Research on Image Mosaic Method Based on Fracture Edge Contour of Bone Tag
Abstract
:1. Introduction
2. Basic Method
2.1. Contour Edge Calculation
2.2. Feature Descriptors
2.3. Image Stitching
3. The Proposed Algorithm
4. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di, Y.C.; Chen, Y.P.; Chen, Y.Y.; Chen, P. Survey on image mosaic algorithm of unmanned aerial vehicle. J. Comput. Appl. 2011, 31, 170–174. [Google Scholar] [CrossRef]
- Pajares, G.; De La Cruz, J.M. Wavelet-based image fusion tutorial. Pattern Recognit. 2004, 37, 1855–1872. [Google Scholar] [CrossRef]
- Wanto, A.; Rizki, S.D.; Andini, S.; Surmayanti, S.; Ginantra, N.L.W.S.R.; Aspan, H. Combination of Sobel+Prewitt Edge Detection Method with Roberts+Canny on Passion Flower Image Identification. J. Phys. Conf. Ser. 2021, 1933, 012037. [Google Scholar] [CrossRef]
- Yu, Y.; Rashidi, M.; Samali, B.; Mohammadi, M.; Nguyen, T.N.; Zhou, X. Crack detection of concrete structures using deep convolutional neural networks optimized by enhanced chicken swarm algorithm. Struct. Health Monit. 2022, 21, 2244–2263. [Google Scholar] [CrossRef]
- Feryanto, Pengenalan Pola Berdasarkan Edge Detection Operator Sobel, Isotropic, Roberts, Prewitt, Kirsch Dengan Position Based Matching dan Backpropagation, Skripsi S-1 Teknik Informatika. 2010. Available online: https://www.semanticscholar.org/paper/Pengenalan-Pola-Berdasarkan-Edge-Detection-Operator-Feryanto/ef1518a40997547b4ac1454794709b63af750ab7 (accessed on 28 December 2022).
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Ye, Q. A Bearing Fault Diagnosis Method Based on Wavelet Packet Transform and Convolutional Neural Network Optimized by Simulated Annealing Algorithm. Sensors 2022, 22, 1410. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.; Stephens, M. A combined corner and edge detector. Alvey Vis. Conf. 1988, 15, 147–152. [Google Scholar]
- Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary Robust Independent Elementary Features. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2010; Volume 010, pp. 778–792. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Wang, P.; Geng, G.; Yang, W. Fragment Splicing Method Combined with Surface Texture and Fracture Contour. Comput. Eng. 2019, 45, 315–320. [Google Scholar]
- Lin, W.Y.; Liu, S.; Matsushita, Y.; Ng, T.T.; Cheong, L.F. Smoothly varying affine stitching. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 345–352. [Google Scholar]
- Chen, Y.S.; Chuang, Y.Y. Natural image stitching with the global similarity prior, In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 186–201. [Google Scholar]
- Zhang, G.F.; He, Y.; Chen, W.F.; Jia, J.Y.; Bao, H.J. Multi-viewpoint panorama construction with widebaseline images. IEEE Trans. Image Process. 2016, 25, 3099–3111. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Jiang, N.J.; Liu, S.C.; Cheong, L.F.; Minh, D.; Lu, J.B. Direct photometric alignment by mesh deformation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2405–2413. [Google Scholar]
- Li, N.; Xu, Y.; Wang, C. Quasi-homography warps in image stitching. IEEE Trans. Multimed. 2017, 20, 1365–1375. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.Y. Image Stitching of the Target Object Based on Large Parallax Images. Mod. Comput. 2015, 11, 42–45. [Google Scholar]
- Tang, T.; Qin, X.; Yi, Z. Image Binarization Processing Method Using -Medoids Clustering. J. Front. Comput. Ence Technol. 2015, 2, 234–241. [Google Scholar]
- Zhao, Y.; Zhu, C.; Chen, Z. Boundary Artifact Reduction in View Synthesis of 3D Video: From Perspective of Texture-Depth Alignment. IEEE Trans. Broadcast. 2011, 57, 510–522. [Google Scholar] [CrossRef]
- Feng, Y.; Li, S. Research on an Image Mosaic Algorithm Based on Improved ORB Feature Combined with SURF. In Proceedings of the Chinese Control And Decision Conference, Shenyang, China, 9–11 June 2018. [Google Scholar]
- Rosten, E.; Drummond, T. Machine learning for highspeed corner detection. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2006; Volume 1. [Google Scholar]
- Noh, M.J.; Cho, W.; Park, J.K. Affine Model for Generating Stereo Mosaic Image from Video Frames. J. Korean Soc. Geo-Spat. Inf. Sci. 2009, 17, 49–56. [Google Scholar]
- Rankov, V.; Locke, R.J.; Edens, R.J. An algorithm for image stitching and blending. In Three-Dimensional and Multidimensional Microscopy; SPIE: Bellingham, WA, USA, 2005; pp. 190–199. [Google Scholar]
- Yuan, X.; Man, P.L.; NgKa, H. Depth map misalignment correction and dilation for DIBR view synthesis. Image Commun. 2013, 28, 1023–1045. [Google Scholar]
- Jiang, R.; Xin, Y.; Chen, Z.; Zhang, Y. A medical big data access control model based on fuzzy trust prediction and regression analysis. Appl. Soft Comput. 2022, 117, 108423. [Google Scholar] [CrossRef]
a | b | c | d | |
---|---|---|---|---|
ORB | 45.02% | 65.32% | 54.78% | 60.56% |
Binarization & ORB | 54.78% | 73.82% | 67.43% | 68.92% |
a | b | c | d | |
---|---|---|---|---|
ORB | 8.5640 | 7.9806 | 9.1043 | 6.0973 |
Binarization & ORB | 8.9078 | 8.0652 | 9.6021 | 6.1071 |
Number of Images (Group) | Pair of Feature Descriptors | Matching Accuracy | |
---|---|---|---|
ORB | 200 | 10,987 | 73.43% |
Binarization & ORB | 200 | 11,325 | 80.14% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Wang, H.; Wang, K.; Yang, Z. Research on Image Mosaic Method Based on Fracture Edge Contour of Bone Tag. Appl. Sci. 2023, 13, 756. https://doi.org/10.3390/app13020756
Wang T, Wang H, Wang K, Yang Z. Research on Image Mosaic Method Based on Fracture Edge Contour of Bone Tag. Applied Sciences. 2023; 13(2):756. https://doi.org/10.3390/app13020756
Chicago/Turabian StyleWang, Ting, Huiqin Wang, Ke Wang, and Zhe Yang. 2023. "Research on Image Mosaic Method Based on Fracture Edge Contour of Bone Tag" Applied Sciences 13, no. 2: 756. https://doi.org/10.3390/app13020756
APA StyleWang, T., Wang, H., Wang, K., & Yang, Z. (2023). Research on Image Mosaic Method Based on Fracture Edge Contour of Bone Tag. Applied Sciences, 13(2), 756. https://doi.org/10.3390/app13020756