Effect of Processing on Volatile Organic Compounds Formation of Meat—Review
Abstract
:1. Introduction
2. Genetic Parameters
Breed, Sex, Gender
3. Non-Thermal Processing
3.1. Aging Process
3.2. Packging and Storage
3.3. HPP
3.4. Ultrasound (US)
3.5. Cold Plasma (CP)
3.6. Ozone
3.7. Pulsed Electric Field (PEF)
4. Thermal Processing
4.1. Smoking
4.2. Cooking Techniques
4.3. Drying
5. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wojtasik-Kalinowska, I.; Guzek, D.; Górska-Horczyczak, E.; Głąbska, D.; Brodowska, M.; Sun, D.-W.; Wierzbicka, A. Volatile compounds and fatty acids profile in Longissimus dorsi muscle from pigs fed with feed containing bioactive components. LWT Food Sci. Technol. 2016, 67, 112–117. [Google Scholar] [CrossRef]
- Barbin, D.; Elmasry, G.; Sun, D.-W.; Allen, P. Near-infrared hyperspectral imaging for grading and classification of pork. Meat Sci. 2012, 90, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Sun, D.-W. Factors affecting the water holding capacity of red meat products: A review of recent research advances. Crit. Rev. Food Sci. Nutr. 2008, 48, 137–159. [Google Scholar] [CrossRef]
- Bosse, R.; Wirth, M.; Becker, T.; Weiss, J.; Gibis, M. Determination of volatile marker compounds in raw ham using headspace-trap gas chromatography. Food Chem. 2017, 219, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; Geyzen, A.; Janssens, M.; De Vuyst, L.; Scholliers, P. Meat fermentation at the crossroads of innovation and tradition: A historical outlook. Trends Food Sci. Technol. 2013, 31, 130–137. [Google Scholar] [CrossRef]
- Montanari, C.; Gatto, V.; Torriani, S.; Barbieri, F.; Bargossi, E.; Lanciotti, R.; Grazia, L.; Magnani, R.; Tabanelli, G.; Gardini, F. Effects of the diameter on physico-chemical, microbiological and volatile profile in dry fermented sausages produced with two different starter cultures. Food Biosci. 2018, 22, 9–18. [Google Scholar] [CrossRef]
- Gómez, M.; Domínguez, R.; Fonseca, S.; Lorenzo, J.M. Effect of finishing diet on physico-chemical and lipolytic parameters and volatile compounds throughout the manufacture of dry-cured foal “Cecina”. Austin J. Nutr. Food Sci. 2015, 3, 1056. [Google Scholar]
- Farmer, L.J.; Hagan, T.D.J.; Paraskens, O. Flavour Science: Recent Developments; Taylor, A.J., Mottram, D.S., Eds.; Royal Society of Chemistry: Cambridge, MA, USA, 1996; pp. 225–230. [Google Scholar]
- Flores, M. Understanding the implications of current health trends on the aroma of wet and dry cured meat products. Meat Sci. 2018, 144, 53–61. [Google Scholar] [CrossRef]
- Gorraiz, C.; Berain, M.J.; Insousti, K. Effect of aging time on volatile compounds, odor, and flavor of cooked beef from Pirenaica and Friesian Bulls and Heifers. J. Food Sci. 2002, 67, 916–922. [Google Scholar] [CrossRef]
- Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D. Effects of the polyunsaturated fatty acid composition of beef muscle on the profile of aroma volatiles. J. Agric. Food Chem. 1999, 47, 1619–1625. [Google Scholar] [CrossRef]
- Farmer, L.; Patterson, R.L.S. Compounds contributing to meat flavour. Food Chem. 1991, 40, 201–205. [Google Scholar] [CrossRef]
- Bleicher, J.; Ebner, E.E.; Bak, K.H. Formation and Analysis of Volatile and Odor Compounds in Meat—A Review. Molecules 2022, 27, 6703. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F. Flavor of meat and meat products—An overview. In Flavor of Meat and Meat Products; Shahidi, F., Ed.; Springer: Boston, MA, USA, 1994; pp. 1–3. [Google Scholar]
- Chiavaro, E.; Rinaldi, M.; Vittadini, E.; Barbanti, D. Cooking of pork Longissimus dorsi at different temperature and relative humidity values: Effects on selected physico-chemical properties. J. Food Eng. 2009, 93, 158–165. [Google Scholar] [CrossRef]
- Ba, H.V.; Amna, T.; Hwang, I. Significant influence of particular unsaturated fatty acids and pH on the volatile compounds in meat-like model systems. Meat Sci. 2013, 94, 480–488. [Google Scholar] [PubMed]
- Wang, Y.; Li, C.; Zhao, Y.; Li, L.; Yang, X.; Wu, Y.; Chen, S.; Cen, J.; Yang, S.; Yang, D. Novel insight into the formation mechanism of volatile flavor in Chinese fish sauce (Yu-lu) based on molecular sensory and metagenomics analyses. Food Chem. 2020, 323, 126839. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Wang, J. Use of electronic nose and tongue to track freshness of cherry tomatoes squeezed for juice consumption: Comparison of different sensor fusion approaches. Food Bioprocess Technol. 2015, 8, 158–170. [Google Scholar] [CrossRef]
- Huang, L.; Liu, H.; Zhang, B.; Wu, D. Application of electronic nose with multivariate analysis and sensor selection for botanical origin identification and quality determination of honey. Food Bioprocess Technol. 2015, 8, 359–370. [Google Scholar] [CrossRef]
- Lopez de Lerma, N.; Moreno, J.; Peinado, R.A. Determination of the optimum sun-drying time for Vitis vinifera L. cv. Tempranillo grapes by E-nose analysis and characterization of their volatile composition. Food Bioprocess Technol. 2014, 7, 732–740. [Google Scholar] [CrossRef]
- Ivanović, S.; Pavlović, M.; Pavlović, M.; Tasić, A.; Janjić, J.; Baltić, M.Ž. Influence of breed on selected quality parameters of fresh goat meat. Arch. Anim. Breed. 2020, 14, 219–229. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Li, N.; Zhong, H.; Xu, H.; Zhu, Q.; Liu, Y. Comparative Analysis of the Gut Microbial Composition and Meat Flavor of Two Chicken Breeds in Different Rearing Patterns. Biomed Res. Int. 2018, 2018, 4343196. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, G.; Cordoba, M.; Alcalde, M.; Martin, A.; Argüello, A.; Cosqete, R.; Panea, B. Volatile organic compounds and consumer preference for meat from suckling goat kids raised with natural or replacers milk. Ital. J. Anim. Sci. 2019, 18, 1259–1270. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Hou, Y.; Su, R.; Luo, Y.; Luo, Y.; Dou, L.; Yang, Z.; Yao, D.; Wang, B.; Zhao, L.; et al. Effect of dietary probiotics supplementation on meat quality, volatile flavor compounds, muscle fiber characteristics, and antioxidant capacity in lambs. Food Sci. Nutr. 2022, 10, 2646–2658. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gao, Y.; Wang, H.; Xi, B.; He, X.; Yang, X.; Li, W. Analysis of volatile compounds and flavor fingerprint in Jingyuan lamb of different ages using gas chromatography–ion mobility spectrometry (GC–IMS)175, 108449. Meat Sci. 2021, 175, 108449. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M.; Morcuende, D.; Ventanas, S.; Cava, R. Analysis of volatiles in meat from Iberian pigs and lean pigs after refrigeration and cooking by using SPME-GC-MS. J. Agric. Food Chem. 2003, 51, 3429–3435. [Google Scholar] [CrossRef]
- Koutsidis, G.; Elmore, J.S.; Oruna-Concha, M.J.; Campo, M.M.; Wood, J.D.; Mottram, D.S. Water-soluble precursors of beef flavour. Part II: Effect of post-mortem conditioning. Meat Sci. 2008, 79, 270–277. [Google Scholar] [CrossRef]
- Marino, R.; Albenzio, M.; della Malva, A.; Santillo, A.; Loizzo, P.; Sevi, A. Proteolytic pattern of myofibrillar protein and meat tenderness as affected by breed and aging time. Meat Sci. 2013, 95, 281–287. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- Beldarrain, L.R.; Morán, L.; Sentandreu, M.Á.; Barron, L.J.R.; Aldai, N. Effect of ageing time on the volatile compounds from cooked horse meat. Meat Sci. 2022, 184, 108692. [Google Scholar] [CrossRef]
- Campbell, R.E.; Hunt, M.C.; Levis, P.; Chambers, E. Dry-Aging Effects on Palatability of Beef Longissimus Muscle. J. Food Sci. 2001, 66, 196–199. [Google Scholar] [CrossRef]
- Pogorzelski, G.; Polkinghorne, R.; Tarr, G.; Półtorak, A.; Wierzbicka, A. Effect of “dry aging” or “wet aging” of beef on eating quality. Anim. Sci. Pap. Rep. 2021, 39, 237–249. [Google Scholar]
- Jiang, T.; Busboom, J.R.; Nelson, M.L.; O’Fallon, J.; Ringkob, T.P.; Rogers-Klette, K.R.; Joos, D.; Piper, K. The influence of forage diets and aging on beef palatability. Meat Sci. 2010, 86, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Carrapiso, A.I.; Martillanes, S.; Delgado-Adamez, J.; Ramirez, R. Effect of a rice bran extract-based active packaging, high pressure processing and storage temperature on the volatile compounds of sliced dry-cured high quality (Montanera) Iberian ham. Food Chem. 2022, 375, 131651. [Google Scholar] [CrossRef]
- Carrapiso, A.I.; Amaro-Blanco, G.; Manzano, R.; Delgado-Adamez, J.; Ramirez, R. Volatile compounds of sliced high quality (Montanera) dry-cured Iberian shoulder subjected to high pressure processing and/or with an active packaging of olive leaf extract. Food Packag. Shelf Life 2021, 27, 100606. [Google Scholar] [CrossRef]
- Bhadury, D.; Nolvachi, Y.; Marriott, P.J.; Tanner, J.; Tuck, K.L. Detection of Volatiles from Raw Beef Meat from Different Packaging Systems Using Solid-Phase Microextraction GC–Accurate Mass Spectrometry. Foods 2021, 10, 2018. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.D.; Matos, G.; Casal, S.; Delgadillo, I.; Saraiva, J.A. Quality evolution of raw meat under hyperbaric storage—Fatty acids, volatile organic compounds and lipid oxidation profiles. Food Biosci. 2021, 42, 101108. [Google Scholar] [CrossRef]
- Mansur, A.R.; Song, E.-J.; Cho, Y.-S.; Nam, Y.D.; Choi, Y.-S.; Kim, D.-O.; Seo, D.-H.; Nam, T.G. Comparative evaluation of spoilage-related bacterial diversity and metabolite profiles in chilled beef stored under air and vacuum packaging. Food Microbiol. 2019, 77, 166–172. [Google Scholar] [CrossRef]
- Pérez-Santaescolástica, C.; Fraeye, I.; Barba, F.F.; Gómez, B. Application of non-invasive technologies in dry-cured ham: An overview. Trends Food Sci. Technol. 2019, 86, 360–374. [Google Scholar] [CrossRef]
- Martínez-Onandi, N.; Rivas-Cañedo, A.; Picon, A.; Nuñez, M. Influence of compositional characteristics and high pressure processing on the volatile fraction of Iberian dry-cured ham after prolonged refrigerated storage. IFSET 2018, 49, 127–135. [Google Scholar] [CrossRef]
- Peña-Gonzalez, E.; Alarcon-Rojo, A.D.; Garcia-Galicia, I.; Carrillo-Lopez, L.; Huerta-Jimenez, M. Ultrasound as a potential process to tenderize beef: Sensory and technological parameters. Ultrason. Sonochem. 2019, 53, 134–141. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, W.; Kang, D.; Zhou, G. Improvement of tenderness and water holding capacity of spiced beef by the application of ultrasound during cooking. Int. J. Food Sci. Technol. 2018, 53, 828–836. [Google Scholar] [CrossRef]
- Bao, G.; Niu, J.; Li, S.; Zhang, L.; Luo, Y. Effects of ultrasound pretreatment on the quality, nutrients and volatile compounds of dry-cured yak meat. Ultrason. Sonochem. 2022, 82, 105864. [Google Scholar] [CrossRef] [PubMed]
- Cichoski, A.J.; da Silva, J.S.; Leães, Y.S.V.; Robalo, S.S.; dos Santos, B.A.; Reis, S.R.; Nehring, P.; Santos, S.P.; Wagner, R.; de Menezes, C.R.; et al. Effects of ultrasonic-assisted cooking on the volatile compounds, oxidative stability, and sensory quality of mortadella. Ultrason. Sonochem. 2021, 72, 105443. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, C.W.; Yong, H.I.; Lee, H.J.; Jo, C.; Jung, S. Use of atmospheric pressure cold plasma for meat industry. Korean J. Food Sci. Anim. Resour. 2017, 37, 477–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Andrés, J.M.; Cropotova, J.; Harrison, S.M.; Brunton, N.P.; Cullen, P.J.; Rustad, T.; Tiwari, B.K. Effect of cold plasma on meat cholesterol and lipid oxidation. Foods 2020, 9, 1786. [Google Scholar] [CrossRef]
- Estévez, M. Oxidative damage to poultry: From farm to fork. Poult. Sci. 2015, 94, 1368–1378. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Annapure, U. Consequences of non-thermal cold plasma treatment on meat and dairy lipids—A review. Future Foods 2021, 4, 100095. [Google Scholar] [CrossRef]
- Luo, J.; Yan, W.; Nasiru, M.M.; Zhuang, H.; Zhou, G.; Zhang, J. Evaluation of physicochemical properties and volatile compounds of Chinese dried pork loin curing with plasma-treated water brine. Sci. Rep. 2019, 9, 13793. [Google Scholar] [CrossRef] [Green Version]
- Thirumdas, R.; Sarangapani, C.; Annapure, U.S. Cold Plasma: A novel Non-Thermal Technology for Food Processing. Food Biophys. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- Botta, C.; Ferrocino, I.; Cavallero, M.C.; Riva, S.; Giordano, M.; Cocolin, L. Potentially active spoilage bacteria community during the storage of vacuum packaged beefsteaks treated with aqueous ozone and electrolyzed water. Int. J. Food Microbiol. 2018, 266, 227–345. [Google Scholar] [CrossRef] [Green Version]
- Botta, C.; Coisson, J.D.; Ferrocino, I.; Colasanto, A.; Pessione, A.; Cocolin, L.; Arlorio, M.; Rantsiou, K. Impact of Electrolyzed Water on the Microbial Spoilage Profile of Piedmontese Steak Tartare. Microbiol. Spectr. 2021, 9, e01751–e01821. [Google Scholar] [CrossRef] [PubMed]
- Kantono, K.; Hamid, N.; Chadha, D.; Ma, Q.; Oey, I.; Farouk, M.M. Pulsed electric field (Pef) processing of chilled and frozen-thawed lamb meat cuts: Relationships between sensory characteristics and chemical composition of meat. Foods 2021, 10, 1148. [Google Scholar] [CrossRef] [PubMed]
- Alahakoon, A.U.; Faridnia, F.; Bremer, P.J.; Silcock, P.; Oey, I. Handbook of Electroporation; Springer: Berlin, Germnay, 2016. [Google Scholar]
- Faridnia, F.; Ma, Q.L.; Bremer, P.J.; Burritt, D.J.; Hamid, N.; Oey, I. Effect of freezing as pre-treatment prior to pulsed electric field processing on quality traits of beef muscles. Innov. Food Sci. Emerg. Technol. 2015, 29, 31–40. [Google Scholar] [CrossRef]
- Chotphruethipong, L.; Aluko, R.E.; Benjakul, S. Effect of Pulsed Electric Field-Assisted Process in Combination with Porcine Lipase on Defatting of Seabass Skin. J. Food Sci. Technol. 2019, 84, 1799–1805. [Google Scholar] [CrossRef]
- Ma, Q.; Hamid, N.; Oey, I.; Kantono, K.; Faridnia, F.; Yoo, M.; Farouk, M. Effect of chilled and freezing pre-treatments prior to pulsed electric field processing on volatile profile and sensory attributes of cooked lamb meats. Innov. Food Sci. Emerg. Technol. 2016, 37, 359–374. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Q.; Chen, C.; Yu, H.; Xu, B. Effects of different smoking methods on sensory properties, free amino acids and volatile compounds in bacon. J. Sci. Food Agric. 2021, 101, 2984–2993. [Google Scholar] [CrossRef]
- Pu, D.; Zhang, Y.; Zhang, H.; Sun, B.; Fazheng, R.; Haito, C.; Tang, Y. Characterization of the Key Aroma Compounds in Traditional Hunan Smoke-Cured Pork Leg (Larou, THSL) by Aroma Extract Dilution Analysis (AEDA), Odor Activity Value (OAV), and Sensory Evaluation Experiments. Foods 2020, 9, 413. [Google Scholar] [CrossRef] [Green Version]
- Toledo, R.T. Wood smoke components and functional properties. In Alaska Sea Grant College Program; Kramer, D.E., Brown, L., Eds.; NOAA: Anchorage, Alaska, 2008; pp. 55–61. [Google Scholar]
- Yin, X.; Chen, Q.; Liu, Q.; Wang, Y.; Kong, B. Influences of smoking in traditional and industrial conditions on flavour profile of harbin red sausages by comprehensive two-dimensional gas chromatography mass spectrometry. Foods 2021, 10, 1180. [Google Scholar] [CrossRef]
- Marušić Radovčić, N.; Vidaček, S.; Janči, T.; Medić, H. Characterization of volatile compounds, physico-chemical and sensory characteristics of smoked dry-cured ham. J. Food Sci. Technol. 2016, 53, 4093–4105. [Google Scholar] [CrossRef] [Green Version]
- Yu, A.N.; Sun, B.G.; Tian, D.T.; Qu, W.Y. Analysis of volatile compounds in traditional smoke-cured bacon(CSCB) with different fiber coatings using SPME. Food Chem. 2008, 110, 233–238. [Google Scholar] [CrossRef]
- Hadanu, R.; Apituley, D.A.N. Volatile Compounds Detected in Coconut Shell Liquid Smoke through Pyrolysis at a Fractioning Temperature of 350–420 °C. Makara J. Sci. 2016, 20, 95–101. [Google Scholar] [CrossRef]
- Jónsdóttir, R.; Ólafsdóttir, G.; Chanie, E.; Haugen, J.E. Volatile compounds suitable for rapid detection as quality indicators of cold smoked salmon (Salmo salar). Food Chem. 2008, 109, 184–195. [Google Scholar] [CrossRef]
- Suryanto, E.; Hasan, S.; Wulansari, A.; Dewi, E.K. The Characteristics of Volatile Compounds of Kenari (Canarium indicum L.) Shell Liquid Smoke. IOP Conf. Ser. Earth Environ. Sci. 2021, 709, 012032. [Google Scholar]
- Zhang, L.; Chen, Q.; Liu, Q.; Xia, X.; Wang, Y.; Kong, B. Effect of different types of smoking materials on the flavor, heterocyclic aromatic amines, and sensory property of smoked chicken drumsticks. Food Chem. 2022, 367, 130680. [Google Scholar] [CrossRef] [PubMed]
- Merlo, T.C.; Antonio, J.D.C.; Savian, T.V.; Villegas, C.; Dargelio, M.D.B.; Pinto, J.S.D.S.; de Alencar, S.M.; Rodrigues, A.L.R.; Saldaña, E.; Contreras-Castillo, C.J. Effect of the smoking using Brazilian reforestation woods on volatile organic compounds, lipid oxidation, microbiological and hedonic quality of bacons during shelf life. Meat Sci. 2020, 164, 108110. [Google Scholar] [CrossRef] [PubMed]
- Sokamte, T.A.; Mbougueng, P.D.; Sachindra, N.M.; Nodem, N.F.D.; Ngoune, L.T. Characterization of volatile compounds of liquid smoke flavourings from some tropical hardwoods. Sci. Afr. 2020, 8, e00443. [Google Scholar] [CrossRef]
- Soto-Simental, S.; Caro, I.; Quinto, E.J.; Mateo, J. Effect of cooking lamb using maguey leaves (Agave salmiana) on meat volatile composition. Int. Food Res. J. 2016, 23, 1212–1216. [Google Scholar]
- Yang, C.; Zhao, Z.; Zou, Y.; Ma, S.; Qi, J.; Liu, D. Comparative analysis of flavor differences of six Chinese commercial smoked chicken. CYTA J. Food. 2021, 19, 163–173. [Google Scholar] [CrossRef]
- Nowicka, K.; Jaworska, D.; Przybylski, W.; Górska, E.; Tambor, K.; Półtorak, A. Determinants of the Sensory Quality of Półgȩsek in Relation to Volatile Compounds and Chemical Composition. Pol. J. Food Nutr. Sci. 2017, 67, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Liu, Y.; Huang, F.; Liu, J.; Han, D.; Zhang, C.; Blecker, C. Evaluation of volatile flavor compounds in bacon made by different pig breeds during storage time. Food Chem. 2021, 357, 129765. [Google Scholar] [CrossRef]
- Chang, H.; Wang, Y.; Xia, Q.; Pan, D.; He, J.; Zhang, H.; Cao, J. Characterization of the physicochemical changes and volatile compound fingerprinting during the chicken sugar-smoking process. Poult. Sci. 2021, 100, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Ramella, M.; Lorenzo, J.M.; Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; Campagnol, P.C.B.; Franco, D. Effect of NaCl Partial Replacement by Chloride Salts on Physicochemical Characteristics, Volatile Compounds and Sensorial Properties of Dry-Cured Deer Cecina. Foods 2021, 10, 669. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar]
- Yu, Y.; Wang, G.; Yin, X.; Ge, C.; Guozhou, L. Effects of different cooking methods on free fatty acid profile, water-soluble compounds and flavor compounds in Chinese Piao chicken meat. Food Res. Int. 2021, 149, 110696. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Campagnol, P.C.B.; Lorenzo, J.M. Characterization of volatile compounds of dry-cured meat products using HS-SPME-GC/MS technique. Food Anal. Methods. 2019, 12, 1263–1284. [Google Scholar]
- Teng, X.; Zhang, M.; Bhandari, B.; Xu, J.; Liu, Y. A comparative study on hygroscopic and physiochemical properties of chicken powders obtained by different drying methods. Dry. Technoly. 2020, 38, 1929–1942. [Google Scholar] [CrossRef]
- Chen, G.; Wu, F.; Pei, F.; Cheng, S.; Muinde, B.; Hu, Q.; Zhao, L. Volatile components of white Hypsizygus marmoreus detected by electronic nose and HS-SPME-GC-MS: Influence of four drying methods. Int. J. Food Prop. 2017, 20, 2901–2910. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Wang, W.; Jiang, Q.; Xu, Y.; Xia, W. Effect of autochthonous starter cultures on the volatile flavour compounds of Chinese traditional fermented fish (Suan yu). JFST 2016, 51, 1630–1637. [Google Scholar] [CrossRef]
- Wang, J.; Jin, G.; Zhang, W.; Ahn, D.U.; Zhang, J. Effect of curing salt content on lipid oxidation and volatile flavour compounds of dry-cured turkey ham. LWT Food Sci. Technol. 2012, 48, 102–106. [Google Scholar] [CrossRef]
- Chen, X.; Luo, J.; Lou, A.; Wang, Y.; Yang, D.; Shen, Q.W. Duck breast muscle proteins, free fatty acids and volatile compounds as affected by curing methods. Food Chem. 2021, 338, 128138. [Google Scholar] [CrossRef]
- Nachtigall, F.M.; Vidal, V.A.; Pyarasani, R.D.; Domínguez, R.; Lorenzo, J.M.; Pollonio, M.A.; Santos, L.S. Substitution effects of NaCl by KCl and CaCl2 on lipolysis of salted meat. Foods 2019, 8, 595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hierro, E.; de la Hoz, L.; Ordóñez, J.A. Headspace volatile compounds from salted and occasionally smoked dried meats (cecinas) as affected by animal species. Food Chem. 2004, 85, 649–657. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojtasik-Kalinowska, I.; Szpicer, A.; Binkowska, W.; Hanula, M.; Marcinkowska-Lesiak, M.; Poltorak, A. Effect of Processing on Volatile Organic Compounds Formation of Meat—Review. Appl. Sci. 2023, 13, 705. https://doi.org/10.3390/app13020705
Wojtasik-Kalinowska I, Szpicer A, Binkowska W, Hanula M, Marcinkowska-Lesiak M, Poltorak A. Effect of Processing on Volatile Organic Compounds Formation of Meat—Review. Applied Sciences. 2023; 13(2):705. https://doi.org/10.3390/app13020705
Chicago/Turabian StyleWojtasik-Kalinowska, Iwona, Arkadiusz Szpicer, Weronika Binkowska, Monika Hanula, Monika Marcinkowska-Lesiak, and Andrzej Poltorak. 2023. "Effect of Processing on Volatile Organic Compounds Formation of Meat—Review" Applied Sciences 13, no. 2: 705. https://doi.org/10.3390/app13020705
APA StyleWojtasik-Kalinowska, I., Szpicer, A., Binkowska, W., Hanula, M., Marcinkowska-Lesiak, M., & Poltorak, A. (2023). Effect of Processing on Volatile Organic Compounds Formation of Meat—Review. Applied Sciences, 13(2), 705. https://doi.org/10.3390/app13020705