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Abstract: Finger vein recognition has become a research hotspot in the field of biometrics due to
its advantages of non-contact acquisition, unique information, and difficulty in terms of forging or
pirating. However, in the real-world application process, the extraction of image features for the
biometric remains a significant challenge when the captured finger vein images suffer from blur,
noise, or missing feature information. To address the above challenges, we propose a novel deep
reinforcement learning-based finger vein image recovery method, DRL-FVRestore, which trained an
agent that adaptively selects the appropriate restoration behavior according to the state of the finger
vein image, enabling continuous restoration of the image. The behaviors of image restoration are
divided into three tasks: deblurring restoration, defect restoration, and denoising and enhancement
restoration. Specifically, a DeblurGAN-v2 based on the Inception-Resnet-v2 backbone is proposed
to achieve deblurring restoration of finger vein images. A finger vein feature-guided restoration
network is proposed to achieve defect image restoration. The DRL-FVRestore is proposed to deal
with multi-image problems in complex situations. In this paper, extensive experimental results are
conducted based on using four publicly accessible datasets. The experimental results show that
for restoration with single image problems, the EER values of the deblurring network and damage
restoration network are reduced by an average of 4.31% and 1.71%, respectively, compared to other
methods. For images with multiple vision problems, the EER value of the proposed DRL-FVRestore
is reduced by an average of 3.98%.

Keywords: biometrics; finger vein recognition; image restoration; reinforcement learning

1. Introduction

With the growing concern for information security, biometric technology has been
recognized as one of the most reliable security technologies in the field of information
security [1]. Compared to other biometric technologies, finger vein recognition has unique
advantages, such as low cost, non-contact acquisition, and uniqueness of finger vein
information, especially in the current world epidemic situation, its contactless collection
method has been widely accepted [2]. In practice, however, the finger vein images are
often blurred, noisy, or have missing features [3]. For example, unstable light sources
and image sensors will increase blurring and noise of the finger vein images (Figure 1a,b),
the temperature of the acquisition environment can cause expansion or contraction of the
vein, and oil and dust on the filter of the acquisition device can cause the vein features
to be missing (Figure 1c,d). These images are known as low-quality finger vein images.
These images will increase the difficulty of finger vein feature extraction and reduce the
recognition performance. Hence, the selection of appropriate enhancement and effective
restoration methods to enhance and improve the resolution of low-quality images is clearly
essential and meaningful. In this paper, low-quality finger vein image restoration tasks
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are classified into three types: 1. restoration of finger vein images with motions blur and
Gaussian blur; 2. restoration of damaged finger vein images with oil and water stains; and
3. restoration of enhanced finger vein images with noise and texture blur.

Figure 1. Low-quality finger vein images and images after feature extraction.

In the field of image deblurring, the current methods for finger vein image deblurring
restoration are divided into traditional deblurring algorithms and deblurring algorithms
based on deep learning. The typical traditional method [4,5] requires the use of a blur
kernel to perform deconvolution to restore a clear finger vein image, provided that the
blur kernel is known. However, the current deblurring approaches are mostly impractical
because of several reasons. First, most blur kernels are unknown in the real environment
as estimating blur kernels is very time consuming. Second, even if the convolution kernel
is known, different acquisition devices have variations in their blur kernels due to envi-
ronmental, physical, and other factors, and the processed images still result in degraded
recognition performance. Several improved algorithms have been proposed to deblur the
finger veins based on skin scattering or optical blurring. Li et al. [6] proposed a blurred
finger vein image restoration method to restore blurred finger vein images and improve
recognition performance by considering optical blurring components and scattering blur-
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ring components. Yang et al. [6,7] devised a deblurring optical model by calculating the
light scattering component of an organism. However, the traditional approach requires the
measurement of multiple parameters to improve the performance of the model, resulting
in a large amount of undesired processing time. The recent deblurring algorithms based on
deep learning have been widely used to restore clear images by predicting the blur kernel,
ref. [8] used generative adversarial networks (GAN) [9] to achieve image deblurring. GAN
provides an adversarial game idea of generators and discriminators, and a better deblurring
effect can be obtained by inputting the blurred image into the trained generative network.
Cui et al. [10] proposed a modified correction-based GAN for restoring the optical blur
conditions contained in the original finger vein images; ref. [3] improved the DeblurGAN
network [11] and proposed a method that can restore finger vein images with motion blur.
GAN provides an adversarial game idea of generators and discriminators and can deliver
a better deblurring effect by inputting the blurred image. However, the frequent use of
down-sampling techniques in the feature extraction process will essentially result in the
loss of crucial vein texture information, especially for finger vein images with blurred
texture features, making it difficult to improve the deblurring image effect.

In the field of image restoration for damaged regions, there are currently two main
types of methods for restoring damaged areas of finger vein images: traditional methods
and deep learning-based methods. The representative algorithms among traditional ap-
proaches are the total variation (TV) algorithm [12] and the curvature driven diffusions
(CDD) algorithm [13]. However, TV and CDD algorithms do not take the texture constraints
into account, leading to inaccurate restored finger vein images that lack texture information
and are easily distorted. The work [14] proposed a fast-marching method (FMM) that
prioritizes the restored by estimating parameters, such as light direction, and then fills
the damaged area using a weighted average of neighboring pixels. FMM improves time
efficiency but blindly uses all known information in the patch for the weighting calculation,
resulting in vein textures that do not consider texture constraints and do not accurately
characterize the texture. Yang H et al. [1] proposed a restoration algorithm based on Gabor
texture feature constraints. During the restoration process, the information of the neighbor-
ing blocks is selectively weighted according to the features of similar textures in the local
region, making the vein texture of the restored image more coherent. However, although
these methods are suitable for cases where the vein structure information is unclear or
missing due to image blurring, they are less effective for cases where the vein image itself is
broken or missing due to external factors, and do not achieve better generalization capabili-
ties. Recently, deep learning approaches have emerged as a promising technology for image
inpainting [15]. Deep learning-based methods are mainly based on convolutional modules.
This is because convolutional neural networks (CNN) can learn the depth features of an
image and have better generalization capabilities. The deep learning-based methods have
demonstrated promising solutions to restore the missing parts of an image. Gao et al. [16]
proposed a deep learning-based algorithm for restoring damaged areas of finger veins,
but the algorithm did not make full use of texture information in the restoration process,
resulting in texture blurring in the restored images, which presented low performance in
matching authentication. With this problem in mind, Jiang et al. [17] proposed a finger
vein restoration algorithm based on neighbor binary Wasserstein generative adversarial
networks (NB-WGAN). The method uses texture loss as part of the loss function of the
generator to recover more vein texture details. However, the method only constrains the
network on the loss and still does not allow the network to adequately learn the finger vein
texture features and guide the repair of the defective image based on the vein features. The
method still loses detail in the repaired finger vein images.

In this study, we propose a novel design of an effective and reliable restored
method for damaged finger vein images and the design of finger vein image deblur-
ring methods to address the critical challenges in the field of finger vein image restoration
and enhancement. We have designed a DeblurGAN-v2 network based on the
Inception-Resnet-v2 [18] backbone to address the problems of existing finger vein deblur-
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ring methods. DeblurGAN-v2 [19] is an improvement on DeblurGAN, and incorporates the
feature pyramid network (FPN) [20], to achieve faster and better performance in learning
the feature information of finger veins and reducing the loss of vein texture information.
Furthermore, in the process of feature extraction, we have adopted inception-Resnet-v2 as
the skeleton to collaborate with FPN to form a generative network. To solve the various
blurs and distortions that exist in the captured images in real situations, we used generative
adversarial networks for training. The GAN can generate images by finding the best filter
using weights trained from the training data, and the trained network remains robust
and generalizable. Moreover, to address the current restoration methods for damaged
finger vein images (which suffer from loss of details after restoring the images), we propose
a finger vein image restoration method based on vein feature texture guidance. This con-
sists of two stages: (1) a finger vein texture feature restoration network, and (2) an original
image restoration network. Specifically, the original image of the finger vein with damage is
first subjected to feature extraction to obtain the texture feature image with damage. Then,
the texture feature restoration network in the first stage is used to restore the damaged
texture feature image, and the texture information of the damaged area can be predicted
by the trained weights. Finally, the second stage of the original image restoration network
is used to restore the defective original image using the restored texture image feature
information as a guide. As a result, a significantly lower loss of vein feature detail in the
restored original image would be achieved through feature guidance.

In the process of our research, we have found that existing methods are only able to
deal with a single finger vein image problem, but when multiple vision problems with
the finger vein image (i.e., defects, motion blur, noise, etc.), it is challenging to select the
appropriate restoration method and proper order of image preprocessing steps for different
image problem. For example, if the finger vein image is missing structural information and
is blurred, as a rule of thumb, the ideal combination of restoration links is to restore the
damage first and then to deblur the restored image, whereas if only the damage restoration
method is used, the restored finger vein image will still be blurred; or if only the deblurring
restoration method is used, the image quality of the finger vein will still be poor, due
to the lack of detail. For finger vein images with both blur and noise, using restoration
methods that enhance feature details can increase the degree of blur and noise in the image.
This makes it difficult to subsequently extract clear vein feature information. If multiple
restoration methods are used to restore an image simultaneously, it takes a significant
amount of time to find the best combination of links by trial and error. Assuming that
there are n restoration methods, there are n! possible combinations of processing steps to
generate a restored image, while there is only one optimal method that would effectively
generate the high-quality restored image. Therefore, the fast and efficient selection of repair
tasks and combinations to process low-quality finger vein images is an essential topic of
research significance in this field.

In this work, we hereby propose an adaptive selection and restoration method for
finger vein images based on Deep Reinforcement Learning, referred to as DRL-FVRestore.
We have divided the restoration tasks into three categories: image denoising and enhance-
ment restoration, image deblurring restoration, and image inpainting restoration. We firstly
propose to treat the finger vein restoration task as a sequential decision-making process and
use the idea of deep reinforcement learning (DRL) to train an agent that can select the image
restoration task adaptively according to the state of the finger vein image, to gradually
restore and improve the quality of the finger vein image. Very recently, DRL has been used
for some image processing applications. Yu et al. [21] were the first to attempt to apply
DRL to learn a strategy to gradually restore damaged images by selecting appropriate
operations from a predefined toolbox. Their improved version [22] can dynamically select
suitable paths for different image regions in a multi-path CNN for spatially varying image
denoising. Furuta et al. [23] proposed PixelRL, the first framework to perform pixelated
restoration. Based on these studies, we proposed the first application of DRL to finger
vein image restoration. Furthermore, to enable the trained agent to better learn the finger
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vein feature information and select the best method for restoration based on the feature
information, we design a reward function based on the vein feature constraints to guide
the agent to fully learn the vein feature information.

We summarize our contributions as follows:

(1) An Inception-Resnet-v2 backbone based DeblurGAN-v2 network for finger vein
image deblurring generation adversarial network has been designed.

(2) A vein feature-guided finger vein image inpainting network for the restoration of
damaged finger vein images has been proposed, where the network comprised two
stages: a feature image restoration stage and an original finger vein restoration stage.

(3) A deep reinforcement learning-based method for adaptive selection of finger vein
image restoration tasks has been proposed for the first time, in which a reward
function with vein feature constraints was used to guide the learned vein feature
information for optimal selection of restoration tasks.

The rest of this paper is organized as follows. Section 2 describes the proposed
methodology. Section 3 describes how to design the training and testing datasets. Section 4
conducts many experiments on the proposed method and analyses the experimental results
in detail. Finally, in Section 5, summarizes the full work and provides an outlook for
future work.

2. Materials and Methods

Our goal is to restore low-quality finger vein images x to high-quality finger vein
images y. Specifically, we propose the DRL-FVRestore that can self-select the optimal combi-
nation of restoration tasks and links according to the quality status of the finger vein image
itself, enabling an adaptive restoration of low-quality images of finger veins. When apply-
ing DRL to finger vein image restoration task selection, it is initially necessary to consider
how the Markov decision process (MDP) can be built in this area to achieve reliable and ef-
fective results. The overall flow chart of the proposed method for DRL-FVRestore is shown
in Figure 2. During the processing of DRL-FVRestore, the set S{s1, . . . , si, si+1, . . . , sn} of
low-quality finger vein images is obtained from the environment. Each finger vein image is
considered as a state, and the different image restoration tasks are considered as actions
to be executed, called action spaces, denoted as {a1, . . . , an}. If the current input finger
vein image to the trained model is si, the agent finds the best image restoration method aj
from the action space to process the low-quality finger vein image based on the weights
trained from the training data. It can be found that the design of the DRL-FVRestore
method is divided into three sections: (a) building of the reinforcement learning interactive
environment; (b) method realization of the image deblurring restoration, image damage
inpainting restoration, and image enhancement and denoising restoration; and (c) training
of an agent for adaptive selection of image restoration tasks based on DRL. The focus of
the environment is the design of the dataset for training the agent, which will be described
in detail in Section 3. In Section 2.1, we introduce the structure of the DeblurGAN-v2
network based on the Inception-Resnet-v2 backbone and its loss function design applied
to the finger vein image deblurring restoration task. In Section 2.2, we then introduce the
structure of a vein feature-guided finger vein image damage inpainting network and the
design of its loss function applied to the image damage inpainting restoration task. In
Section 2.3, we describe representative algorithms used for the restoration task applied
to finger vein image enhancement and denoising. Finally, in Section 2.4, we will discuss
in detail the network structure of the DRL-FVRestore method proposed in this paper, the
design ideas, and the design of the reward function for the method.
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Figure 2. The overall flowchart of the proposed method: DRL-FVRestore.

2.1. The Design of a Method for Finger Vein Image Deblurring Restoration Tasks

The blurred finger vein image can be expressed as follows [19]:

Img f v−blur = K⊗ Img f v−sharp (1)

where Img f v−blur refers to a blurred finger vein image, Img f v−sharp refers to a clear finger
vein image, K denotes the blur kernel, and ⊗ denotes the convolution operation. For
the blurring problems encountered with finger vein images, we have divided them into
two categories: Gaussian blurring and motion blurring. Gaussian blur is an imaging blur
caused by the focal length of the image sensor of the finger vein capture device; motion
blur is caused by the relative motion between the image sensor of the finger vein capture
device and the finger of the person being captured. The blurring of finger vein images is
variable due to different external factors and physical environments, so different blurring
kernels need to be selected to deal with different finger vein image blurring problems.
However, in practical applications, the method is not robust and generalization because of
the unknown blurring kernels of the image and significant computing resources to identify
the appropriate convolution kernel.

In this study, assuming that the blurring kernels are unknown, we propose a method
for blurring restoration of finger vein images that is appropriate for various environments.
Accordingly, we have designed a finger vein deblurring generative adversarial network
based on the DeblurGAN-v2 network with the Inception-Resnet-v2 backbone and eval-
uated the framework on diverse dataset. While the original DeblurGAN showed good
performance in the deblurring task, the improved DeblurGAN-v2 has shown exceptional
performance in both the deblurring effects and the extraction of image features. In the
following discussion, the design ideas of the deblurring method in this paper will be
described in detail in terms of three aspects, namely the generator, discriminator, and loss
function of the network.

2.1.1. The DeblurGAN-v2 Generator Architecture and Loss Function

The overview of the DeblurGAN-v2 generator architecture is shown in Figure 3.
It restores a sharp finger vein image from a single finger vein blurred image, via the
trained generator.
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Figure 3. The overview of the DeblurGAN-v2 Generator Architecture.

Most of the existing CNN [24] frameworks for image deblurring follow the design
of ResNet architecture, and most of the state-of-the-art methods for handling different
levels of blurring make use of multi-stream CNN and input image pyramids of different
scales [19]. However, processing multi-scale images is both time consuming and requires
a large amount of memory space. Many existing restoration network backbones tend to
adopt FPN to combine multi-scale finger vein features to achieve the finger vein image
deblurring restoration task. By applying FPN to finger vein images, multiple feature
layers of finger veins can be generated, and these layers encode different finger vein
image feature information to obtain more image feature information. Specifically, the
FPN paths mainly consist of bottom–up and top–down. The bottom–up path is mainly
a convolutional network structure for feature extraction of blurred finger vein images
to extract and compress major information on the semantic features of finger veins; the
top–down path implements the FPN to reconstruct clear finger vein images from semantic
feature-rich layers. In this study, we designed DeblurGAN-v2 with FPN as backbone
architecture and obtained final feature maps at five different scales as output. These
feature maps are further unsampled to 1

4 of the input size and concatenated into a tensor
containing different levels of finger vein feature information. Moreover, in pursuit of the
strong deblurring performance and the reduction in the loss of vein texture information
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during feature extraction by the network, we used Inception-Resnet-v2 as the backbone
and collaborated with FPN to form the generative network.

The role of the generator loss is to provide a metric that compares the original finger
vein image with the restored image from the training phase. In this paper, we chose to use
L2 loss, perceptual loss Lperc, and adversarial loss Ladv as joint losses to jointly constrain
the training of the deblurring network. Where the Lperc loss is calculated as the Euclidean
distance on the conv3× 3 feature map in VGG19 [25] after pre-training, and the adversarial
loss Ladv is obtained from the global discriminator and local discriminator. The specific
loss function is formulated as follows:

LG = 0.5×L2 + 0.006×Lperc + 0.01×Ladv (2)

2.1.2. The DeblurGAN-v2 Architecture of Discriminator and Loss Function

To solve the problem of varying degrees of blurring in images being captured in real
situations, we use GAN that can be trained to generate images by finding the best filter
using weights trained from the training data, and the trained network is still robust and
generalizable. The traditional GAN consists of two models: the discriminator D and the
generator G. The objective function of the traditional GAN network is shown as follows:

minGminDV(D, G) = Ex∼Pdata(x)[logD(x)]

+Ez∼Pz(z)[log(1− D(G(z)))]
(3)

It must be noted that the objective function described above is difficult to optimize
and can also produce pattern collapse or gradient disappearance during training. To
address this shortcoming, in order to improve gradient disappearance and stabilize the
training model, Least Squares GAN (LSGAN) [26] attempts to introduce a loss function
that provides smoother and unsaturated gradients. Better training stability is obtained by
introducing the L2 loss into LSGAN, where the L2 loss provides a gradient proportional to
that distance, so that false samples further away from the boundary are penalised more.
Specifically, the LSGAN function is shown in Equations (4) and (5) as follows:

minDV(D) =
1
2
Ex∼Pdata(x)

[
(D(x)− 1)2

]
+

1
2
Ez∼Pz(z)

[
(D(G(z)))2

]
(4)

minDV(G) =
1
2
Ez∼Pz(z)

[
(D(G(z))− 1)2

]
(5)

Meanwhile, the relativistic discriminator [27] was used on LSGAN to estimate the
probability that the provided real data are more real than the randomly sampled fake data.
The relativistic discriminator showed more stable and computationally efficient training
results. Accordingly, this discriminator network design idea was adopted in this paper.
The loss function of the discriminator is expressed as shown in Equation (6):

LRelativistic
D = Ex∼Pdata(x)

[(
D(x)−Ez∼Pz(z)[(D(G(z))− 1)]

)2
]

+Ez∼Pz(z)

[
D(G(z))−Ex∼Pdata(x)[D(x)− 1]

] (6)

Discriminator networks are used to determine the degree of counterfeiting of the
generated images. The processing of local images produces clearer images than the standard
discriminator that processes the global image. Most restoration networks currently use the
PatchGAN discriminator [28], which operates on image blocks of size 70× 70. However,
research has demonstrated that a standard discriminator for processing global images is
still essential for images where serious blurring exists [11]. Therefore, in order to exploit the
global and local features of finger vein images, we designed a double-scale discriminator
that comprises a local discriminator and a global discriminator. The local discriminator
uses the PatchGAN structure, which divides the finger vein image into 70× 70 image



Appl. Sci. 2023, 13, 699 9 of 33

blocks as the input to the discriminator; the global discriminator is a direct input of the
global finger vein image, as shown in Figure 4.

Figure 4. The DeblurGAN-v2 architecture of a discriminator.

2.2. The Design of a Task Method for the Restoration of Damaged Finger Vein Images

To address the current problem of vein feature information loss in the restored finger
vein images, we propose a feature-guided finger vein image restoration method, which
consists of two stages: (1) finger vein texture feature restoration network; and (2) original
image restoration network. As shown in Figure 5, both stages are based on a generative
adversarial model consisting of a generator and a discriminator. Let G1 and D1 be the
generator and discriminator for the finger vein texture feature generator, and G2 and D2 be
the generator and discriminator for the original image restoration network, respectively.
Specifically, we designed the generator for both stages to consist of an encoder that down-
samples twice, 8 dilated convolution residual blocks that are replaced by the dilated
convolution with an expansion factor of 2, and an up-sampled decoder. We use 70× 70
PatchGAN architecture, which determines whether or not the overlapping image patches
of size 70× 70 are real. The damaged texture feature images input to the first stage of the
texture feature inpainting network for restoration, which is trained to predict the texture
information of the damaged area according to the weights. Then, the original image
inpainting network further restores the damaged original image based on the restored
texture image feature information as a guide. The method of guiding the restored original
image through the features does not suffer from the loss of vein feature detail information.
In the following discussion, the specific design ideas of the two stages and the design of
the loss function are described separately.

2.2.1. The First Stage of the Finger Vein Image Damage Restoration Task: Finger Vein
Feature Image Restoration

Assuming that IR is a region of interest (ROI) image of the finger vein without missing,
we extracted the feature texture structure of IR using the feature extraction method of
maximum curvature [29] and obtained the feature texture image It. We use a randomly
generated mask image for IR. Assuming that the generated mask image is Im, then our
input finger vein image with damage in this network is IR_m = (IR � (1− Im)) + Im and
the corresponding damaged finger vein feature texture image is It_m = (It � (1− Im)),
where � is the matrix Hadamard product. Our generator network is designed to predict
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the finger vein texture information in the area covered by the mask image and obtain the
repaired finger vein texture image It_p, which is defined as follows:

It_p = G1(Im, IR_m, It_m) (7)

Figure 5. The feature-guided finger vein image restored based method of architecture.

We use the generated image It_p from the generator and the undamaged finger vein
feature image It as input to the discriminator to predict whether the finger vein texture
image is realistic or not. In summary, the network is trained and optimized based on the
following loss functions, which include the adversarial loss Ladv,d1 and feature-matching
loss LFM [30]:

Ladv,d1 = E(It , IR)[logD1(It, IR)] +E(IR)

[
log
[
1− D1

(
It_p, IR

)]]
(8)

LFM = E
{

n

∑
i=1

1
Ni

∥∥∥D(i)
1 (It )− D(i)

1
(

It_p
)∥∥∥} (9)

where the feature matching loss LFM is compared to the activation maps that go through
the discriminator feature extraction process. This is similar to perceptual loss, where the
activation maps are compared with the activation maps from the pre-trained VGG network.
In Equation (9), n is the final convolution layer of the discriminator, Ni is the ith activation
layer, and D(i)

1 is the activation in the ith layer of the discriminator. For our experiments,
the final loss in finger vein feature image inpainting is defined as:

minG1 maxD1Lstage−1 = minG1

(
1×maxD1

(
Ladv,d1

)
+ 10×LFM

)
(10)

2.2.2. The Second Stage of the Finger Vein Image Damage Restoration Task: Original
Image Restoration

The vein damage image inpainting stage is based on the image of the pattern features
after feature inpainting to guide the restoration of the original image. The finger vein images
generated in this way are guided and constrained by their own vein features, substantially
preserving the vein feature information of the image. This stage of the network has
an input image consisting of the original ROI image IR, the image to be restored IR_m after
masking, and the feature image It_p from the first stage of the restoration, combining IR_m
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with the restored It_p to form Icomp = IR_m � (1− Im) + It_p � Im. We designed a generator
network which predicts the vein image of the damaged region to obtain the restored finger
vein image IR_p. IR_p is defined as:

IR_p = G2
(

IR_m, Icomp
)

(11)

We used a joint loss consisting of L1 loss, perceptual loss Lperc, style transfer loss
Lstyle, and generative adversarial loss Ladv,d2 for the training of the second stage restoration
network. Where the generative adversarial loss Ladv,d2 is similar to Ladv,d1 and is defined as:

Ladv,d2 = E(Icomp , IR)

[
logD2

(
Icomp, IR

)]
+E(Icomp)

[
log
[
1− D2

(
IR_p, Icomp

)]]
(12)

The perceptual loss Lperc that we use for training in this task is similar to the perceptual
loss in the image deblurring task, where Lperc is defined as:

Lperc = E
{

∑
i

1
Ni

∥∥φi(IR)− φi
(

IR_p
)∥∥} (13)

φi is the activation maps of relu1_1/relu2_1/relu3_1/relu4_1/relu5_1 of the VGG-19 net-
work that has been pre-trained on the ImageNet dataset. Lperc determines the degree
of difference between the network-generated finger vein images and the original finger
vein images at the perceptual level by defining the distance between the activation maps
of the pre-trained network. In this study, we used the activation map of the pre-trained
network to calculate the style loss Lstyle. Given feature maps of sizes Ci ×Wi × Hi, Lstyle is
computed by:

Lstyle = Ei

{∥∥∥Gφ
i (IR)− Gφ

i
(

IR_p
)∥∥∥} (14)

where Gφ
i is a Ci × Ci Gram matrix constructed from activation maps φi. For our experi-

ments, the final loss of the original image restoration of the finger vein images is defined as:

Lstage−2 = 1×L1 + 0.1×Ladv,d2 + 0.1×Lperc + 250×Lstyle (15)

2.3. The Design of a Restoration Task Method for Finger Vein Image Enhancement and Denoising

In order to address other problems experienced in finger vein recognition, such as
low contrast of finger vein feature information and various noises present in the image
due to physical and electromagnetic interference, several traditional finger vein image
enhancements and denoising algorithms were selected as restoration tasks. The algorithms
mainly include:

(a) Mean Filter. The Mean Filter is used to smooth out the noise that exists in an image.
It is based on the principle that the pixel at the centre is the average of all surrounding
pixels. The calculation formula is shown in Equation (16):

g(x, y) =
1
M∑

f
f (x, y) (16)

among them, (x, y) is the current pixel, and M is the total number of pixels in the
template including the current pixel.

(b) Laplacian Filter. The Laplacian Filter is used to enhance areas of the image where
there is a sudden change in grey level and to attenuate areas where the grey level
changes slowly. The Laplacian Filter for image enhancement is calculated as in
Equation (17) as:

g(x, y) = f (x, y) + c
[
∇2 f (x, y)

]
(17)
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Among them, f (x, y) is the input image, g(x, y) is the enhanced image; The value of c
depends on the centre factor of the mask. ∇2 f (x, y) is the Laplacian operator, which
is defined as:

∇2 f (x, y) =
∂2 f (x, y)

∂x2 +
∂2 f (x, y)

∂y2 (18)

(c) Contrast Limited Adaptive Histogram Equalization (CLAHE). CLAHE [31] method
is an improvement on the traditional adaptive histogram equalization (AHE) method.
AHE can highlight detailed information about an image when there are areas in the
image that are significantly brighter or darker than other areas. However, AHE makes
the image noisier, and CLAHE can solve this problem by limiting the contrast in each
pixel region.

(d) Multi-Scale Retinex (MSR). MSR [32] can effectively solve the problem of low image
contrast due to uneven IR illumination. the formula for MSR is shown in Equation (19):

r(x, y) = [Wk{log f (x, y)− log[Fk(x, y) ∗ f (x, y)]}] (19)

Among them, f (x, y) is the original image of the input, Fk(x, y) is the enhanced image
of each scale, Wk is the weight corresponding to each scale, and the sum of the weights
of each scale must be 1.

2.4. The Design of an Adaptive Selection Method for Finger Vein Image Restoration Tasks Based on
Deep Reinforcement Learning

In practical application situations, captured low-quality finger vein images may have
multiple image problems, and it is not desirable to consider only one image problem and
perform restoration. For this reason, we introduce DRL to the finger vein restoration task
for the first time, viewing the restoration task as a sequential action of restoring images
and the low-quality finger vein images as states. DRL is used to train the agent to select
restoration behaviors based on the state of the image. The method can gradually restore
the image, combining different restoration methods into the best means of restoration. If
there are multiple image problems, the agent selects the restoration behaviors consecutively.
In this section, we describe in detail the design ideas and the network structure of the
DRL-FVRestore method proposed in this paper.

2.4.1. The Design Idea of the DRL-FVRestore Method

The architecture figure of the DRL-FVRestore at the step t is shown in Figure 6. As
can be seen from the figure, state is the input to the agent and when step = t the agent
fagent receives the current input of the finger vein image It and its input value vector Vt,
which is obtained from the network output of the previous agent at step = t− 1. Based on
the maximum value of the output Vt, the behaviors at is selected and the corresponding
method is chosen to restore the current finger vein image in the image restoration task
based on at. After the restoration process, the restored image It+1 and the value vector Vt+1
are obtained. Based on the maximum value of the output Vt+1, the action at+1 is selected
and the restoration process continues iteratively for the image It+1 until the desired value
is reached. At this point the agent chooses to stop the operation and ends the restoration
process. Therefore, to design an agent that can select a restoration behavior based on the
state of the image, it is first necessary to determine the ‘state’, ‘action’, and ‘reward’ of
the agent.

The state of agent. The Agent needs an ‘Observation’ to observe the input finger vein
image information, and in reinforcement learning, ‘state’ is this ‘Observation’. As shown
in Figure 6, the input to the ‘state’ of the intelligence is fagent(It, Vt). ‘State’ is provided
to the agent for the current finger vein image It to be processed and the vector of values
Vt obtained by the previous agent. Knowledge of the previous decision can help in the
selection of the restoration action for the current step.
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Figure 6. The DRL-FVRestore architecture figure at the step t.

The action of agent. In this work, we define the behaviors space as an 8-dimensional
vector ai{a1, a2, a3, a4, a5, a6,a7, a8}, as shown in Figure 6. Among them, the behaviors
vectors {a1, a2, a3, a4, a5, a6,a7} each correspond to a finger vein image restoration method.
a8 is the restoration task stopping behaviors. The restoration task for the current image will
end when the agent selects the stop behavior.

The reward of agent. The reward drives the training of the agent when it maximizes
the cumulative reward. ‘Reward’ can determine the result of the image quality of the input
finger vein image after restoration. To achieve a final restored finger vein image with clear
details and satisfactory quality, we introduce the L2 loss of the vein feature as a texture
constraint in the reward function, and the perceptual loss Lperc of the original image to
jointly constrain the training of the agent, where Lperc is the same as the perceptual loss for
the motion blur removal task. Assuming that the current agent is at the step t stage, the
specific equation is shown in Equations (20) and (21):

L2_t+1 = ∑
i

1
Ni

(
f f eature(It+1)− f f eature(It)

)2
(20)

Lperc_t+1 = E
{

∑
i

1
Ni
‖φi(It+1)− φi(It)‖

}
(21)

where It is the image restored from the previous step of the agent and It+1 is the finger vein
image obtained by the agent at the end of the current step. The f f eature is feature extraction
based on direction valley method [33]. To ensure that the image quality is improved at each
step, our stepwise reward design is shown in Equation (22):

rt = 1× (L2_t+1 −L2_t) + 0.6×
(
Lperc_t+1 −Lperct

)
(22)

In this study, we designed reasonable reward and punishment mechanisms in
Equations (20) and (21) to constrain the agent’s behavior. In order to improve the qual-
ity of the finger vein image after each restoration, we designed a progressive reward
rt, as shown in Equation (22). Assuming that the current input image is calculated by
Equations (20) and (21) to obtain the value function as lt, and the value function cal-
culated by the output image after restoration is lt+1 then rt = lt+1 − lt. By determin-
ing the value of lt, the agent’s behavior can be controlled, if rt ≤ 0, then the control
agent stops the restoration behavior; if rt > 0, then the control agent continues with the
restoration behaviors.

2.4.2. The Network Architecture of the DRL-FVRestore Method

The agent of DRL-FVRestore consists of three modules, as shown in Figure 6. The
first module is the feature extraction module, where we use SE-ResNeXt [34] to perform
feature extraction on the input finger vein image. To retain the information of the previous



Appl. Sci. 2023, 13, 699 14 of 33

selected action, it is formed as a mapping of finger vein repair action behavior. The second
module is implemented using a one-hot encoder, which has an 8-dimensional input and a
7-dimensional output. The third module is a long short-term memory (LSTM) [35]. The
LSTM not only observes the state of the current input image, but also saves the state of
the historically restored images, providing contextual information about the historically
restored images and actions. Finally, an FC layer is added behind the LSTM to output a
value vector for the selection of finger vein restoration tasks.

3. Experimental Data

All models are trained in parallel on two RTX 3090 GPUs, Intel(R) Xeon(R)Silver
CPU E5-2678 v3 @2.50GHz, 128GB RAM and Ubuntu operating system using PyTorch
framework. For image deblurring networks, the models were trained with Adam [36]
optimizer and the learning rate of 10−4 for 200 epochs, followed by another 200 epochs
with a linear decay to 10−7. For the image damage restoration network, we optimized
the model using the Adam optimizer with β1 = 0.1, β2 = 0.9. In this procedure, the
generators G1 and G2 are trained using a learning rate of 10−4, respectively. When the
loss has smoothed out, we reduce the learning rate to 10−5 to continue training G1 and
G2 until convergence. Assuming that the amount of data in the training dataset is m, the
number of network iterations is n, and the model is trained on n×m images with different
damages. In our training, the loss of the image defect repair model tends to stabilize when
N reaches 1000. In DRL-FVRestore, the DQN network [37] was used to train the agent.
The learning rate of the model is 10−4. For each training, the discount factor γ = 0.98, the
target network calculates the true value yi = ri + γmaxaQ

ω
′ (Ii+1, a), and Minimize Target

Loss L = 1
N ∑i(yi −Qω(Ii, a)) to update the agent.

3.1. The Introduction of Public Datasets

In this study, four public datasets were used for experimental validation in this study,
including MMCBNU_6000 [38], FV-USM [39], UTFVP [40], and SDUMLA-FV [41], the
details of which are shown in Table 1. We divide the dataset into training and testing
datasets in a ratio of 8:2 to train and test the proposed network model. In particular, the
20% of the training dataset is divided into a validation dataset. We use method [42] to
extract ROI from the images in the dataset. To prevent overfitting, we enhance the data by
flipping, adding noise, mirroring, and offsetting the images of the input network. Before
training, we standardize the size of the input images to 256 × 256.

Table 1. Details of the experimental datasets.

Datasets Number of
Subjects

Number of
Image

Number of
Fingers for

Each Subject

Number of
Images for

Each Subject
Image Size

MMCBNU_6000 [38] 100 6000 6 10 640 × 480 pxl
FV-USM [39] 123 2952 4 6 640 × 480 pxl
UTFVP [40] 60 1140 6 4 672 × 380 pxl
SDUMLA-FV [41] 106 3816 6 6 320 × 240 pxl

In this study, we classify the blurred images captured from finger veins into
two general types of blurs: motion blur and Gaussian blur. Among them, Gaussian
blur is mainly determined by the standard deviation σ and the convolution kernel, where
the larger the standard deviation the greater the blur, and the larger the convolution kernel
the greater the blur. The motion blur is generated by a random matrix of motion blur
kernels. In this study we use the albumentations library [43] to add motion blur to the
images in this public dataset. The albumentations library adds the motion blur operation
with the note that the blur_limit is the range of the convolution kernel size, the larger the
convolution kernel the more pronounced the blur effect.

Training dataset. To ensure that the network model can handle different blur kernels,
the motion blur kernel, the standard deviation σ of the Gaussian blur and the convolution
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kernel of the Gaussian blur are all randomly generated for the public dataset, which is closer
to the real case and improves the training effect and generalization ability of the model.
When training, the data input to the network usually consists of several groups of images.
Each set of images is a sharp image as the label and a blurred image corresponding to it as
the input to the network. Finally, we input the processed data into the network for training
to obtain the weights of the finger vein image restoration network with motion deblurring,
and the weights of the finger vein image restoration network with Gaussian deblurring.

Testing dataset. To test the ability of the trained network to repair finger vein images,
in this study, for Gaussian blur, the set of values of standard deviation σ is taken as
σ{0, 4, 8, 12, 16, 20} and the set of values of the size of the convolution kernel is taken as
{15, 19, 23, 27, 31}. The images of the test set are processed according to the values of the
set as parameters for Gaussian blurring, for example, when σ = 0, the convolution kernel
takes {15, 19, 23, 27, 31} to blur the images, respectively. For motion blur, the set of values
of the motion blur kernel is taken as {30, 40, 50, 60, 70, 80, 90}. By processing the data after
randomly obtaining the blurring kernel parameters in the set, a test dataset of finger vein
images with different degrees of motion blurring can be obtained. It is closer to the real
situation and the reliability of using it to test and validate the deblurring repair task is more
definitive and convincing.

3.2. The Design of Image Damaged Datasets

In this study, none of the four public datasets used were constructed with image
datasets with damaged finger vein information to simulate the problems encountered in
practice. The performance of the network in the finger vein image damage inpainting
restoration task depends heavily on the design of the training dataset. The designed dataset
should be maintained to be as close as possible to the actual application; otherwise, the
generalization ability of the network will be reduced. Therefore, in this study, we build the
training dataset by using a random mask to simulate the damaged images, which is a more
common method of building damaged images [44].

Training dataset. To continue this study, we designed the appropriate method to
build a dataset of damaged finger vein information to simulate the actual problem. In
real-world application situations, the size of the damaged region of the finger vein often
does not cover more than half of the image size; therefore, in this study, the limit of the
size of the constructed damaged region is set to half of the image size. Therefore, to
make the network model able to cope with different locations and sizes of damage, and to
improve the generalization ability of the network to match the real situation more closely,
damaged blocks were designed to be used in the finger vein images, where the location of
the damaged area and the size of the damaged area were both randomized. Simultaneously,
we used the feature extraction method of maximum curvature to produce feature image
datasets as vein texture structure features for the first phase of network training. Following
the above approach, we built the training data for the simulated defective images on the
public four finger vein dataset.

Testing dataset. The test dataset is independent of the training dataset, and, therefore,
the test dataset must contain a variety of damage cases to ensure the reliability of the results.
To test the ability of the trained network to repair finger vein images, in this study we
created the test dataset according to the location of the damaged area of the finger image
and the area of the damaged area. The damaged areas were divided into the left, middle
and right sides of the finger image, and the damaged areas were divided into 20 × 20,
40 × 40, 60 × 60, 80 × 80, 100 × 100, and 120 × 120.

3.3. The Design of the DRL-FVRestore Dataset

In this paper, we propose an adaptive selection method for finger vein image repair
tasks based on DRL. This method selects an appropriate restoration method for the restora-
tion process based on the state of the low-quality finger vein images with image problems
(blurred, damaged, noisy, etc.). Therefore, the DRL-FVRestore needs to be trained with fin-
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ger vein images that have image problems. To build this dataset, we divide the processing
of the dataset into three steps. The first step is to determine the number of image problems
n(n ≥ 2), i.e., the image needs to have at least one image problem. The second step is to
identify the specific image problem and to process the clear finger vein image to obtain the
finger vein image to be restored. As for the third step, it is to randomly generate the size of
the parameters of the image problem. In this study, the image problem is divided into: the
blur problem, which contains the standard deviation and the blur kernel, and the defect
problem, which contains the parameters of the defect area and the defect area.

4. Experiments and Analysis of Results

In this section, we design the following experiments to verify the effectiveness of our
proposed method. We divide the experimental part into the reliability validation for the
motion blur restoration task, Gaussian blur restoration task, image damage restoration
task, and DRL-FVRestore. We test our proposed method on four public datasets. In this
paper, peak signal-to-Noise ratio (PSNR) and structural similarity (SSIM) [45] are adopted
as quality evaluation metrics to compare different algorithms for restoration tasks. PSNR
and SSIM have been widely used in image quality evaluation. The larger the PSNR and
SSIM values, the better the image quality.

The existing finger vein image matching algorithms can be broadly divided into texture
feature based matching algorithms and feature point based matching algorithms. Image
matching can be used to evaluate the performance improvement of the restored finger vein
feature texture image. In order to verify the reliability of the methods, in this experiment
we use both methods to simultaneously evaluate the performance improvement of the
repaired images by the proposed method. The matching algorithm we adopt is described
in detail below.

(a) Matching algorithm based on texture feature extraction. In this study, a single
finger in each dataset was considered as a single individual. The template used
for matching was the image fusion of all ROI using a single finger. We used the
template matching method for recognition matching. As an example, for the template
matching method, we use the MMCBNU_6000 (6000/10) dataset. The template images
were first obtained by fusing 10 images of the same category using ROI images and
then the maximum curvature method [28] was used to obtain vein feature images.
Matching each original feature image with the same class of feature images of the
template, i.e., 6000 times for intra-class matching, and 6000× 99 = 594, 000 times for
inter-class matching.
False acceptance rate (FAR) and false rejection rate (FRR) were used to assess the
performance of the matches, which are two important metrics in the field of finger
vein recognition. FRR is the probability that an authorized object is falsely rejected,
and FAR is the probability that a non-authorized object is accepted as an authorized
one [3]. Different matching thresholds give different FAR and FRR, while the equal
error rate (EER) is the value when the FAR and FRR are equivalent. Draw the Receiver
Operating Characteristic (ROC) curve according to FAR and FRR. n the ROC curve,
that illustrates FAR against FRR at different thresholds on the matching score, the
lower the ROC curve is located, the better the image quality is. Each part of the
experiment is described in detail below.

(b) Matching algorithms based on feature points. We use the SURF algorithm [46]
for feature point extraction of finger vein images, SURF is a local feature point de-
scription algorithm with accelerated robustness, the main process of its algorithm is:
(1) construct Hessian matrix; (2) construct Gaussian pyramid scale space; (3) use
non-extreme value suppression of initially determined feature points to precisely
locate the extreme value points; (4) calculate the feature points in a certain domain of
horizontal Haar wavelet features and vertical Haar wavelet features to determine the
64-dimensional feature vector; and (5) finally, Euclidean distance is used for feature
point matching to achieve feature point matching of finger vein images. A higher
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number of feature points for intra-class matching and a lower number of feature
points for inter-class matching indicates a better-quality image with richer vein tex-
ture information. In this experiment, we use a comparison of the intra-class and
inter-class probability density distribution plots and feature point histogram statistical
plots of different algorithms to analyze the reliability of the algorithms in this paper.

4.1. Reliability Verification of Motion Blur Restoration Tasks

To verify the reliability of the proposed de-motion blurring restoration method for
finger vein image restoration, several experiments were designed. In a practical application,
the subject is captured with the finger vein image by the capture device. The system creates
a template of the finger vein image and stores it in the database. When the subject needs
to verify the identity of a template, the capture device recaptures the current finger vein
image and matches it to the template in the database to obtain a match score. However,
when creating the templates, the captured finger vein images may have motion blur due
to external factors and need to be restored and then created into templates. Therefore,
due to the different templates, we considered the following cases, which are close to the
actual application.

Case 1: The captured finger vein image is image restored by the method of this paper
and then made into a template, and the template is matched with the finger vein image
with motion blur during validation.

Case 2: The captured finger vein image is restored by the method in this paper and
then made into a template, and the template is matched with the restored finger vein image
by the method in this paper.

Case 3: The captured finger vein image from the acquisition device is made into
a template directly without any processing, and the template is matched with the finger
vein image with motion blur during verification.

Case 4: The finger vein image captured by the capture device is made into a template
directly without any processing, and the template is matched to the restored finger vein
images during validation.

Tables 2 and 3 show the values of EER obtained by doing matching authentication
calculations on the public dataset for these four cases on different motion blur convolutions.
Through the display of the experimental results in these tables, it can be found that as the
convolution kernel becomes larger, the textured areas of the finger veins become more
affected by the blurring, resulting in a serious lack of vein texture information and finally
the performance of the recognition degrades. In Case 3 and Case 4, it is easy to find that the
images captured by the acquisition device have motion blur, and after making the templates
the feature information of the templates is not obvious due to the blurring, resulting in
larger EER and lower recognition performance. Notably, the results of Case 4 were better
than those of Case 3 due to the deblurring process of the matched images by the method
in this paper. In Case 1 and Case 2, the captured images are deblurred by the method in
this paper and then made into templates. The feature information of the templates was
restored and the EER values calculated were lower and the recognition performance was
better compared to Case 3 and Case 4. In Case 2, the matched data are deblurred compared
to Case 1, which results in a better performance of Case 2. It is not difficult to see that,
when comparing all the cases, only the template image and the matched image, which are
both deblurred by the method in this paper, have smaller EER, higher image quality and
better recognition performance in Case 2. Moreover, the generalization capability of our
model can be seen by processing different motion blur convolution kernels.

To verify the effectiveness and reliability of the method proposed in this paper in the
field of finger vein image deblurring, we processed the finger vein images from the test
datasets by adding random motion blur kernels and restored them with the trained model.
The PSNR and SSIM were used to quantitatively evaluate the image quality and similarity
to the original image after restoration with the state-of-the-art method and the method used
in this paper, as shown in Table 4. It can be found that the method used in this paper has
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higher values of PSNR and SSIM, indicating that the motion blurred image is closer to the
original image and has better image quality. In the process, we plotted the ROC curves of
the images restored by the state-of-the-art method and the method used in this paper on the
four publicly available datasets compared to the original images, as shown in Figure 7. It
can be found that the method adopted in this paper exhibits lower ROC curves, lower EER
and better recognition performance compared to the other state-of-the-art methods. The
deblurred images from this paper showed an average reduction of 4.31% in EER compared
to the restored images from the state-of-the-art method on the four datasets.

Figure 7. The ROC curves of various deblurring methods on the different public datasets.

Table 2. EERs (%) of MMCBNU_6000 and SDUMLA-FV with different motion blur kernels
text width.

MMCBNU_6000 SDUMLA-FV

Motion Blur
Conv Kernel

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

30× 30 15.49 14.83 25.96 36.21 13.36 11.53 28.74 37.52
40× 40 17.74 16.75 33.63 37.11 14.85 13.65 29.48 40.33
50× 50 18.86 18.83 38.18 36.73 15.98 14.81 35.27 40.74
60× 60 20.64 19.71 42.13 35.48 16.58 15.98 38.12 40.46
70× 70 21.97 21.51 44.92 35.78 17.11 16.69 41.24 40.96
80× 80 22.98 21.64 46.44 36.11 17.64 17.32 43.29 41.46
90× 90 23.45 22.77 47.96 35.85 17.72 17.44 44.21 42.03
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Table 3. EERs (%) of FV-USM and UTFVP with different motion blur kernels.

FV-USM UTFVP

Motion Blur
Conv Kernel

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

30× 30 13.58 6.53 24.78 40.39 12.49 8.45 29.51 34.65
40× 40 15.95 7.82 30.21 41.59 13.95 9.08 35.81 37.96
50× 50 17.17 9.62 35.09 41.30 15.94 10.83 39.92 41.18
60× 60 19.20 9.89 38.71 41.57 16.14 10.94 41.73 42.39
70× 70 19.29 9.93 44.95 41.02 16.52 12.69 44.53 44.30
80× 80 20.25 10.49 45.52 44.68 17.05 13.14 46.44 44.23
90× 90 20.61 10.73 45.79 44.51 16.65 15.34 47.44 45.81

Table 4. PSNR (dB) and SSIM of various deblurring methods on the different public datasets.

MMCBNU_6000 SDUMLA-FV FV-USM UTFVP

Methods SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

DeblurGAN [11] 0.83 29.56 0.91 28.65 0.93 28.95 0.89 23.26
Modified

DeblurGAN [3]
0.87 32.64 0.91 35.25 0.94 33.22 0.92 28.75

DeblurGAN -V2 [19] 0.90 31.34 0.94 34.44 0.91 31.56 0.90 26.45
The method used in

this paper
0.92 34.74 0.96 36.18 0.98 35.12 0.93 28.56

The above experiments validate the effectiveness and reliability of our method in terms
of both the quality of the restored images and the texture information. In order to verify that
the restored images are rich in feature information, we have completed the intra-class and
inter-class probability density distribution plots and feature point histogram statistical plots
of different algorithms to analyze the reliability of the algorithms in this paper, as shown in
Figures 8 and 9. It can be seen that the image restored by the method in this paper has a
more rightward feature point probability density curve and a larger number of feature point
histogram statistical plots; outside the class, the feature point probability density curve is
more to the zero point and the number of feature point histogram statistical plots is less and
more to the left. The accuracy of matching between the same kind of features is higher.

4.2. Reliability Verification of Gaussian Blur Restoration Tasks

To verify the reliability of the proposed deblurring method for finger vein image
restoration, we designed the following experiments. We used the original image as a
template and matched the template with the blurred finger vein image and the finger vein
image restored after the deblurring task, respectively, as shown in Tables 5 and 6. We
chose different convolutional kernel parameters from the trained ones as the test dataset
to verify the generalization ability of the trained model. As the convolution kernel and
variance become larger, the values of the matched EER become larger and the performance
of recognition decreases. In contrast, the recognition performance is improved by matching
the restored finger vein images. It illustrates the positive impact of the task that we used
for image deblurring of Gaussians on subsequent recognition.

Table 5. EERs (%) of MMCBNU_6000 and SDUMLA-FV with different σ and blur Conv kernels.

MMCBNU_6000 SDUMLA-FV

σ = 16 σ = 20 σ = 16 σ = 20

Blur
Conv

Kernel
Blurred Restored Blurred Restored Blurred Restored Blurred Restored

10× 10 9.28 7.66 9.48 7.78 17.49 9.43 17.21 9.49
15× 15 10.83 8.96 10.96 9.20 19.57 12.47 19.94 12.73
20× 20 12.75 10.26 12.88 10.45 22.24 15.44 22.45 15.84
25× 25 14.05 11.62 14.40 11.71 23.84 18.20 24.25 18.51
30× 30 14.53 12.86 14.56 13.59 25.07 20.17 25.89 20.99



Appl. Sci. 2023, 13, 699 20 of 33

Figure 8. The intra-class and inter-class probability density distribution plots and fea-
ture point histogram statistical plots of various deblurring methods on the MMCBNU and
SDUMLA-FV datasets.
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Figure 9. The intra-class and inter-class probability density distribution plots and feature point
histogram statistical plots of various deblurring methods on the UTFVP and FV-USM datasets.
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Table 6. EERs (%) of FV-USM and UTFVP with different σ and blur Conv kernels.

FV-USM UTFVP

σ = 16 σ = 20 σ = 16 σ = 20

Blur
Conv

Kernel
Blurred Restored Blurred Restored Blurred Restored Blurred Restored

10× 10 6.50 3.79 6.36 3.86 16.80 11.48 17.52 12.01
15× 15 8.12 5.35 8.13 5.55 21.56 15.32 22.43 15.41
20× 20 10.22 7.02 10.36 7.81 26.31 17.15 26.59 18.09
25× 25 12.05 9.31 12.24 9.72 29.09 18.54 30.11 19.52
30× 30 12.77 10.67 13.18 11.33 32.21 22.15 25.43 19.91

4.3. Reliability Validation of Finger Vein Image Damage Restoration Tasks

To verify the reliability of the proposed damaged finger vein image inpainting method
for finger vein image restoration in this paper, we designed the following experiment. To
simulate the actual application situation, we divided the damaged areas of the images into
20× 20, 40× 40, 60× 60, 80× 80, 100× 100, and 120× 120 for testing, and divided the
damaged areas into middle, left, and right. We calculated the EER values of the simulated
damaged images in the public dataset by template matching with the images restored by
the method proposed in this paper, as shown in Tables 7–9, respectively. The experimental
results show that the recognition accuracy is low as the damaged area increases, leading
to a lack of information on the texture details of the finger veins. Especially after the
damaged area reaches 80× 80, its EER value is significantly higher. Finger vein images
restored by the method proposed in this paper showed smaller values of EER and a
higher degree of matching performance compared to the unrepaired damaged images for
template matching.

The values of the EER for template matching of finger vein images after restoration
by the method proposed in this paper were reduced by an average of 0.41% over the
four datasets when the damaged area was between 20 and 80, compared to the images
before restoration. When the damaged area is between 80 and 120, there is an average
reduction of 1.71% compared to the unrestored images on the four datasets. It can be
seen that the proposed method has better restoration performance and generalization
ability for different damaged areas and damage sizes of the test dataset, especially for large
damaged areas.

To verify the effectiveness and reliability of the proposed method in the area of
finger vein image damaged restoration, the finger vein images from the test datasets were
processed by adding a random simulation of the damaged area and size, and the trained
model was used for restoration. We used PSNR to quantitatively assess the image quality
and image similarity of the images restored with the state-of-the-art method, as well as the
method used in this paper to the original images, as shown in Table 10. It can be readily
seen that the method used in this paper has a higher value of PSNR, indicating that the
images after damaged restoration by the method used in this paper are of higher quality
and have more vein detail information. At the same time, we plotted the ROC curves for
the images recovered using the state-of-the-art method and the method used in this paper
on each of the four public datasets, as well as for the original images, as shown in Figure 10.
It can be found that the damaged finger vein images have low matching performance due
to the lack of finger vein detail information. The restored finger vein images using the
proposed inpainting method showed an improved performance in matching authentication
compared to the unrestored images, with an average reduction in EER of 3.77% across
the four datasets. This result is mainly due to the two-stage restoration process used in
this paper, where the second stage is guided by the vein structure. The restored images
have more visible vein details which show a lower ROC curve and lower values of EER
compared to the state-of-the-art method, with an average reduction of 1.12% over the
four datasets. To verify validity still further, we compared the network with only one-stage
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restoration with the two-stage restoration proposed in this paper. On the four datasets, the
EER of the two-stage restoration proposed in this paper is on average 1.33% lower than
that of the one-stage restoration. This is a sound and reliable indication of the effectiveness
of the two-stage restoration as proposed in this paper.

Table 7. EERs (%) of the left damaged area on the different public datasets.

MMCBNU_6000 SDUMLA-FV FV-USM UTFVP

The Size
of

Damaged
Area

Damaged Restored Damaged Restored Damaged Restored Damaged Restored

20× 20 6.85 6.55 6.05 5.63 2.45 2.43 6.59 6.11
40× 40 7.10 6.69 6.34 5.93 2.84 2.50 6.94 6.59
60× 60 7.63 6.81 7.28 6.57 3.11 2.82 8.24 6.84
80× 80 7.68 7.43 7.96 7.37 3.64 3.25 8.54 7.09
100× 100 8.57 7.45 8.43 7.74 3.94 3.39 10.69 7.22
120× 120 9.42 7.98 9.32 8.08 4.26 3.55 10.87 7.89

Table 8. EERs (%) of the right damaged area on the different public datasets.

MMCBNU_6000 SDUMLA-FV FV-USM UTFVP

The Size
of

Damaged
Area

Damaged Restored Damaged Restored Damaged Restored Damaged Restored

20× 20 6.75 6.53 6.79 6.12 2.44 2.37 6.03 5.87
40× 40 7.25 6.58 7.17 6.25 2.67 2.43 6.43 6.04
60× 60 7.73 6.88 8.34 6.70 2.96 2.64 7.32 6.42
80× 80 8.12 7.66 8.65 7.52 3.55 3.22 7.76 6.57
100× 100 8.68 7.68 9.83 7.54 3.65 3.52 8.44 6.94
120× 120 9.65 8.07 9.92 7.87 4.36 3.65 9.11 7.76

Table 9. EERs (%) of the central damaged area on the different public datasets.

MMCBNU_6000 SDUMLA-FV FV-USM UTFVP

The Size
of

Damaged
Area

Damaged Restored Damaged Restored Damaged Restored Damaged Restored

20× 20 6.87 6.64 5.99 5.67 2.54 2.43 6.48 6.05
40× 40 7.22 6.64 6.42 6.18 2.78 2.52 6.97 6.45
60× 60 7.83 6.75 7.23 6.43 2.95 2.69 8.12 6.59
80× 80 8.10 7.41 8.44 7.04 3.35 3.07 8.29 7.26
100× 100 8.85 7.43 9.51 7.71 3.93 3.11 9.92 7.29
120× 120 10.11 8.05 10.42 8.04 4.85 3.42 12.15 8.05

In order to verify that the images restored by this paper are rich in feature information,
we did experiments based on feature point matching on four publicly available datasets,
and plotted the intra-class and inter-class probability density distribution plots and feature
point histogram statistical plots of different algorithms to analyze the reliability of the
algorithms in this paper, as shown in Figures 11 and 12. It can be seen that after the
defective images are repaired, the probability density curve of feature points in the in-class
images is more to the right, and the histogram statistics of feature points are more to the
right and more in number; the probability density curve of feature points in the out-class
repaired images is more to the zero point, and the histogram statistics of feature points
are more to the left and less in number, which indicates that the defective images can be
repaired by this paper with more details than other defective repair methods. The results
show that more detailed information can be recovered by this method than by other defect
restoration methods.



Appl. Sci. 2023, 13, 699 24 of 33

Table 10. PSNR (dB) of various image inpainting methods on different public datasets.

MMCBNU_6000 SDUMLA-FV FV-USM UTFVP

Methods PSNR PSNR PSNR PSNR

Unrestored 36.57 37.88 42.89 40.35
CDD [13] 39.25 39.22 48.76 46.89
TV-model [12] 39.11 39.98 49.01 47.25
FMM [14] 39.08 39.46 48.57 47.33
GTC [1] 40.11 42.34 50.66 48.99
Proposed Method 41.18 44.26 53.49 49.85

Figure 10. The ROC curves of various image inpainting methods on the different public datasets.

4.4. Reliability Verification of the DRL-FVRestore

In this study, we propose the DRL-FVRestore method to select the appropriate restora-
tion task for image restoration processing based on the current state of the input image.
By analyzing the results from the previous experiments, the effectiveness and reliability
of the proposed DRL-FVRestore method for the restoration tasks of the motion deblur-
ring restoration task, the Gaussian deblurring restoration task, and the damaged image
restoration task were verified. The above restoration methods can effectively improve
the quality of images and increase the accuracy of recognition when there is an image
problem in the matched image. However, when the matched image is faced with complex,
multi-image problems, merely using a single repair method is not effective in improving
the performance of the system. In the case of image problems, if the system only relies on a
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trial-and-error approach to processing, without implementing a restoration task selected
according to the image state, it requires a great deal of time and the restoration results are
less than optimal.

Figure 11. The intra-class and inter-class probability density distribution plots and feature point
histogram statistical plots of various image restored methods on the UTFVP and FV-USM datasets.
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Figure 12. The intra-class and inter-class probability density distribution plots and feature
point histogram statistical plots of various image restored methods on the MMCBNU and
SDUMLA-FV datasets.

Figure 13 shows the output images of each stage of the DRL-FVRestore restoration. The
first and second groups are images of defective finger veins, which were basically repaired
by the first stage of restoration, and the repaired images have clear feature information.
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The third and fourth groups are images with motion blur, noise and other problems,
and after each stage of denoising and deblurring, the image quality is improved and the
vein detail is enhanced. Below, the images are the PSNR values for each image, and it
can be seen that the quality of the output image has improved at each stage after the
DRL-FVRestore restoration.

Figure 13. Output images and their PSNR values for each stage of the 4-stage DRL-FVRestore
restoration process.

The method proposed in this paper can effectively solve this problem. Based on
the idea of reinforcement learning, the restoration task is selected by the trained agent.
The agent is restored based on the state of the image. To verify the effectiveness and
reliability of the DRL-FVRestore method in solving the multiple complex problems present
in low-quality finger vein images, two image problems were randomly added to the test
datasets. The ROC curves are plotted using the trained network for processing, as shown in
Figure 14. When finger vein images have complex image problems, the restored finger vein
images obtained by processing with the DRL-FVRestore method proposed in this paper
are compared with those restored by just a single restoration method (Specifically motion
deblurring restoration, Gaussian deblurring restoration, and damaged restoration). This
reveals that the method in this paper has a lower EER value, a ROC curve closer to the
coordinate axis and better recognition performance. The average EER value of the method
in this paper was reduced by 3.98% on the four datasets compared to the single method.

This is because trained agent perform restoration processing is based on several steps,
namely: 1. the state of the image, 2. selecting a damaged restoration task to restore the
image if there is a damaged image, 3. performing a deblurred restoration task to restore
the image if there is a blur, and, finally, 4. selecting an enhanced method for image texture
enhancement in appropriate amounts based on the quality and texture detail of the image.
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Figure 14. The ROC curves of various image restored methods on the different public datasets.

In contrast, the EER of just a single de-motion blur restoration method with images
processed by de-Gaussed blur restoration for matching recognition was not as effective
as the DRL-FVRestore method, although its EER was also reduced. The reason for this is
that the randomly added image problems in the test set contain missing images, which
significantly adversely affect the detail of the image features, thereby causing a reduction
in performance.

In addition, we added experiments based on feature point matching and plotted the
intra-class and inter-class probability density distribution plots and feature point histogram
statistical plots of different algorithms to analyze the reliability of the algorithms in this
paper, as shown in Figures 15 and 16. It can be seen that the images restored by DRL-
FVRestore are more rightward in class probability density distribution plots and feature
point histogram statistical plots than single restoration method. The restored images are
richer in detail than the single restoration method.The DRL-FVRestore method proposed
in this paper selects the appropriate restored method according to the state of the image
and can be restored continuously, which is beneficial for solving finger vein images with
multiple problems.
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Figure 15. The intra-class and inter-class probability density distribution plots and feature point
histogram statistical plots of DRL-FVRestore on the on the MMCBNU and SDUMLA-FV datasets.



Appl. Sci. 2023, 13, 699 30 of 33

Figure 16. The intra-class and inter-class probability density distribution plots and feature point
histogram statistical plots of DRL-FVRestore on the UTFVP and FV-USM datasets.
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5. Conclusions

In this paper, we propose a deep reinforcement learning-based image restoration
algorithm. To deal with multi-image problems in complex situations, we divide the restora-
tion tasks into three categories: (1) the image deblurring restoration task, (2) the image
defect restoration task, and (3) the image denoising and enhancement restoration task.
First, a finger vein deblurring generation adversarial network based on DeblurGAN-v2
network with Inception-Resnet-v2 backbone is proposed, which is used for the image
deblurring restoration task with the deblurring Gaussian restoration task. Second, a finger
vein feature-guided restoration network is proposed to achieve defect image restoration,
which is designed in two stages: feature image restoration and original image restoration.
After the feature image restoration, the feature texture information is followed to guide the
restoration of the original finger vein image. Finally, we propose a novel deep reinforcement
learning-based finger vein image restored method called DRL-FVRestore. The method
treated the proposed restoration task as a behavior and the input low-quality image as
a state. The method trained an agent that adaptively selects the appropriate restoration
behavior according to the state of the finger vein image, enabling continuous restoration of
the image.

In this study, we performed extensive experiments with the proposed method on four
public datasets, (Section 3.1). The experimental results show that the proposed deblurring
network, damaged restoration network in this paper is an effective and reliable method for
finger vein image restoration to effectively deal with the existence of a single image problem.
With regards to a complex situation where there are multiple image problems, the DRL-
FVRestore method proposed in this paper demonstrates better restoration performance. It
can adaptively select the above effective restoration task to perform the restoration process
based on the state of the input image. In future work, we plan to further research how to
reduce the time complexity and space complexity of the model. A lighter, more real-time
approach to finger vein image repair is a challenge we need to address.
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