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Abstract: This study presents a numerical investigation of the elastic critical lateral-torsional buckling
of a steel beam subjected to simultaneous transverse loading at the top flange and negative end
moments. Here, the elastic critical buckling of the steel beam was estimated by utilizing the finite
element software ABAQUS. In addition, the influence of the length-to-height ratio was taken into
account. Additionally, the predicted values for elastic critical buckling when applying existing
design codes and a previous study were also analyzed and compared to the numerical results of
the finite element analysis. The result of the comparison revealed that the projected values from the
design codes and the study are conservative for the majority of cases and have a tendency to be too
conservative when the length-to-height ratio increases. Furthermore, a new equation with a factor
considering the influence of the length-to-height ratio and transverse loading on the top flange is
proposed, and the proposed equation shows sufficient accuracy and less conservative values for
most cases.

Keywords: finite element analysis; elastic critical buckling; length-to-height ratio; transverse loading;
negative end moment

1. Introduction

Overhanging beams and continuous beams are common structures in buildings and
bridges, which are directly subjected to transverse loadings, resulting in negative moments
occurring at interior supports, as shown in Figure 1. For flexural steel members, the loss of
stability of lateral-torsional buckling (LTB) is a common failure phenomenon. Moreover,
elastic moment determination to predict the buckling strength values of steel beams must
be performed and checked as one ultimate limit state considered to be one of the critical
standards, which can be found in several current design standards and guidelines [1–6].
However, so far, many researchers have proven that the recommendations of some stan-
dards and guidelines are too conservative or even unsafe under specified conditions, which
has to be investigated in detail under particular circumstances to ensure the economic and
safety indicators. Based on many previous studies, a buckling resistance evaluation greatly
depends on two factors, bending moment distribution and restriction at supports, which
have been widely numerically investigated by many researchers under several specified
investigated factors.

Theoretical studies on the elastic critical buckling of steel beams have been carried out
in many works in the literature, wherein studies on the elastic buckling of simply supported
steel beams with a monosymmetric cross-section subjected to transverse loadings or end
moments were presented in [7–9]. Here, Kitipornchai and Wang [7], Kitipornchai et al. [8]
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and Wang and Kitipornchai [9] revealed that the proposed design graphs are different from
current design solutions in which the moment gradient factor (Cb) is employed. In addition,
Lim et al. [10] also investigated the elastic lateral-torsional buckling utilizing an I-beam and
applying the Bubnov–Galerkin method [11] and the finite element method. The authors
developed alternative equations concerning the Cb correction factor and the end constraint
boundary conditions. As a result, in three end restraint cases, more precise solutions were
attained with greater safety and less conservative values over the entire selection of linear
moment gradients in the three above-mentioned cases.
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Figure 1. Bending moment diagram. (a) Continuous beam, (b) Overhanging beam. 
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In addition, studies on beams subjected to simultaneous transverse loadings and end
moments were also carried out in [12–15]. As a result, the moment gradient factors based
on the bending diagram were proposed. The equivalent uniform moment factor (EUMF)
method was investigated by Serna et al. [14]. The results indicated, in the case of simply
supported beams with very conservative values, additionally, non-conservative values
occurred when support types were used to limit lateral bending and warping. Furthermore,
the investigation of Wong et al. [15] also revealed unacceptable results for a procedure
from a design standard [16], for most cases taking into account common bending moment
distributions considering the moment gradient factor values observed from twelve moment
distribution comparisons. Moreover, a proposed equation was proven to be appropriate for
most cases of typical applicationsl however, the equation does not show good agreement
when concentrated loads occur, as with all quarter-point moment methods.

In terms of the impact of the loading position in cross-sectional depth on the elastic
critical buckling of the beam, it has been also studied in [17–20]. Generally, these studies
have considered the shape of the cross-section, including singly and doubly symmetric
cross-sections. The effect of loading conditions, including beams subjected to end moments
and transverse loadings, as well as the effect of load heights on the elastic critical LTB
were also taken into account. The study of Park et al. [19] compared the results from
the SSRC Guide [6] with the results of the FEA method, leading to a new design method
restricted in cases of monosymmetric I-beams with a monosymmetric degree ranging
between 0.1 and 0.9. Moreover, Bijak [20] studied the analysis of unbraced, symmetric,
prismatic beams of simply supported ones in terms of the lateral-torsional critical moment,
proving an incorrect estimation in a previous study [21] in terms of the coefficient allowing
for random ordinates of applied loadings. Moreover, the study also investigated the
assumption of boundary conditions, non-linear bending moment distributions and the
impact of the position of loading concerning the height of the cross-sectional element.

On the other hand, Park et al. [22] and Park [23] numerically investigated the effect
of the length-to-height ratio on the LTB of stepped beams with a continuously laterally
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braced top flange. In the studies, the loading conditions on stepped beam models were
a concentrated load at midspan and a uniformly distributed load on the top flange with neg-
ative end moments. As a result, the data of these studies showed that the length-to-height
ratio has a great influence on the LTB of stepped beams with continuous lateral bracing.

Recently, cellular beams have been investigated and widely applied, with several
advantages compared to conventional solid web steel beams. The numerical investigation
of their elastic buckling behavior has been considered by several researchers [24–28],
with the modified factors considering the presence of web perforations under specified
conditions. In this case, the study by Khatri et al. [28] investigated the impact of load height
on the Cb factor under uniform load distribution for laterally unsupported I-beams. The Cb
factor attained from the numerical results was compared with the procedure calculations
from SSRC guidance, leading to considerable variation between these results, which was
due to serious web distortion, which is neglected in the equations in the SSRC guidance.
Moreover, the application of this guidance is appropriate when the mode of lateral-torsional
buckling is dominant for span beams that are longer than the investigated one.

To date, there have been many standards and guidelines [1–6] aimed at preventing the
lateral-torsional buckling phenomenon; however, as mentioned above, these recommen-
dations are either too conservative or unsafe in some circumstances. Moreover, although
the elastic critical buckling of steel beams has been focused on and researched with many
proposed models to analyze the related ultimate limit stage under specific circumstances,
to the best of our knowledge, the effect of the length-to-height ratio with transverse loads
at the top flange on the elastic critical LTB of prismatic steel beams has been studied with
limitations in the literature. Therefore, this paper focuses on the investigation of the influ-
ence of the length-to-height ratio on the elastic critical buckling of prismatic steel I-beams.
The simply supported beams were subjected to a uniformly distributed load or concen-
trated load on the top flange with negative end moments. In addition, a finite element
program (ABAQUS) was employed to analyze the elastic critical buckling of beam models.
Eventually, an equation was proposed, compared and verified with several standards and
a previous study. As a result, the proposed equation indicated good agreement, with less
conservative values compared to the previous study and the standards for most cases.

2. Background and Previous Research

Timoshenko and Gere [29] provided the equation to calculate the elastic critical LTB
for a doubly symmetric I-beam under equal end moments as follows:

Mocr =
π

L

√
EIyGJ +

(
πE
L

)2
IyCw (1)

where L is the unbraced length; E and G are the Young’s modulus and the shear modulus,
respectively; Iy is the inertia moment of the cross-section about the minor axis; J and Cw are
the torsional and warping constants, respectively.

In order to take into account the influence of varying bending moments within the
laterally unbraced length, a moment gradient factor (Cb) was proposed. Moreover, the
elastic critical LTB strength of beams subjected to general loading conditions (Mcr) is also
calculated by multiplying Mocr by Cb based on the study of Salvadori [30]. The author
offered a moment modification factor that has been also incorporated into the American
Institute of Steel Construction (AISC) Specifications (1986) [5]:

Cb = 1.75 + 1.05
(

M2

M1

)
+ 0.3

(
M2

M1

)2
(2)

in which M1 and M2 are the greater and smaller end moments, respectively. In addition, the
value of the ratio M2/M1 is taken as negative for end moments triggering single-curvature
bending and positive for end moments causing double-curvature bending. It should be
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noted that Equation (2) was developed for the case of beams subjected to end moments
without transverse loadings.

The moment gradient factor was established by Kirby and Nethercot [12], which has
been also incorporated into the AISC Specifications (2016) [1]:

Cb =
12.5Mmax

2.5Mmax + 3MA + 4MB + 3Mc
(3)

where Mmax is the absolute value of the maximum moment; MA, MB and MC are the
absolute values of the moments at the quarter point, the center point and the three-quarter
point, respectively. It should be mentioned that this factor can be applied to bending
moment diagrams of any shape. Moreover, the loads are imposed at the shear center of
the cross-section.

BS 5950 [4] provides the equation for the moment correction factor given by

Cb =
Mmax

0.2Mmax + 0.15MA + 0.5MB + 0.15Mc
≤ 2.273 (4)

The equation of Cb used in the AS 4100 [2] is taken as

Cb =
1.7Mmax√

M2
A + M2

B + M2
C

≤ 2.5 (5)

The position of the transverse loading in the cross-sectional depth also influences the
elastic critical LTB strength of the beam. Helwig et al. [17] suggested a simplified formula
for the moment gradient factor of simply supported beams, as presented in Equation (6),
which has been also mentioned in Ziemian [6]:

C∗
b = (1.42y/h)Cb (6)

where Cb is determined using Equation (3); h is the beam height; y is the distance from the
midheight of the cross-section to the transverse loading position. Furthermore, the value
of y is negative for transverse loading above the midheight and positive for transverse
loading below the midheight.

Moreover, there are also studies on the moment gradient factor for the elastic critical
LTB of steel beams, which were performed by Serna et al. [14] and Wong and Driver [15]. In
their studies, the factor Cb was also used only for the case of transverse loadings imposed at
the shear center of the cross-section. For this study, the factor Cb for steel beams subjected
to transverse loadings on top flanges with negative end moments is followed, according to
the recommendations from the investigation of Helwig et al. [17] and Ziemian [6].

3. Finite Element Modeling

The elastic critical LTB of steel beams subjected to transverse loading with negative
end moments was achieved using the finite element analysis (FEA) program ABAQUS [31],
applying the four-node shell element (S4R), which was utilized to model the investigated
steel beam. It should be mentioned that the S4R element, with six degrees of freedom at
each node, which was also used in previous studies [32–37], can accurately model the elastic
buckling behavior of steel beams and provide quick results with high accuracy. In addition,
the steel beam with an H700x300 cross-section was chosen in this study according to [38],
with detailed properties listed in Table 1. Regarding the cross-section size of the beams, the
beam height (h), flange width (bf), flange thickness (tf) and web thickness (tw) were 700, 300,
24 and 13 mm, respectively, as shown in Figure 2. In addition, the mechanical properties of
the beams, i.e., elastic modulus (E) and yield stress (fy), are 210 and 275 Mpa, respectively.
Meanwhile, the Poisson’s ratio (m) was 0.3, and all the geometric and mechanical properties
of the beams were taken from [38].
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Table 1. Properties of H700x300 (unit: mm, MPa).

Properties Values

Beam height, h 700
Flange width, bf 300

Flange thickness, tf 24
Web thickness, tw 13
Elastic modulus, E 210

Yield stress, fy 275
Poisson’s ratio, m 0.3
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In order to consider the various beam lengths, a range of length-to-height ratios (L/h)
from 10 to 40 with an interval of 5 was employed. Moreover, a convergence analysis was
conducted to determine the proper mesh size of the steel beam models. Furthermore, based
on the analysis results, the meshing of beam models was achieved with 30 mm × 30 mm
elements. The elastic critical LTB of steel beams was investigated by using eigenvalue
analyses.

This study aimed to investigate the LTB strength of simply supported beams subjected
to transverse loadings on top flanges with negative end moments. In addition, the beam
model and boundary condition of the simply supported beam are given in Figure 3. Here,
both tips of the bottom flanges and both centroids at the ends of the web were fixed to
ensure the prevention of vertical displacements. Likewise, lateral displacements for both
tips of the web were also prevented. Moreover, the displacement along the axial direction
of one centroid at the ends of the web was prevented for the hinge support and another
one was free at the position of the roller support.

Figure 4 shows the loading conditions used in this study. It can be seen that the steel
beams were subjected to a uniformly distributed load or concentrated load on the top flange
with negative end moments, which are denoted LC1 and LC2, respectively. In Figure 4, M1
and M2 are the greater and smaller moments at the ends of the beam, and α is the ratio
of M1 taking into account the end moment variation with the values of α as 0, 0.5, 0.75
and 1. In addition, Mq and MP are, respectively, the moment at the midspan of the simple
beam triggered by the uniformly distributed load and the concentrated load with respect
to unbraced length L. To take into account the effect of the variation in the negative end
moments and transverse loadings, the Mq/M1 and MP/M1 ratios were investigated ranging
from 0.5 to 3 with an interval of 0.5 in this study.

The negative end moments were simulated by using tension forces at the top flange
and compression forces at the bottom flange, as shown in Figure 5. In addition, the typical
buckling mode shapes are illustrated in Figure 6. Additionally, for the case of the Mq/M1
and MP/M1 ratios greater than 1, the buckling of the beam occurs in the top flange, as
shown in Figure 6a. In the case of Mq/M1 and MP/M1 ratios less than 1, the buckling of the
beam occurs in the bottom flange (i.e., compression flange), as shown in Figure 6b.
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Table 2 presents the elastic critical buckling strengths of these beams subjected to equal
end moments. The data show that the elastic critical buckling strengths obtained in the
FEA and Timoshenko and Gere’s study [29] are in very good agreement.

Table 2. Comparison between Timoshenko and Gere’s study and FEA.

L/h
Elastic Critical Moment (kN.m)

Difference (%)
Timoshenko and Gere [29] FEA

10 1894.96 1891.12 −0.20
15 1003.31 996.84 −0.65
20 670.97 663.96 −1.06
25 503.75 497.04 −1.35
30 404.05 397.88 −1.55
35 337.94 332.32 −1.69
40 290.83 285.72 −1.79

4. Finite Element Results

A total of 336 models were analyzed to investigate the effect of the length-to-height
ratio (L/h) on the elastic critical LTB of steel beams. For this, simply supported beams
were simultaneously subjected to negative end moments and transverse loadings on the
top flanges. As mentioned, the values of the ratio of L/h from 10 to 40 with an interval of
5 were used. In addition, values of α from 0 to 1 and Mq/M1 and MP/M1 ratios ranging
from 0.5 to 3 with an interval of 0.5 were considered.

Figures 7 and 8 show the FEA results for steel beams with LC1 and LC2, respectively.
The representative cases with α of 0 and 1, corresponding to the cases of one negative
end moment and negative end equal moments, are presented. Moreover, the results are
presented as the ratio of the elastic critical buckling of beams with LC1 and LC2, Mcr, to
the elastic critical buckling of beams subjected to end equal moments, Mocr, with respect
to Mq/M1 or MP/M1. Obviously, these figures show that the ratio of Mcr/Mocr for beams
with LC1 and LC2 increases as the ratio of L/h increases. As can be seen from the figures,
the data also indicate that the values of Mcr/Mocr are greater than 1 and change with
the shape of the bending moment diagrams. In the case of α = 0, the ratio of Mcr/Mocr
gradually decreases as the Mq(P)/M1 ratio increases for both LC1 and LC2, as shown in
Figures 7a and 8a, respectively. In the case of α = 1, the ratio of Mcr/Mocr increases when
Mq(P)/M1 is less than 1. The ratio of the Mcr/Mocr ratio gradually decreases when the Mq/M1
ratio is greater than 1, as shown in Figures 7b and 8b.
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5. Proposed Equation

To consider the effect of different loading conditions, the moment gradient factor
is multiplied by the values of Mocr. In addition, the existing equations for calculating
the moment gradient factor are taken from Equations (3)–(6) and correspond to the rec-
ommendations of AISC [1], BS 5950 [4], AS 4100 [2] and the study of Helwig et al. [17].
Moreover, Figures 9 and 10 show comparisons of the elastic critical buckling of beams with
LC1 and LC2, respectively, between the FEA results and the existing equations. It can be
seen that the estimated values using the recommendations of the standards AISC, BS5950
and AS4100 are conservative for most cases and tend to be too conservative as the L/h
ratio increases. In addition, there are also a few cases of small values of L/h (i.e., L/h of 10,
15) with unconservative and acceptable results. Moreover, Helwig’s study provides too
conservative results for all models, which increase as the L/h ratio increases, as shown in
Figures 9d and 10d. Furthermore, the standards of AISC, BS 5950, AS 4100 and Helwig’s
study give maximum differences for conservative values of 50.7%, 59.3%, 55.3% and 64.8%,
respectively. Additionally, the maximum differences for unconservative values are −35.4%,
−4.6% and −27.4% for AISC (2016), BS 5950 and AS 4100, respectively.

In order to increase the accuracy, a proposed equation was developed for the elastic
critical buckling of steel beams subjected to simultaneous transverse loadings at the top
flange and negative end moments as follows:

Mcr = FbCb Mocr (7)

in which Mocr is the elastic critical buckling of beams subjected to equal end moments and
is calculated using Equation (1); Cb is given in AISC 2016 and in Equation (3) and has been
widely used in previous studies; Fb is the factor considering the length-to-height ratio (L/h)
and transverse loading on the top flange. Based on the FEA results, the proposal for Fb was



Appl. Sci. 2023, 13, 778 9 of 12

developed as a set of linear expressions and is defined in Table 3, in which the expressions
of Fb were developed for LC1 and LC2 based on the ratio between M1 and M2, including
the cases of beams subjected to transverse loading on the top flange with one negative end
moment (i.e., α = 0) and two negative end moments (i.e., 0 < α ≤ 1).
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Table 3. Fb factor.

LC1 LC2 Value of α Fb
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Table 4. Differences in elastic critical LTB between FEA and considered equations. 

Design Equation 
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Maximum Minimum Maximum Minimum 
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Figure 11a,b present the comparison between the FEA results and the proposed equa-
tion for LC1 and LC2, respectively. Evidently, it can be observed that the proposed equation
gives reasonable accuracy and less conservative values compared to Figures 8 and 9, with
the results taken from the standards and the study. In addition, the proposed equation
provides conservative values for most cases, with maximum differences of 35.1% and
32.7% for LC1 and LC2, respectively. Moreover, only 3.3% of beam models provide uncon-
servative values, with the maximum differences of −26.4% and −1.9% for LC1 and LC2,
respectively. In addition, Table 4 presents the peak differences between the FEA results and
considered equations, with the positive and negative values indicating conservative and
unconservative values, respectively.
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Table 4. Differences in elastic critical LTB between FEA and considered equations.

Design Equation
LC1 LC2

Maximum Minimum Maximum Minimum

AISC 50.7% −35.4% 49.5% −10.1%

BS 5950 59.3% −4.6% 54.36% −0.1%

AS 4100 55.3% −27.4% 47.4% −22.5%

Helwig’s study 64.8% 3.31% 63.9% 20.9%

Proposed equation 35.1% −26.4% 32.7% −1.9%
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6. Conclusions

This paper investigates the elastic critical buckling of prismatic steel beams subjected
to transverse loadings at the top flange with negative end moments. In addition, the elastic
critical buckling of steel beams was analyzed by using the FEA program ABAQUS. Here,
336 models in total were used to study the influence of the length-to-height ratio (L/h) on
the elastic critical LTB of steel beams, and simply supported beams were simultaneously
subjected to negative end moments and transverse loadings on the top flanges. In addition,
the end moment variation was taken into account with the investigated end moment ratios
of 0, 0.5, 0.75 and 1. Additionally, to consider the effect of the variation in the negative
end moments and transverse loadings, the Mq/M1 and MP/M1 ratios were considered,
ranging between 0.5 and 3, with a gap of 0.5, applied in this study. After performing the
comparisons between the FEA, existing designed procedures and Helwig’s investigation,
some conclusions can be drawn as follows:

1. The ratio of Mcr/Mocr for beams with LC1 and LC2 increased as the ratio of L/h
increased. The values of Mcr/Mocr were greater than 1 and changed with the values of the
Mq(P)/M1 ratio.

2. The predicted values obtained from the current design standards and Helwig’s
study were conservative for most cases and tended to be too conservative as the L/h ratio
increased. AISC 2016, BS 5950, AS 4100 and Helwig’s study give maximum differences for
conservative values of 50.7%, 59.3%, 55.3% and 64.8%, respectively.

3. A new equation with a factor, Fb, taking into account the effect of the length-to-
height ratio and transverse loading on the top flange was proposed. The proposed equation
provided reasonable accuracy and less conservative values for most cases, with maximum
differences of 35.1% and 32.7% for LC1 and LC2, respectively.
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