesh 0.00162
Sri Lanka 0.00125

Table A3. Expert’s qualification and linguistic evaluation.

Expert Qualification Year of Experience Expertise Linguistic
Evaluation Spherical Fuzzy Value

Expert 1 Master of Science 8 High (0.6, 0.2, 0.35)
Expert 2 Doctor of Philosophy 6 High (0.6, 0.2, 0.35)
Expert 3 Master of Science 5 Moderate (0.35, 0.25, 0.25)
Expert 4 Doctor of Philosophy 5 High (0.6, 0.2, 0.35)
Expert 5 Master of Engineering 8 High (0.6, 0.2, 0.35)
Expert 6 Doctor of Philosophy 7 Very high (0.85, 0.15, 0.45)
Expert 7 Master of Science 8 High (0.6, 0.2, 0.35)
Expert 8 Doctor of Philosophy 6 High (0.6, 0.2, 0.35)
Expert 9 Master of Science 10 Very high (0.85, 0.15, 0.45)

Expert 10 Doctor of Philosophy 7 Very high (0.85, 0.15, 0.45)
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Table A4. The SF direct-influence matrix.

Criteria EFC-1 EFC-2 EFC-3 EFC-4 EFC-5

EFC-1 (0, 0.3, 0.2) (0.49, 0.24, 0.39) (0.52, 0.23, 0.38) (0.4, 0.25, 0.28) (0.5, 0.24, 0.39)
EFC-2 (0.57, 0.22, 0.44) (0, 0.3, 0.2) (0.59, 0.22, 0.44) (0.62, 0.22, 0.47) (0.68, 0.2, 0.49)
EFC-3 (0.47, 0.24, 0.38) (0.68, 0.2, 0.48) (0, 0.3, 0.2) (0.69, 0.2, 0.49) (0.67, 0.2, 0.47)
EFC-4 (0.5, 0.24, 0.38) (0.7, 0.19, 0.48) (0.44, 0.26, 0.37) (0, 0.3, 0.2) (0.6, 0.21, 0.44)
EFC-5 (0.63, 0.22, 0.47) (0.73, 0.19, 0.49) (0.64, 0.21, 0.47) (0.62, 0.21, 0.44) (0, 0.3, 0.2)
EFC-6 (0.56, 0.23, 0.45) (0.68, 0.2, 0.49) (0.49, 0.24, 0.39) (0.58, 0.23, 0.44) (0.49, 0.24, 0.38)
EFC-7 (0.52, 0.24, 0.39) (0.69, 0.2, 0.48) (0.57, 0.23, 0.44) (0.62, 0.22, 0.47) (0.77, 0.18, 0.48)
EFC-8 (0.64, 0.21, 0.47) (0.59, 0.21, 0.4) (0.66, 0.21, 0.47) (0.63, 0.21, 0.47) (0.58, 0.22, 0.44)
EFC-9 (0.51, 0.23, 0.32) (0.56, 0.23, 0.44) (0.5, 0.23, 0.32) (0.51, 0.23, 0.39) (0.56, 0.23, 0.44)

EFC-10 (0.54, 0.24, 0.44) (0.51, 0.24, 0.39) (0.51, 0.23, 0.39) (0.58, 0.22, 0.4) (0.53, 0.23, 0.39)

Criteria EFC-6 EFC-7 EFC-8 EFC-9 EFC-10

EFC-1 (0.57, 0.22, 0.39) (0.57, 0.22, 0.44) (0.61, 0.22, 0.47) (0.57, 0.23, 0.44) (0.58, 0.22, 0.44)
EFC-2 (0.64, 0.21, 0.47) (0.65, 0.21, 0.47) (0.76, 0.18, 0.49) (0.65, 0.21, 0.47) (0.73, 0.19, 0.49)
EFC-3 (0.67, 0.2, 0.46) (0.61, 0.22, 0.45) (0.61, 0.22, 0.47) (0.59, 0.21, 0.4) (0.62, 0.22, 0.48)
EFC-4 (0.62, 0.21, 0.44) (0.57, 0.23, 0.44) (0.39, 0.26, 0.28) (0.38, 0.25, 0.27) (0.66, 0.2, 0.47)
EFC-5 (0.59, 0.22, 0.44) (0.47, 0.24, 0.31) (0.52, 0.23, 0.39) (0.46, 0.23, 0.3) (0.69, 0.2, 0.49)
EFC-6 (0, 0.3, 0.2) (0.48, 0.24, 0.38) (0.53, 0.24, 0.44) (0.47, 0.25, 0.39) (0.63, 0.22, 0.48)
EFC-7 (0.65, 0.21, 0.47) (0, 0.3, 0.2) (0.59, 0.22, 0.44) (0.59, 0.22, 0.44) (0.65, 0.21, 0.47)
EFC-8 (0.65, 0.21, 0.47) (0.66, 0.21, 0.49) (0, 0.3, 0.2) (0.5, 0.24, 0.38) (0.72, 0.2, 0.49)
EFC-9 (0.63, 0.22, 0.48) (0.71, 0.19, 0.48) (0.57, 0.22, 0.4) (0, 0.3, 0.2) (0.74, 0.19, 0.5)

EFC-10 (0.61, 0.23, 0.48) (0.5, 0.23, 0.38) (0.65, 0.2, 0.47) (0.7, 0.2, 0.5) (0, 0.3, 0.2)

Table A5. The SF total-influence matrix.

Criteria EFC-1 EFC-2 EFC-3 EFC-4 EFC-5

EFC-1 (0.57, 0.41, 0.44) (0.72, 0.37, 0.5) (0.65, 0.39, 0.46) (0.66, 0.38, 0.46) (0.69, 0.38, 0.49)
EFC-2 (0.77, 0.36, 0.54) (0.77, 0.37, 0.52) (0.77, 0.36, 0.53) (0.82, 0.35, 0.56) (0.84, 0.34, 0.57)
EFC-3 (0.73, 0.37, 0.52) (0.84, 0.34, 0.56) (0.65, 0.39, 0.47) (0.79, 0.35, 0.55) (0.8, 0.34, 0.55)
EFC-4 (0.65, 0.39, 0.47) (0.75, 0.35, 0.51) (0.64, 0.39, 0.46) (0.61, 0.4, 0.44) (0.71, 0.37, 0.49)
EFC-5 (0.72, 0.36, 0.51) (0.81, 0.34, 0.54) (0.72, 0.36, 0.5) (0.76, 0.35, 0.51) (0.68, 0.38, 0.47)
EFC-6 (0.66, 0.39, 0.5) (0.75, 0.36, 0.54) (0.65, 0.4, 0.48) (0.7, 0.38, 0.51) (0.7, 0.38, 0.51)
EFC-7 (0.74, 0.37, 0.52) (0.84, 0.34, 0.57) (0.74, 0.36, 0.52) (0.79, 0.35, 0.54) (0.82, 0.33, 0.55)
EFC-8 (0.75, 0.36, 0.53) (0.82, 0.34, 0.55) (0.75, 0.36, 0.52) (0.79, 0.35, 0.54) (0.79, 0.35, 0.54)
EFC-9 (0.7, 0.37, 0.47) (0.78, 0.35, 0.52) (0.69, 0.37, 0.47) (0.73, 0.36, 0.5) (0.75, 0.36, 0.51)

EFC-10 (0.69, 0.38, 0.5) (0.75, 0.36, 0.52) (0.68, 0.38, 0.49) (0.72, 0.36, 0.5) (0.73, 0.37, 0.51)

Criteria EFC-6 EFC-7 EFC-8 EFC-9 EFC-10

EFC-1 (0.73, 0.36, 0.51) (0.68, 0.37, 0.49) (0.69, 0.38, 0.5) (0.65, 0.38, 0.47) (0.77, 0.35, 0.53)
EFC-2 (0.86, 0.33, 0.58) (0.81, 0.34, 0.56) (0.83, 0.33, 0.56) (0.78, 0.35, 0.53) (0.93, 0.32, 0.61)
EFC-3 (0.83, 0.34, 0.57) (0.78, 0.35, 0.54) (0.78, 0.35, 0.54) (0.74, 0.36, 0.5) (0.88, 0.34, 0.59)
EFC-4 (0.74, 0.36, 0.51) (0.69, 0.37, 0.49) (0.67, 0.38, 0.46) (0.63, 0.39, 0.43) (0.79, 0.34, 0.53)
EFC-5 (0.8, 0.35, 0.53) (0.73, 0.36, 0.48) (0.74, 0.36, 0.5) (0.7, 0.37, 0.46) (0.86, 0.33, 0.56)
EFC-6 (0.65, 0.4, 0.49) (0.68, 0.39, 0.5) (0.69, 0.39, 0.51) (0.65, 0.4, 0.48) (0.78, 0.36, 0.56)
EFC-7 (0.84, 0.34, 0.57) (0.69, 0.38, 0.49) (0.78, 0.35, 0.54) (0.74, 0.36, 0.51) (0.88, 0.33, 0.59)
EFC-8 (0.83, 0.34, 0.57) (0.78, 0.35, 0.54) (0.69, 0.38, 0.49) (0.73, 0.37, 0.5) (0.89, 0.33, 0.59)
EFC-9 (0.79, 0.35, 0.54) (0.76, 0.35, 0.51) (0.74, 0.36, 0.5) (0.62, 0.4, 0.43) (0.85, 0.33, 0.56)

EFC-10 (0.77, 0.36, 0.54) (0.71, 0.37, 0.5) (0.73, 0.36, 0.52) (0.7, 0.37, 0.5) (0.72, 0.38, 0.51)

Table A6. The SF decision matrix.

Criteria EFC-1 EFC-2 EFC-3 EFC-4 EFC-5

Brunei Darussalam (0.59, 0.44, 0.37) (0.65, 0.38, 0.28) (0.78, 0.23, 0.26) (0.69, 0.33, 0.33) (0.68, 0.33, 0.32)
Viet Nam (0.65, 0.37, 0.37) (0.67, 0.34, 0.35) (0.68, 0.34, 0.29) (0.71, 0.3, 0.33) (0.67, 0.36, 0.3)
Lao PDR (0.69, 0.32, 0.31) (0.59, 0.42, 0.35) (0.74, 0.29, 0.24) (0.64, 0.39, 0.29) (0.63, 0.39, 0.3)
Malaysia (0.7, 0.31, 0.28) (0.59, 0.44, 0.29) (0.65, 0.36, 0.33) (0.55, 0.46, 0.39) (0.77, 0.24, 0.24)

India (0.58, 0.44, 0.36) (0.71, 0.32, 0.26) (0.56, 0.46, 0.37) (0.81, 0.2, 0.2) (0.63, 0.39, 0.3)



Appl. Sci. 2023, 13, 688 22 of 24

Table A6. Cont.

Criteria EFC-1 EFC-2 EFC-3 EFC-4 EFC-5

Indonesia (0.72, 0.3, 0.3) (0.69, 0.33, 0.28) (0.71, 0.31, 0.27) (0.68, 0.34, 0.3) (0.74, 0.27, 0.27)
Philippines (0.69, 0.33, 0.34) (0.63, 0.39, 0.32) (0.64, 0.38, 0.32) (0.67, 0.35, 0.35) (0.76, 0.26, 0.26)

Thailand (0.71, 0.29, 0.3) (0.68, 0.36, 0.28) (0.57, 0.46, 0.37) (0.71, 0.31, 0.3) (0.75, 0.27, 0.27)
Myanmar (0.59, 0.42, 0.34) (0.63, 0.39, 0.33) (0.72, 0.29, 0.3) (0.66, 0.36, 0.32) (0.57, 0.44, 0.38)
Singapore (0.68, 0.34, 0.33) (0.63, 0.39, 0.36) (0.68, 0.33, 0.34) (0.76, 0.25, 0.28) (0.52, 0.51, 0.33)
Cambodia (0.7, 0.32, 0.3) (0.67, 0.35, 0.3) (0.58, 0.44, 0.37) (0.66, 0.35, 0.32) (0.75, 0.26, 0.25)

Bangladesh (0.59, 0.43, 0.33) (0.66, 0.36, 0.35) (0.65, 0.37, 0.35) (0.7, 0.31, 0.29) (0.76, 0.25, 0.23)
Sri Lanka (0.68, 0.33, 0.31) (0.69, 0.34, 0.29) (0.76, 0.24, 0.26) (0.69, 0.34, 0.27) (0.58, 0.43, 0.38)

Country EFC-6 EFC-7 EFC-8 EFC-9 EFC-10

Brunei Darussalam (0.72, 0.29, 0.31) (0.67, 0.35, 0.35) (0.65, 0.36, 0.33) (0.68, 0.33, 0.31) (0.74, 0.27, 0.27)
Viet Nam (0.79, 0.21, 0.23) (0.71, 0.31, 0.3) (0.72, 0.3, 0.28) (0.75, 0.27, 0.28) (0.62, 0.4, 0.34)
Lao PDR (0.62, 0.41, 0.31) (0.69, 0.33, 0.3) (0.68, 0.34, 0.29) (0.61, 0.41, 0.32) (0.74, 0.28, 0.3)
Malaysia (0.67, 0.35, 0.32) (0.74, 0.28, 0.26) (0.73, 0.29, 0.28) (0.65, 0.37, 0.32) (0.61, 0.41, 0.36)

India (0.83, 0.17, 0.17) (0.66, 0.36, 0.34) (0.63, 0.39, 0.34) (0.68, 0.34, 0.3) (0.66, 0.35, 0.3)
Indonesia (0.69, 0.33, 0.29) (0.66, 0.36, 0.3) (0.53, 0.47, 0.42) (0.74, 0.28, 0.22) (0.73, 0.29, 0.27)

Philippines (0.67, 0.34, 0.33) (0.65, 0.38, 0.27) (0.64, 0.38, 0.32) (0.64, 0.38, 0.34) (0.68, 0.33, 0.36)
Thailand (0.59, 0.44, 0.33) (0.67, 0.35, 0.3) (0.74, 0.28, 0.3) (0.72, 0.3, 0.3) (0.73, 0.29, 0.26)
Myanmar (0.76, 0.25, 0.28) (0.65, 0.37, 0.31) (0.74, 0.27, 0.27) (0.74, 0.28, 0.29) (0.62, 0.39, 0.38)
Singapore (0.69, 0.33, 0.29) (0.57, 0.45, 0.35) (0.71, 0.31, 0.27) (0.73, 0.28, 0.27) (0.64, 0.38, 0.33)
Cambodia (0.66, 0.36, 0.28) (0.52, 0.49, 0.41) (0.63, 0.4, 0.31) (0.73, 0.28, 0.28) (0.68, 0.34, 0.3)

Bangladesh (0.65, 0.36, 0.35) (0.71, 0.31, 0.27) (0.61, 0.41, 0.36) (0.68, 0.32, 0.33) (0.76, 0.25, 0.26)
Sri Lanka (0.68, 0.35, 0.3) (0.79, 0.22, 0.23) (0.69, 0.33, 0.32) (0.67, 0.35, 0.3) (0.65, 0.37, 0.34)

Table A7. The defuzzied SF decision matrix.

Country EFC-1 EFC-2 EFC-3 EFC-4 EFC-5 EFC-6 EFC-7 EFC-8 EFC-9 EFC-10

Brunei
Darussalam 0.052 0.151 0.269 0.131 0.134 0.170 0.103 0.106 0.143 0.222

Viet Nam 0.079 0.100 0.149 0.146 0.139 0.321 0.162 0.188 0.221 0.079
Lao PDR 0.147 0.066 0.246 0.131 0.117 0.108 0.148 0.154 0.093 0.199
Malaysia 0.178 0.112 0.101 0.031 0.283 0.122 0.230 0.200 0.115 0.064

India 0.056 0.204 0.047 0.376 0.115 0.436 0.103 0.090 0.149 0.128
Indonesia 0.171 0.170 0.193 0.141 0.222 0.163 0.129 0.014 0.272 0.214

Philippines 0.122 0.098 0.101 0.100 0.247 0.116 0.158 0.110 0.091 0.103
Thailand 0.171 0.160 0.045 0.168 0.228 0.083 0.145 0.188 0.177 0.221
Myanmar 0.073 0.094 0.180 0.117 0.043 0.237 0.120 0.225 0.195 0.059
Singapore 0.117 0.072 0.116 0.233 0.071 0.163 0.063 0.193 0.217 0.103
Cambodia 0.155 0.143 0.050 0.119 0.244 0.149 0.019 0.110 0.203 0.148

Bangladesh 0.079 0.097 0.090 0.168 0.281 0.092 0.198 0.066 0.126 0.257
Sri Lanka 0.132 0.156 0.248 0.178 0.045 0.147 0.307 0.137 0.139 0.095

Table A8. SfRDMA results.

Country Effectiveness Score Country Effectiveness Score

Brunei Darussalam 0.416 Philippines 0.179
Viet Nam 0.527 Thailand 0.560
Lao PDR 0.346 Myanmar 0.228
Malaysia 0.310 Singapore 0.292

India 0.572 Cambodia 0.248
Indonesia 0.647 Bangladesh 0.387
Sri Lanka 0.549
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