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Abstract: In the last two decades the efficient traffic-flow prediction of vehicles has been significant in
curbing traffic congestions at freeways and road intersections and it is among the many advantages of
applying intelligent transportation systems in road intersections. However, transportation researchers
have not focused on prediction of vehicular traffic flow at road intersections using hybrid algorithms
such as adaptive neuro-fuzzy inference systems optimized by genetic algorithms. In this research, we
propose two models, namely the adaptive neuro-fuzzy inference system (ANFIS) and the adaptive
neuro-fuzzy inference system optimized by genetic algorithm (ANFIS-GA), to model and predict
vehicles at signalized road intersections using the South African public road transportation system.
The traffic data used for this research were obtained via up-to-date traffic data equipment. Eight
hundred fifty traffic datasets were used for the ANFIS and ANFIS-GA modelling. The traffic data
comprised traffic volume (output), speed of vehicles, and time (inputs). We used 70% of the traffic
data for training and 30% for testing. The ANFIS and ANFIS-GA results showed training performance
of (R2) 0.9709 and 0.8979 and testing performance of (R2) 0.9790 and 0.9980. The results show that
ANFIS-GA is more appropriate for modelling and prediction of traffic flow of vehicles at signalized
road intersections. This research adds further to our knowledge of the application of hybrid genetic
algorithms in traffic-flow prediction of vehicles at signalized road intersections.

Keywords: traffic flow; road intersections; ANFIS; ANFIS-GA; signalized road intersection; machine
learning; fuzzy networks

1. Introduction

The rapid increase in the growth of vehicle ownership has bought significant strain to
the traffic flow of vehicles in developed and developing countries, which has led to tremen-
dous changes in the daily lives of pedestrians and motorists [1–4]. However, it is important
to determine the solution to traffic congestion through efficient traffic management and
the application of intelligent transportation systems (ITS), especially when referring to
a short-term forecast traffic flow (i.e., 60 min) [5–8]. Traffic-flow forecasting helps traffic
signal control, volume management, and travel-route planning. In real-life traffic-flow
situations, traffic data are significant. Vehicular traffic flow is often defined by non-linear
and highly intricate characteristics, making traffic-flow prediction difficult to determine in
transportation engineering.

The ability to predict traffic congestion is critical to the successful deployment or
application of smart transportation subsystems which include sophisticated traveller in-
formation, improved traffic flow management systems, and state-of-the-art public trans-
portation systems. Therefore, free-flowing traffic is crucial for the development of faster
transportation and connectivity systems. The majority of techniques used for predicting
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traffic flow are heavily dependent on machine-learning models which require minor man-
ual interference and consume a lot of time depending on the machine-learning model and
the traffic data obtained [9,10].

In more than 20 years of traffic-flow-prediction research, most studies are either classi-
fied as model or data-driven, or they can be both. Model-driven methods are also known
as parametric techniques, e.g., time series models. However, using this type of paramet-
ric technique needs many parameters and assumptions to be used in the transportation
network, which makes the performance of the traffic-flow prediction not successful. In
recent years, with the technological development of transportation infrastructures, various
types of traffic-data-collection methods, notably traffic-flow monitoring equipment and
loop detectors, have offered an enormous amount of traffic data for predicting traffic flow.
Traffic-data methods, such as artificial neural networks, recurrent neural networks, fuzzy
inference systems, genetic algorithms, and particle swarm optimization can be categorized
into machine- or deep-learning depending on the traffic flow of vehicles [9–15]. Well-known
machine-learning techniques are inadequate when evaluating high-dimensional traffic data
and when depending on comprehensive engineering.

According to what was stated by [4–6], by 2050, there will be more than 7 billion
people staying in metropolitan areas, which will comprise between two-fourths and two-
thirds of the human population. The concept of smart cities is one of the most well-known
researched ideologies for future developed urban cities. Smart cities use the integration of
urban resources via the application of artificial-intelligence technology associated with big
data, cloud computing, deep neural networks, and the Internet of Things (IoT) [16–19]. The
smart city framework can assist in city governance, effective regulations, maintenance of
the cities’ transportation infrastructures, and reduction of air and noise pollution [20–22].

Furthermore, the intelligent-city framework can offer people a more liveable and
intelligent-driven living environment [23]. An intelligent transportation system (ITS) is
an integral aspect of an innovative city framework. An ITS has an effective integration of
both on-road and off-road resources by applying technologically innovative information
and communication technology. ITSs are used in road transportation systems to provide
real-time traffic-flow information, effective freeway traffic control, and an efficient vehicular
cloud framework [24]. With the assistance of intelligent transportation systems, safety,
effective mobility, and sustainable transportation, conducive road transportation systems
can be achieved. For ITS to be achieved and implemented, an effective and efficient
prediction of vehicular traffic flow is mandatory [25–29].

The usage of an accurate vehicular traffic-flow prediction system in ITS is to offer
regular continuous and accurate road-travel information depending on the conditions
of the road, such as the impacts of flow of vehicles on road intersections and freeways,
which are vital to road traffic control and management and integration of road resources.
The significant difficulties in applying traffic-flow prediction in intelligent transportation
systems can be divided into accuracy, efficiency, and prediction [30–35].

The foundation of efficiency issues for traffic-flow prediction is the primary charac-
teristic of vehicular traffic-flow patterns. The patterns of vehicular traffic flow are usually
rigid and not flexible. The variations in their patterns are impacted by traffic lights from the
traffic flow of vehicles, unstable changes in weather, and other impeding factors. Some of
these have a long-term impact, causing the traffic-flow variations to exhibit specific trends
and irregularities, while there are also short-term impacts. The times series variations
can be categorized into (1) trend variation, which can be defined as the process that allows
change to occur while using time and the gradual rise, reduction, or no rise in a specific
direction; (2) periodic change, which is also known as seasonal change and is a process that
allows cyclical fluctuations at a specific period; (3) cyclical variation, which is defined as
the processes that are unfixed and subject to periodic fluctuations; and (4) random variation
which is defined as when accidental constraints impact the processes and show irregular
variations. The definition of time series is usually a combination of all these variations.
This is due to the impact of natural and human interference on road traffic. It possesses
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intricate non-linear features, which causes enormous difficulties regarding the efficiency of
traffic-flow prediction.

The efficiency of the model used in traffic-flow prediction of vehicles depends on
the implementation cost and the prediction results. The implementation cost is primarily
caused by the model training and application of this model in an extensive urban road
transportation system [36]. An enormous amount of time is used for predictive model
training, specifically for the model associated with machine learning, such as a machine-
learning-dependent model combined with the structure of deep learning. However, when
applying the predictive model to a large urban road network, the distinctiveness of the
characteristics of various types of road networks can be understood by using predictive
models [37,38]. These predictive models comprise different types of parameters which are
associated with each segment of the road.

Traffic-flow prediction has become a study hotspot in many road-transportation sys-
tems, especially in road intersections, freeway congestions, and un-signalized road intersec-
tions. Even though ANFIS combines the learning power of artificial neural networks with
fuzzy logic knowledge representation, some complexities exist when creating membership
functions in ANFIS. The foundation of these complexities can be found when tuning the
ANFIS function to create the optimal model with high efficiency and optimal performance
features. The primary aim of combining genetic algorithm (GA) with ANFIS is to decrease
errors by tuning and optimizing processes on the ANFIS membership functions. The
contribution of this study to the field of transportation engineering especially sub-fields
such as road intersections and traffic flow modelling are threefold:

• This study extends our knowledge of the prediction of traffic flow at signalized road
intersections using traffic volume, speed of vehicles, and time as our inputs and output
in modelling the traffic flow.

• This is the first study to undertake a comparative analysis of using a genetic algorithm
combined with an adaptive neuro-fuzzy inference system to model the traffic flow of
vehicles at signalized road intersections.

• This study contributes to the growing area of using metaheuristics algorithms in traffic
flow prediction of non-autonomous vehicles at signalized road intersections.

This paper is organized as follows: The Section 2 explains in detail the develop-
ment of the ANFIS and ANFIS-GA models, the location of the study, and the traffic data
analysis. The Section 3 is concerned with the research results and discussions, and the
Section 4 comprehensively explains the conclusion, recommendations for future work, and
study limitations.

2. Materials and Methods

A flowchart of the methodologies used in this study is shown in Figure 1. This
study was populated by traffic data from a developing country in conjunction with a
traffic-data company known for its prowess in traffic-congestion-monitoring solutions. The
size of the dataset used for this research was limited to 850 traffic datasets. The traffic
dataset was obtained before COVID-19 lockdowns and collected for more than ten days,
considering the traffic volume of vehicles from each road intersection. In this research,
we applied the primary and secondary data collection techniques. The primary technique
involved collecting traffic datasets from the signalized road intersections by applying
station-wide installed GPS-controlled devices at these road intersections. The secondary
data involved voluntary visitation to the South Africa Ministry of Transportation and
interviewing transportation and traffic engineers, not excluding the technical staff, on
obtaining useful traffic flow information from these road intersections. The method of
traffic data collection is illustrated in Figure 2.
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Figure 2. Collection of traffic datasets.

2.1. Models Employed

In this study, we used models such as creative algorithms (artificial neural network
and fuzzy logic); hybrid models (adaptive neuro-fuzzy inference system trained by genetic
algorithm (ANFIS-GA).

2.2. Study Location

The research study focused on the South African transportation system due to the high
traffic volume and density of vehicles in Southern Africa. The traffic data were obtained
from signalized road intersections between Johannesburg and Pretoria in Gauteng province.
The chosen road intersections used for this study are known to have the highest traffic
volume and traffic density of vehicles in South Africa. Based on the information obtained
from the Ministry of Transportation, these road intersections sometimes experience more
than half a million vehicles depending on the periods of the day [6].

The road intersections consist of several lanes (Figure 3a–d), with the maximum lanes
being four and the minimum being two. They are all moving in a northbound direction
depending on the vehicle’s direction. The location and features of these road intersections
are explained in Table 1:

Table 1. Features of the Signalized Road Intersections.

Road Intersections Date Distance (m) Direction Number of
Lanes

Speed Limit
(Km/h)

Number of
Vehicles

Road Intersection 1 15 July 2019–27 July 2019 13.5 Northbound 4 120 12,067,153
Road Intersection 2 15 July 2019–29 July 2019 10.40 Northbound 3 120 18,340,250
Road Intersection 3 15 July 2019–29 July 2019 8.0 Northbound 4 120 11,444,024
Road Intersection 4 15 July 2019–29 July 2019 4.60 Northbound 2 120 16,151,125
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Traffic flow data were collected for fifteen days between 15 July 2019 and 29 July
2019 using installed video cameras at road intersections and video cameras and roadside
detectors. Figure 4 illustrates the traffic-data input and output used for the ANFIS and
ANFIS-GA models.

2.3. Model Development
2.3.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS network architecture comprises two main parts, namely premise and conse-
quence. ANFIS training can be defined as evaluating parameters that belong to various
parts using different types of optimization algorithms. ANFIS uses the pre-existing data
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pairs, also known as the input–output pairs, during the model’s training. In 1993, [39]
devised the fuzzy rules called IF-THEN. These fuzzy rules explain the connectivity of the
parts by explaining the structure of the five ANFIS layers. These layers are illustrated in
Figure 5, below. Based on the primary aim of this research, the ANFIS structure comprised
two inputs and one output, as shown in Figure 5. This ANFIS structure was made up
of four membership functions and rules. The different layers are explained based on the
ANFIS research done by [20,40].
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Layer 1

This first layer is identified as the layer of fuzzification and uses membership functions
to determine and differentiate fuzzy clusters from data inputs. Variables are usually used to
evaluate the type of membership functions, and these variables are also known as premise
variables. An example of premise variables is {a, b, c}. The degree of membership of each
type of membership function is evaluated by applying these variables as explained in the
equations below. The different degrees of membership evaluated using this layer are shown
in the equation below.

µAi(x)= gbellm f (x; a, b, c)= 1
1+| x−c

a |
2b

O1
i = µAi(x)

Layer 2

In this layer, the firing strengths wi for layer two, rules are created by applying
membership values that can be found in the fuzzification layer. The wi values can be found
by using the multiplication method on the membership values as in the equation below.

O2
i = wi = µAi(x).µBi(y)

i = 1, 2

Layer 3

This layer is also known as normalization. It evaluates the strengths of the normalized
firing belonging for different rules. The normalized variable is directly proportional to
the firing strength of the ith rule compared to the overall firing strengths as given in the
equation below.

O3
i = wi =

wi
w1 + w2 + w3 + w4

i ε {1, 2, 3, 4}

Layer 4

This layer is different from the first three layers because it is known as the defuzzifica-
tion layer. The equation used to determine the weighted variables of each of the rules in the
nodes is evaluated by applying a mathematical expression called the 1st order polynomial.

O4
i = wi fi = wi(pix + qiy + ri)

The wi is called the normalization layer output; the set of variables used are pi, qi, ri.
These variables are also known as consequence variables. The overall number of conse-
quence variables attached to each rule is greater than the number of inputs.

Layer 5

This layer is also called the summation layer. The initial ANFIS output can be achieved
by adding the outputs obtained for the defuzzification layer rules.

O5
i = ∑

i
wi fi =

∑i wi fi

∑i wi

2.3.2. Development of the Adaptive Neuro-Fuzzy Inference System

ANFIS is not different from the artificial neural network in terms of heuristic model
features. The significant dissimilarity is that the ANFIS model is metaheuristic in nature
and comprises the combination of a fuzzy inference system and an artificial neural network
to achieve an improved fuzzy inference system. The dataset from the four road intersections
was divided into three groups to achieve an optimal traffic-flow predictive performance
of the vehicles by using the adaptive neuro-fuzzy inference model. Because the traffic
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datasets obtained from these road intersections were raw data, to obtain an optimal solution
there is a need for continuous iterations. The total number and membership function’s
structure, not excluding the optimization algorithm, are important in developing the
model architecture. In this study, two membership functions were used during the ANFIS
development. For the input variables, we used the triangular membership function (trimf)
such as speed with traffic density for the input variable, and the output variable was
represented by the Gaussian membership function (Gaussmf) (traffic volume). The model
was implemented (trained) in the MATLAB 2020a interface. Table 2 tabulates the proposed
training algorithms based on an approximate reasoning for evaluating the traffic flow of
vehicles at these road intersections. The fuzzy logic controller system applied in this study
was dependent on the IF-THEN rules. The fuzzy rules applied for the four signalized
road intersections are dependent on the traffic-data and traffic-flow variables as shown
in Table 2:

Table 2. Fuzzy rules for the road intersections.

Road Intersections Intersection1 Intersection2 Intersection3 Intersection4

Vehicular speed High High High High

Distance Low Low Very Low Low

Estimated time Very Low Very Low Very Low Low

The input variables, comprising speed of vehicle and time, were copied from the
Microsoft excel sheet into the fuzzy toolbox which can be found in the “anfised interface”
in the MATLAB environment that uses a class function called the Sugeno which is used
for the fuzzification. To be able to apply the fuzzy rules on the obtained traffic datasets,
we evaluated the membership functions. The fuzzy rule viewers use the continuous
discretization triangular inputs to analyze the required alpha cuts needed to develop the
fuzzy inference system inputs. Figure 6 depicts the interrelationship between the input and
output membership functions.
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These input- and output-variables approach was devised based on the approach used
by [7,41,42]. The ANFIS model development, training, and testing were conducted in the
MATLAB 2020a user interface tools and command-line functionality. Table 3 shows the
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parameters used in the training and testing of the model in the MATLAB environment in
tabular form. Table 4 shows how the traffic datasets were divided and used to train and
test the ANFIS and ANFIS-GA models.

Table 3. The parameters of the ANFIS model.

Parameters Values

Type Takagi–Sugeno
Clustering technique Subtractive clustering

Input MF type Gaussian
Output MF type Linear
Number of rules 10

Number of clusters 5
Maximum iterations 100

Defuzzification method Weighted average
Cluster radius 0.67

Table 4. The breakdown of the traffic datasets.

Signalized Road Intersections Training Testing Total

Intersection 1 144 62 206
Intersection 2 150 65 215
Intersection 3 157 67 224
Intersection 4 144 61 205

595 255 850
Note. Traffic data samples were taken from each intersection and divided based on 70% for training and 30%
for testing. Furthermore, the data training requires a larger traffic dataset compared to the traffic data needed
for testing the model. This is due to the need to train the model with as much data as possible to improve the
accuracy and efficiency of the model when it comes to prediction and pattern recognition. When traffic data
are entered into the ANFIS and ANFIS-GA models, they learn the patterns from the traffic-flow data and make
decisions based on this data.

2.4. Adaptive Neuro-Fuzzy Inference System Optimized by Genetic Algorithm (ANFIS-GA)

A genetic algorithm, also known as a GA, can be defined as a global search heuristics
method applied in various engineering applications to evaluate or determine solutions
for optimization problems. It is used to analyze and evaluate complex search problems
in optimization. A genetic algorithm is a special evolutional algorithm technique that is
significant when selecting or choosing a natural selection evolutionary process that uses
inheritance, mutation, selection, and recombination [43]. In this research, we combined GA
with ANFIS to increase the efficiency of the ANFIS predictive model. GA was combined
with ANFIS to enhance the ANFIS model’s performance and reduce the rates of error of
the regression values by using the tuning and optimization method on the membership
functions in the Sugeno-type fuzzy inference system. The development of the hybrid
ANFIS-GA model is displayed in Figure 7.

The genetic algorithm model starts with a group of solutions, also known as chromo-
somes. A new population is created by completing a previous population. The fitness of
new solutions formed from selected (offspring) is assigned. This process is carried out
repeatedly till a condition, i.e., the improvement of the optimal solution, is met. To accom-
plish this, the ANFIS algorithm, which is part of the fitness function, plays an important
role f(x). The fitness with ANFIS fitness function intervention is represented by:

f1(x)− 1
m

√
∑m

i o(di − ai)
2

where m is known as the number of characteristics, ai is output derived from the ANFIS,
and di is the predicted traffic volume.
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The next fitness function is:

f2(x)− 1
n−m

√
∑n

i m(di − ai)
2

where n is known as the overall number of input characteristics, di is regarded as the
minimum, ai is represented as the actual value of the traffic volume, and n − m indicates
the left-over undesired attributes.

The final equation is known as minimized f(x), and it is represented as:

f (x)− f1(x) + f2(x)
2
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For this research, we evaluated the initialization of the parameters for the genetic
algorithm. These comprise the overall number of iterations, population size, percentage of
mutation, and crossover. It is very important to note that the selection of these parameters is,
to a great extent, the determinant when it comes to the capability of the designed controller.
The tuning parameter range of the ANFIS-GA is illustrated in Table 5.
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Table 5. Tuning parameters used for the ANFIS-GA model.

Population Size Number of
Iterations

Percentage of
Crossover

Percentage of
Mutation

Rate of
Mutation

Selection
Pressure

Selection
Function

100 500 0.8% 0.3% 0.02 8 Roulette wheel

Note. These tuning parameters can be found in the ANFIS-GA codes; changing these parameters has a significant
impact on the ANFIS-GA model training and testing.

In addition, as soon as the fitness f (x) of each chromosome x in the population is
investigated and evaluated, a will be created. The steps above are carried out repeatedly
until the training and testing of the model are completed. The caveat is that the better
the fitness, the bigger the chance of the parent chromosomes being chosen. This leads to
crossover for the parents to create brand-new offspring that possess a crossover probability.
The next available mutation will create a probability leading to a mutation of new offspring
at each available position in the chromosome. The solution will undergo reproduction,
crossover, and mutation coupled with parameter settings found in Table 5. The optimal
solution in the present population will likely return when the end condition is satisfied.
Evaluating the optimal solution will assist the genetic algorithm in searching for an optimal
membership function.

2.5. Statistical Indicators Used for Evaluation of the ANFIS and ANFIS-GA Models

The ANFIS and ANFIS-GA models can be validated using different statistical methods.
The most acknowledged statistical error indicators are the mean absolute bias error (MABE),
mean absolute percentage error (MAPE), root mean square error (RMSE), and coefficient of
determination R2. However, in this research, we only focused on the RMSE and R2.

a. The mean absolute bias error can be defined as the average overall quantity of all
the absolute bias errors determined when comparing the actual and predicted traffic
volume. It is mathematically denoted as:

MABE =
1
N ∑N

i=1|(Vi,P −Vi,M)|

b. The MAPE is the mean absolute percentage difference that can be determined between
predicted and actual traffic volumes. This is mathematically stated as:

MAPE =
1
N ∑N

i=1

∣∣∣∣(Vi,P −Vi,M

Vi,M

)∣∣∣∣× 100

c. The RMSE is determined by knowing the model’s accuracy, which is determined
by calculating the comparison between the predicted traffic volume and the actual
traffic volume. The value is always positive and not negative. It is mathematically
represented as:

RMSE =

√√√√ 1
N

N

∑
i=1

(Vi,P −Vi,M)2

d. The R2 also known as the coefficient of determination, signifies the optimal relation-
ship between both the predicted traffic volume of vehicles at the four signalized road
intersections and the actual traffic volume. This is mathematically represented as:

R2 = 1−
1
N ∑N

i=1(Vi,P −Vi,M)2

1
N ∑x

i=1
(
Vi,P −VM,avg

)2

where Vi,P represents the predicted traffic volume of vehicles at the four signalized
road intersections and Vi,M indicates the actual traffic volume of vehicles on these
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signalized road intersections. Figure 8 below shows the breakdown of the Off-peak
and On-peak hours of traffic flow of vehicles.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 24 
 

3. Results and Discussions 

3.1. Prediction of Traffic Volume at These Four Signalized Road Intersections 

 

Figure 8. Off-peak and on-peak hours. Note: Figure 8 shows the period of the day based on the on-

peak and off-peak hours. 

• Signalized Road Intersection 1 

From Figure 9, the single most striking observation is that during period 3 (10:00:00–

14:59:59), there are usually many vehicles on the road except on Sundays, which always 

experiences smaller traffic volumes.  

• Signalized Road Intersection 2 

From Figure 10, the most interesting find in this road intersection is that the on-peak 

and off-peak periods of the day play an enormous role in determining when there is going 

to be high or lower traffic volume unless there is non-recurrent traffic congestion (break-

down of vehicle or road accident on the road). 

• Signalized Road Intersection 3 

From Figure 11, It is interesting to note that in road intersection 3, on-peak periods 

are usually between 10:00:00 and 14:59:59 and 15:00:00 and 19:59:59, and the on-peak pe-

riods are mainly on weekdays. Reduced traffic volume is prominent during weekends 

and public holidays.  

• Signalized Road Intersection 4 

From Figure 12, another significant result when observing road intersection 4 is that 

the periods 05:00:00–09:59:59, 10:00:00–14:59:59, and 15:00:00–19:59:59 are all regarded as 

on-peak periods, which is when there is an increase in traffic volume. 

Figure 8. Off-peak and on-peak hours. Note: Figure 8 shows the period of the day based on the
on-peak and off-peak hours.

3. Results and Discussions
3.1. Prediction of Traffic Volume at These Four Signalized Road Intersections

• Signalized Road Intersection 1

From Figure 9, the single most striking observation is that during period 3 (10:00:00–14:59:59),
there are usually many vehicles on the road except on Sundays, which always experiences
smaller traffic volumes.
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• Signalized Road Intersection 2

From Figure 10, the most interesting find in this road intersection is that the on-peak
and off-peak periods of the day play an enormous role in determining when there is
going to be high or lower traffic volume unless there is non-recurrent traffic congestion
(breakdown of vehicle or road accident on the road).
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• Signalized Road Intersection 3

From Figure 11, It is interesting to note that in road intersection 3, on-peak periods are
usually between 10:00:00 and 14:59:59 and 15:00:00 and 19:59:59, and the on-peak periods
are mainly on weekdays. Reduced traffic volume is prominent during weekends and
public holidays.
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• Signalized Road Intersection 4

From Figure 12, another significant result when observing road intersection 4 is that
the periods 05:00:00–09:59:59, 10:00:00–14:59:59, and 15:00:00–19:59:59 are all regarded as
on-peak periods, which is when there is an increase in traffic volume.
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3.2. ANFIS-GA

In this research study, ANFIS-GA and standalone ANFIS models were developed to
predict the traffic flow of non-autonomous vehicles at signalized road intersections using
the South Africa Road transportation systems as a case study. The above-mentioned models
were trained and tested using traffic data from the signalized road intersections. The traffic
data were divided according to the data collected from these road intersections.

Based on the results obtained when we compared the ANFIS-GA and ANFIS models
results showed that the performance of the predictive models was dependent on the lowest
root mean square error (RMSE). According to Figures 13 and 14, the ANFIS-GA results
show that the performance of the training and testing was based on the size of population
(n = 100), the number of iterations (n = 500), the percentage of crossovers, the rate of
mutation, and the selection function. Figures 15 and 16 show the ANFIS-GA model’s
corresponding performance on the traffic volume of vehicles at the four signalized road
intersections. It is significant to note that although the ANFIS model sometimes produced
the best R2 performance, the results of this study have shown that ANFIS-GA provided the
best model performance for any of the four signalized road intersections from which the
traffic data is collected. This is illustrated by the R2 values in the testing of the ANFIS-GA
model in Figure 16, which shows 0.9980 as compared to the testing of the ANFIS model,
which shows R2 = 0.9790 in Figure 20.



Appl. Sci. 2023, 13, 744 16 of 22

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 24 
 

corresponding performance on the traffic volume of vehicles at the four signalized road 

intersections. It is significant to note that although the ANFIS model sometimes produced 

the best 𝑅2 performance, the results of this study have shown that ANFIS-GA provided 

the best model performance for any of the four signalized road intersections from which 

the traffic data is collected. This is illustrated by the 𝑅2 values in the testing of the ANFIS-

GA model in Figure 16, which shows 0.9980 as compared to the testing of the ANFIS 

model, which shows R2 = 0.9790 in Figure 20. 

The 850 traffic datasets obtained from the four congested signalized road intersec-

tions on the South African road network were divided into 595 and 255 for the training 

and testing of the ANFIS-GA and ANFIS models, respectively. The division of the traffic 

data for each of the four intersections is shown in tabulated form in Table 4. A trial-and-

error method was used to achieve the optimum performance of the ANFIS and ANFIS-

GA models. This method was used during the ANFIS and ANFIS-GA model training and 

testing to determine the optimal parameter for the number of populations and iterations. 

The best optimal parameters for the ANFIS-GA and ANFIS performance training and test-

ing are shown in Figures 15–18. It is interesting to note that in all four signalized road 

intersections, the ANFIS-GA and ANFIS models’ parameters significantly impacted the 

predictive performance of the models. 

 

Figure 13. Training of the ANFIS-GA model with the traffic datasets. Figure 13. Training of the ANFIS-GA model with the traffic datasets.
Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 24 
 

 

Figure 14. ANFIS-GA model testing with the traffic datasets 

 

Figure 15. ANFIS-GA model training. 

R² = 0.8979

0

2000000

4000000

6000000

8000000

10000000

12000000

0 2000000 4000000 6000000 8000000 10000000 12000000

P
re

d
ic

te
d

 T
ra

ff
ic

 v
o

lu
m

e

Actual traffic volume

Performance Training of the ANFIS-GA Model 

Figure 14. ANFIS-GA model testing with the traffic datasets.



Appl. Sci. 2023, 13, 744 17 of 22

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 24 
 

 

Figure 14. ANFIS-GA model testing with the traffic datasets 

 

Figure 15. ANFIS-GA model training. 

R² = 0.8979

0

2000000

4000000

6000000

8000000

10000000

12000000

0 2000000 4000000 6000000 8000000 10000000 12000000

P
re

d
ic

te
d

 T
ra

ff
ic

 v
o

lu
m

e

Actual traffic volume

Performance Training of the ANFIS-GA Model 

Figure 15. ANFIS-GA model training.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 24 
 

 

Figure 16. ANFIS-GA model testing. 

The fuzzy rule viewer representation used in this research uses a continuous discreti-

zation of the inputs triangular mf to evaluate the cuts by alpha technique to create the 

fuzzy inference inputs (Figure 17). 

 

Figure 17. ANFIS model rule viewer. 

Figure 18 shows the three-dimensional surface views of the inputs and output using 

the ANFIS rule viewer. 
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The 850 traffic datasets obtained from the four congested signalized road intersections
on the South African road network were divided into 595 and 255 for the training and
testing of the ANFIS-GA and ANFIS models, respectively. The division of the traffic data
for each of the four intersections is shown in tabulated form in Table 4. A trial-and-error
method was used to achieve the optimum performance of the ANFIS and ANFIS-GA
models. This method was used during the ANFIS and ANFIS-GA model training and
testing to determine the optimal parameter for the number of populations and iterations.
The best optimal parameters for the ANFIS-GA and ANFIS performance training and
testing are shown in Figures 15–18. It is interesting to note that in all four signalized road
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intersections, the ANFIS-GA and ANFIS models’ parameters significantly impacted the
predictive performance of the models.
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Figure 18. 3D image of the ANFIS model. (Input 1= time, input 2 = speed of vehicles,
output = traffic volume).

The fuzzy rule viewer representation used in this research uses a continuous discretiza-
tion of the inputs triangular mf to evaluate the cuts by alpha technique to create the fuzzy
inference inputs (Figure 17).



Appl. Sci. 2023, 13, 744 19 of 22

Figure 18 shows the three-dimensional surface views of the inputs and output using
the ANFIS rule viewer.

To determine the ANFIS model training accuracy, we compared the observed and
predicted output of the traffic volume of vehicles in Figure 19, with the training of the
ANFIS model accuracy being 0.9709.
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The observed and predicted output of the traffic volume of vehicles at the road
intersections were compared in Figure 20 to determine the accuracy of the testing of the
ANFIS model with the testing accuracy being 0.9790.
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4. Conclusions and Recommendations

The main goal of the current study was to determine the prediction and modelling of
data-driven novel vehicular traffic flow of non-autonomous vehicles at a signalized road
intersection using optimized fuzzy inference systems with genetic algorithms. Based on
the results and discussions, the following conclusions can be drawn:

• The relevance of traffic volume in evaluating the vehicular traffic flow at road inter-
sections was supported by the ANFIS and ANFIS-GA models’ research findings in
predicting and modelling traffic volume of vehicles.

• The obvious finding from this study is that the ANFIS-GA (RTraining = 0.8979 and
RTesting = 0.9980) results when compared to the ANFIS (RTraining = 0.9709 and
RTesting = 0.9790) is more suitable and appropriate for the modelling and predicting
of traffic volume.

• The second significant finding was that this research study has torchlit the importance
of off-peak and on-peak periods in evaluating the vehicular traffic flow at signalized
road intersections.

• The evidence from the ANFIS and ANFIS-GA model results suggests that the traf-
fic data inputs, and outputs (traffic volume, time, and speed of vehicles) are well
correlated to each other.

• The adaptive neuro-fuzzy inference system (ANFIS) and adaptive neuro-fuzzy in-
ference system optimized by genetic algorithm (ANFIS-GA) are reliable traffic-flow
predictors of traffic volume at road intersections.

• This research has shown that the important advantage of using a hybrid ANFIS-GA in
modelling the traffic flow of vehicles is that it tunes the ANFIS model’s membership
functions to reduce the error parameters during the training and testing of the models.

The findings of this study make a significant contribution to the current literature on
traffic-flow prediction and how important it is to traffic-volume prediction in reducing
traffic congestion at signalized road intersections.

Recommendations

• Further research needs to be carried out to improve the efficiency of traffic-volume
prediction. A spatial relationship between light-, heavy-, and truck-traffic volume
should be investigated.

• Further study can be carried out to evaluate the effects of other traffic-flow parameters
(traffic density and speed of vehicles) on the modelling of traffic volume.

• Further study could assess the effects of genetic and particle swarm optimization
algorithms on vehicle traffic volume at unsignalized road intersections.

• Finally, further study should focus on the comparison of the results of this research
with other machine-learning models.

• A major limitation of this study is that it does not consider the different weather that
can influence the collection of traffic datasets and flow of vehicles. Future transporta-
tion research should focus on factoring in the interference of different seasons and
weather conditions on the flow of vehicles and how this can impede the collection of
traffic datasets on freeways and road intersections.
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