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Abstract: Human failures occur in nuclear power plants when operators are under acute stress.
Therefore, an automatic stressed recognition system should be developed for nuclear power work.
Previous studies on the prediction of stress are limited because of their reliance on subjective ratings
and contact physiological measurement. To solve this problem, we developed a non-intrusive way
by using voice features to detect stress. We aim to build a system that can estimate the level of
stress from speech which may be applied to nuclear power plants where operators engage in regular
verbal communication as part of their duties. In this study, we collected voice recordings from 34
participants during a simulated nuclear plant power task in a time-limited situation that requires
high cognitive resources. Mel frequency cepstrum coefficients (MFCCs) were extracted from stressed
voice samples and the neural network model was used to assess stress levels continuously. The
experimental results showed that voice features can provide satisfactory predictions of the stress state.
Mean relative errors of prediction are possible within approximately 5%. We discuss the implications
of the use of voice as a minimally intrusive means for monitoring the effects of stress on cognitive
performance in practical applications.

Keywords: stress; speech recognition; nuclear power; heart rate; electrodermal activity

1. Introduction

Human error has been the main cause of severe nuclear accidents, such as Three Mile
Island in 1979 and Chernobyl in 1986, rather than device malfunction and poor operating
environment given the rapid development of technology. An investigation conducted
by major nuclear power producing countries illustrated that human failures account for
60%–80% of accidents [1]. Acute stress is an important contributory factor to human
error. In the field of human reliability analysis (HRV), acute stress was firstly defined as a
physical or mental tension state elicited by various stressors [2]. Salas et al. [3] refined the
definition and considered stress to be an appraisal process evoked by certain environmental
demands, such as noise, time pressure, and task load, which exceed the mental and physical
resources of operators and leads to undesirable physiological, psychological, behavioral,
and social outcomes.

Tasks in the master control room may become stressful, overwhelm operators, and
make them feel extremely confused and anxious when unexpected circumstances, such
as rapid signal changes, a sudden increase in workload, complicated decision-making
conditions, and limited operating time occur in the nuclear power plant. In Heponiemi’s
study [4], he examined the relationship between vital exhaustion, and temperament during
experimentally induced stress. He found that participants felt anxious, tense, fearful, sad,
depressed, angry, irritated, and disappointed when experiencing stress. Acute stress elicits
not only negative emotions in individuals, such as fear, irritation, and anxiety, but also
impairs their cognitive functioning. For instance, Luo found a greater amplitude of SPCN
(the sustained posterior contralateral negativity) in the stress group than in the control
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group, which indicates that it is more difficult for individuals to disengage their attention
from threat stimuli. These results illustrated that attention disengagement toward threat
stimuli is impaired under acute stress situations [5]. Other psychological studies have
shown that individuals with high math anxiety stress demonstrated reduced working
memory capacity, which led to increased reaction times and errors in their tasks [6]. In a
simulated study, the experiment was carried out in a training simulator that matches the
actual control room of a nuclear power plant [7]. The result illustrated that information-
seeking performance decreases and reaction time decelerates under stressful situations.
These stress responses can lead to fatal and serious accidents. Therefore, immediately
recognizing the stress state of nuclear power plant operators and then inhibiting the
occurrence of human errors is crucial.

Acute stress can be measured and quantified in a variety of ways. Subjective scales
mainly used in psychology measure the process of cognitive appraisal and affective re-
sponses under stress, including stress appraisal measures (SAM) [8], the perceived stress
scale (PSS) [9], and the positive and negative affect scale (PANAS) [10]. However, most
scales assess the chronic stress state caused by life events or catastrophes, such as earth-
quakes and wars. Otherwise, self-reported measures rely on inaccurate recall or memory
and fail to assess stress levels continuously without interrupting the task process. Therefore,
these approaches are impracticable for monitoring or predicting the stress state of nuclear
power plant operators. Acute stress physiologically activates the hypothalamic pituitary
adrenal (HPA) axis and the autonomic nervous system (ANS). The chronic activation of
HPA results in the increase of adrenocorticotropin hormone (ACTH) and cortisol levels [11].
Meanwhile, the rapid activation of ANS can lead to changes in heart rate, blood pressure,
skin temperature, and skin conductivity. Ekman found that activity in the autonomic
nervous system, such as heart rate and skin temperature, distinguished among negative
emotions [12]. In addition, Villarejo used ZigBee collected galvanic skin response (GSR)
data to detect the stress state successfully [13]. Physiological parameters are regulated by
the ANS and endocrine system and remain unaffected by subjective factors. In Nandita’s
review, physiological parameters combined with machine learning techniques are used as
objective indicators to assess the psychological stress state [14]. However, intrusive measur-
ing devices that are used to collect physiological data may restrain operator movements
and cause physical discomfort. The procedure for wearing such devices or equipment
is complicated and requires significant ability. The extra mental and physical burden on
operators caused by these devices can directly reduce the accuracy of stress detection.
Therefore, the use of physiological signals in detecting the stress state is an inconvenient
method in the nuclear power mission.

Hence, a real-time and nonintrusive stress monitoring system is necessary in predicting
stress from voice samples. This type of system can be useful in situations that require
operators to communicate regularly by speaking. Studies have identified a number of vocal
correlations with stress. According to Hansen and Patil [15], the increase of the respiration
rate of an individual will increase the fundamental frequency during the voiced section and
lead to a shortened duration of speech between breaths in the event of stressful situations.
Dryness of mouth during stress situations can also affect the muscle activity of the larynx
and the condition of the vocal cords. Therefore, speculating that speech features can detect
and predict the stress state of operators is logical. We extracted the mel frequency cepstrum
coefficient (MFCC) feature for model construction in the present study. For MFCC, the
main advantage is that it uses mel-frequency scaling, which is very similar to the human
auditory system [16]. According to Besbes, MFCC has been shown to be promising for
describing stress [17].

Inducing acute stress in nuclear power plant operators during simulated scenarios is
difficult. Many studies in field of psychology have induced stress using the Trier Social
Stress Task (TSST), where participants give a speech and perform complex arithmetic in
front of a stern panel of evaluators [18]. A social-evaluative threat is the key ingredient
for situations that elicit stressful feelings in TSST. However, this type of threat is not the
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main cause of anxiety and exhaustion in nuclear power operators. According to Lejuez
et al. [19], mental arithmetic is a cognitive stressor that can effectively elicit cardiovascular
responses and negative emotions. For nuclear power plant operators, the stress may be
induced by a sudden fault or excessive workloads. In simulated scenarios, the mental stress
may be induced more successfully and easily by increasing the workload compared with
the creation of simulated faults. Therefore, we integrated mental arithmetic with short-
time memory tasks into simulated nuclear power plant scenarios to elicit psychological
stress and verified whether the induction was successful through objective physiological
parameters and subjective self-reporting.

A new method that uses speech as the stress identification index was proposed in
this study in order to overcome the inapplicability of previous stress detection methods in
simulated nuclear power plant scenarios. We built a predictive model of stress from speech
recordings using a neural network that treats stress as a continuous measure based on the
subjective rating of PANAS to provide the specific stress state information of operators.
Our goal was to test whether speech can predict objective stress and estimate the possible
performance of machine learning approaches and then provide nuclear power plants with a
voice recognition method that can measure the stress state of operators in real time without
interfering with their work.

This paper is divided into the following sections: firstly, in the method section, the
paper describes the process of the psychological experiment. A complete methodology with
all the technologies involved in this system is described, and then the BP neural network
design is explained. Secondly, the results are obtained during the tasks carried out as part
of the experiment. This paper ends with the conclusions and the discussions arising from
the topic.

2. Methods
2.1. Participants

Thirty-four student participants were recruited for an experiment on physiological
measurement during a nuclear power plant mission through the university’s online psy-
chology subject pool. All participants were right handed, presented a normal mental
and physical state, provided written informed consent prior to the experiment, and were
compensated for their participation.

2.2. Measures
2.2.1. Positive and Negative Affect Scale

The state version of the PANAS10 consists of 10 items for state negative affect (scared,
afraid, upset, distressed, jittery, nervous, ashamed, guilty, irritable, and hostile), and
10 items for state positive affect (enthusiastic, interested, determined, excited, inspired,
alert, active, strong, proud, and attentive). Ratings are performed according to a five-point
Likert scale ranging from 1 (very slightly or not at all) to 5 (extremely). PANAS was used
before and after the stress task to assess the feelings of participants at any given moment.
Cronbach’s alphas (a reliability index of the psychological scale) of the state PA and the
state NA of the Chinese version of PANAS were 0.85 and 0.83, respectively.

2.2.2. Physiological Measures

Physiological data were recorded with a Biopac Mp150 and were analyzed using
Acqknowledge 5.0 software. Heart rate data were collected using an ECG module and then
recorded using electrodes attached to ankles and the right wrist of participants. The skin
conductance level (SCL) was collected using a galvanic skin response (GSR) module and
then recorded using TSD203 transducers placed on the index and middle fingers of the
nondominant hand.
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2.3. Acute Psychological Stress Task in the Stimulated Nuclear Power Plant Mission

We revised the interface of PCTRAN, which is a desktop simulator of nuclear reactors
invented by Micro-Simulation Technology (MST), to simulate the real nuclear power mis-
sion. The nuclear power plant mission was composed of short-time memory and mental
arithmetic tasks to induce the stress state of participants.

The interface of the memory task consisted of 60 widgets (Figure 1), and each widget
was named according to its location on the interface (e.g., Top 1 and Bottom 6). The short-
time memory task required participants to remember digits and typewrite them to the
correct widgets. The names of widgets and their matching digits were presented on a grid
layout for participants to remember (Figure 2). The number of items to remember was
randomly selected from 2 to 4. The grid layout disappeared after a specified amount of time
and participants were tasked to key in the correct digits for their corresponding widgets
(Figure 1). The time for memorizing and typing was limited and the remaining time was
displayed on the progress bar to exert time pressure on the participants.
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The short-term memory task was repeated three or four times. The mental arithmetic
task immediately started when the short-term memory task ended. Participants performed
serial tests involving the subtraction of a number between 10 and 20 from a four-digit
numeral. The time for answering was limited and the majority of participants failed
to complete the task during the time interval. The remaining time was shown on the
progress bar (Figure 3). The mental arithmetic task was repeated three times. Both short-
term memory and mental arithmetic tasks entailed visual and auditory feedback to warn
participants whenever an erroneous answer was provided.
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2.4. Procedure

Participants were asked to sit in a quiet room with all the electrodes and transducers
attached to their bodies in the beginning of the experiment, and were informed that the
entire experiment was audio recorded.

Participants were initially asked to rest for 10 min and complete the Chinese version of
PANAS within the resting baseline period to assess their initial emotional state. Participants
then read the instructions for the nuclear power plant mission and completed a brief practice
to ensure that they understood the task. The acute psychological stress task (6 min) was
integrated in the nuclear power plant mission and completed during the stress-induced
session. Participants were instructed to respond as rapidly and as accurately as possible
and were told that they would be paid according to their performance. Participants were
then asked to calculate some mental arithmetic items that did not require accuracy and
efficiency and then speak the items and their answers aloud. These audio recordings were
used as the database of the speech stress recognition model. Finally, participants completed
the PANAS again to assess their emotional state during the mission.

ECG and SCL data were measured continuously during experimental sessions, and
physiological data were ensemble averaged for each session of every participant.

2.5. Data Analysis

Subjective affect rating, heart rate, and SCL before and after the stress induction were
analyzed using a dependent t-test for within-group comparisons to verify the induction of
mental stress. p values ≤ 0.05 (two-tailed) were considered statistically significant.

2.6. Back Propagation Neural Network for Stress State Recognition

The back propagation (BP) neural network model was used to recognize the stress state
with the speech signal. The BP neural network is based on the gradient descent method,
which minimizes the sum of squared errors between actual and predicted output values [20].
The neural network consists of input, hidden, and output layers. The structure of the BP
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neural network is presented in Figure 4. When parameters of the network structure are
adjusted manually, network connection weight coefficients and bias are automatically
adjusted via the back propagation process.
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A total of 558 speech recordings were collected (each subject produced approximately
16 recordings). We used Librosa, the Python package for audio and music signal processing,
to extract the MFCC from audio recordings as input data. The first 20 MFCCs were extracted
from the spectrogram after speech data were sampled at the default rate (sr = 22,050 Hz).
Therefore, the input layer contained 20 neurons that received input data. The graph for
data visualization is presented in Figure 5. While considering individual differences in
stress sensitivity, we used the degree of variability of PANAS scores before and after the
stress induction as output values.
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We randomly split the data at a ratio of 8:2 (i.e., 446 training and 112 test samples).
In other words, training samples and test samples came from different sentences. The
BP neural network was established by minimizing the loss, which was calculated from
training data. The loss was evaluated on the basis of mean squared error (MSE), which
was calculated using Eq. (1). The network structure can be adjusted to achieve the desired
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loss error. We used Python 3.7 and TensorFlow 2.0 to perform simulations. The basic steps
involved in BP network modelling and parameter optimization are illustrated in Figure 6.

MSE =
1
N

N

∑
i=1

(ŷi − yi)
2 (1)
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3. Results
3.1. Verification of the Stress State Induction

The results of the paired sample t-test for the subjective affect rating indicated a
significant increase of negative emotion ratings after the stimulated nuclear power plant
mission (t = −4.832, p ≤ 0.001). Mean stress ratings reached 19.4 points after the stress
induction (S.D. = 5.6, range 10.0–33.0) from a baseline mean of 16.2 points (S.D. = 4.64,
range 10.0–30.0). Most subjects (24 individuals) reported intensified negative mood after
the stress induction. For some of them, the task didn’t elicit their negative emotion, and
two of the subjects reported a slightly diminished negative emotion after the task.

Heart rate significantly increased in response to the stress task (t = −7.198, p ≤ 0.001).
The mean heart rate was 85.1 (S.D. = 11.9, range 58.6–88.0) bpm during the stress induction
from a mean of 76.2 (S.D. = 8.0, range 60.1–104.9) bpm in the baseline phase.

SCL significantly increased in response to the stress induction (t = −2.432, p ≤ 0.05).
The mean SCL was 4.9 (S.D. = 2.9, range 2.0–11.4) µs during the stress induction from a
mean of 4.0 (S.D. = 2.9, range 1.14–12.1) µs in the baseline phase.
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3.2. Speech Stress Recognition

Parameters of the BP network structure must be appropriately adjusted to obtain
satisfactory prediction accuracy. The values of parameters used in the BP network structure
are listed in Table 1. The model used in the present study consisted of an input layer, two
hidden layers, and an output layer. The tanh function was set as the activation function
(Figure 7) that connected input and hidden layers and was also used as the connection
between two hidden layers. We did not set up the activation function between hidden and
output layers to obtain the linear output.

Table 1. The Parameters of The Model.

Number of layers 4
Neurons Input: 20

Hidden: 15
Hidden: 8
Output: 1

Activation function tanh Function
Learning rate 0.005

Optimizer Adam
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Figure 7. tanh Function.

If the learning rate is excessively high, then the results become unstable. However, if the
learning rate is excessively low, then the network convergence becomes slow. The learning rate
was set to 0.005 in this study, and the loss converged to approximately 0.03 after calculating
5000 epochs. An Adam optimizer was developed from the stochastic gradient descent (SGD)
algorithm and applied to the model. The Adam optimizer uses momentum methods to
combine historical descent information to the new descent direction and adaptive learning
rate methods to help the learning rate automatically decay during the training process [21].
Therefore, the Adam optimizer can improve the convergence rate. The results of the loss value
generated using the BP neural network are shown in Figure 8.
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of training data to verify whether the model presents overfitting. The relative error for test
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re-error curves of the model. The optimal performance of test samples was stable at around
0.044 in the end, thereby indicating that the accuracy of the model reached approximately
95%. We randomly selected 20 test samples for comparative analysis. Figure 10 presents the
comparative results of the true and predicted values. As shown in the figure, the difference
between the predicted and true values of the 20 samples is small.

Relative error =
1
N ∑N

i=1
ŷi − yi

yi
(2)
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The results of speech stress recognition indicated that speech features (i.e., MFCC) can
be used as effective indicators to distinguish various stress states during the stimulated
nuclear power plant mission.

4. Discussion

The present study aimed to develop a monitoring system that can conveniently and
effectively assess the stress level of nuclear power plant operators in real time to avoid po-
tential human error. Therefore, the speech-based stress recognition approach was adopted
in this study instead of traditional subjective scales and physiological parameters. We
first investigated whether the economical and easily applicable simulated nuclear power
plant task is an effective tool for inducing high subjective stress levels without focusing
on social-evaluative components. Heart activity is correlated with stress [22], and skin
conductance increases when the individual is under stress [23] due to the increase of
moisture on the skin surface that increases the flow of electricity. The significant increase
of both physiological indicators of heart rate and skin conductance in the present study
indicated that participants experience distinct stress during the mission. The results of
these physiological indicators were consistent with those of the subjective questionnaire,
in which participants also experienced relatively high negative feelings. These findings
indicated that mental stress is successfully induced by the acute psychological stress task
during the stimulated nuclear power plant mission. Stress responses were consistent with
significant changes in electrodermal activity and heart rate response to the stressful task
obtained in previous studies [24].

Negative effects of digital human–machine interface characteristics on human error,
such as increased cognitive load, mode confusion, and loss of situation awareness, were
identified in field investigations in nuclear power plants and interviews with operators [25].
Moreover, negative characteristics of nuclear power plants, including complex control
systems and false alarms, place an excessive amount of burden on operators and increase
their stress levels. Detecting the stress level of operators is necessary; however, the use
of physiological indicators as main measures for stress in previous studies will restrain
operators’ movement and cause other problematic situations. Determining stress levels
through speech is non-invasive, less obtrusive, and less expensive compared with other
methods for measuring stress. Such stress monitoring systems can be developed for
nuclear power plant operators. The Air Force Research Laboratory in the USA claimed that
voice-based stress detection systems can efficiently measure the stress of officers to reduce
their workload, improve their effectiveness and thus save lives [26]. Therefore, applying
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intelligent speech interaction systems to nuclear power plants can detect the stress state of
operators without disturbing their work.

An analysis of the speech recordings showed that measurable and systematic voice
changes occur over the duration of the experiment. The change of voice features and
MFCCs according to different stress levels can be used in predicting the stress state. The
BP neural network model was developed using recording data. Compared with previous
studies that classify emotions under different stressful conditions, we aimed to predict
the precise stress level of operators. As a result, the prediction accuracy of the model can
reach approximately 95%. Rodellar-Biarge et al. [27] used the SVM classification algorithm,
including PCA processing, and achieved a maximum accuracy of 90% in distinguishing
stress with speech recognition. Hence, our developed neural network model can evaluate
the stress state more accurately and reliably compared with previous machine learning-
based classification models.

The proposed model presents the following limitations that constrain its generaliza-
tion. (1) The task we applied in the experiment was more of a psychological paradigm that
focuses on human fundamental cognitive processes compared with real nuclear power
missions. Further investigations will require professional participants and a natural op-
erating environment to apply the model in actual nuclear power plants. (2) The corpus
size of this study is small given that we only collected audio data from 34 participants and
each participant provided 16 paragraphs of speech material. In addition, some literature
would supply a validation process as a separate test design, which we can learn in any
future research. The characteristics of speakers, such as gender, personality, accent, and
language will limit the generalization of the proposed model. More data will be required to
check the feasibility of this.

However, this study mainly aimed to explore the performance of the speech recogni-
tion stress model. The main findings of this work verified that objective, continuous, and
immediate measures of the stress state can be obtained from voice analysis. The prediction
performance obtained in this study proved the validity of the model building approach
and makes the tractability of the problem explicit.

According to changes in physiological indicators and the performance of the speech
recognition model in the present study, combinations of voice features and physiological
data can be used to improve the measurement of stress in developing a real-time stress
monitoring system for nuclear power plant operators. In addition, operators can wear
portable wristbands instead of being attached to electrodes to collect physiological data,
thereby minimizing interference from external devices.

5. Conclusions

The main difficulty of stress detection for operators in nuclear power plants is obtain-
ing the stress level in real time without disturbing their work. We induced stress by asking
participants to complete a task in a time-limited situation that requires high cognitive
resources using a nuclear power plant simulator. Our results showed that physiological
indicators and voice features, such as MFCCs, change with the stress level. The contribution
of our work can be summarized in two aspects. Firstly, we introduced a non-intrusive way
of using voice features to detect stress. At the same time, voice features can be collected in
real time. Secondly, we demonstrated the feasibility of speech recognition stress by intro-
ducing a machine learning method. The established neural network model can effectively
evaluate the stress state and be used as a prototype of a speech stress recognition system in
nuclear power plants. Future investigations can develop a model with increased accuracy
and high generalization ability using multi-modal data.
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