Movement Time for Pointing Tasks in Real and Augmented Reality Environments
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. AR Device and Pointing Tasks
2.3. Procedure
2.4. Design of Experiment and Data Analyses
= 0 otherwise.
3. Results
3.1. ANOVA Results on MT
3.2. MT Versus ID
3.3. Regression Models
4. Discussion
4.1. Movement Time of Pointing Tasks on Physical and Virtual Targets
4.2. Information Processing Performance
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | augmented reality |
ID | index of difficulty |
IDadj | adjusted index of difficulty |
IDincrease | increase in index of difficulty due to pointing on virtual targets |
MT | movement time |
T | tactile factor |
TP | throughput |
VR | virtual reality |
Wave | average width of the targets |
References
- Fitts, P.M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 1954, 47, 381–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitts, P.M.; Peterson, J.R. Information capacity of discrete motor responses. J. Exp. Psychol. 1964, 67, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Jagacinski, R.J.; Monk, D.L. Fitts’ law in two dimensions with hand and head movements. J. Motor Behav. 1985, 17, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Andres, R.O.; Hartung, K.J. Prediction of head movement time using Fitts’ law. Hum. Factors 1989, 31, 703–713. [Google Scholar] [CrossRef]
- Radwin, R.; Vanderheiden, G.C.; Lin, M.L. A method for evaluating head-controlled computer input devices using Fitts’ law. Hum. Factors 1990, 32, 423–438. [Google Scholar] [CrossRef]
- Hoffmann, E.R.; Chan, A.H.S.; Heung, P.T. Head rotation movement times. Hum. Factors 2017, 59, 986–994. [Google Scholar] [CrossRef]
- Chan, A.H.S.; Hoffmann, E.R. Effect of movement direction and sitting/standing on leg movement time. Int. J. Ind. Ergon. 2015, 47, 30–36. [Google Scholar] [CrossRef]
- Chan, A.H.S.; Hoffmann, E.R.; Ip, K.M.; Siu, S.C.H. Leg/foot movement times with lateral constraints. Int. J. Ind. Ergon. 2018, 67, 6–12. [Google Scholar] [CrossRef]
- Drury, C.G. Application of Fitts’ law to foot-pedal design. Hum. Factors 1975, 17, 368–373. [Google Scholar] [CrossRef]
- Springer, J.; Siebes, C. Position controlled input device for handicapped: Experimental studies with a footmouse. Int. J. Ind. Ergon. 1996, 17, 135–152. [Google Scholar] [CrossRef]
- Chan, A.H.S.; Ng, A.W.Y. Lateral foot-movement times in sitting and standing postures. Percept. Mot. Ski. 2008, 106, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Myung, R. Fitts’ law for angular foot movement in the foot tapping task. J. Ergon. Soc. Korea 2012, 31, 647–655. [Google Scholar] [CrossRef]
- Danion, F.; Duarte, M.; Grosjean, M. Fitts’ law in human standing: The effect of scaling. Neurosci. Lett. 1999, 277, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, E.R.; Chan, A.H.S. Movement of loads with trunk rotation. Ergonomics 2014, 58, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Kerr, R. Diving, adaptation, and Fitts’ law. J. Motor. Behav. 1978, 10, 255–260. [Google Scholar] [CrossRef]
- Hancock, P.A.; Milner, E.K. Task performance under water-An evaluation of manual dexterity efficiency in the open ocean underwater environment. Appl. Ergon. 1986, 17, 143–147. [Google Scholar] [CrossRef]
- Hoffmann, E.R.; Chan, A.H.S. Underwater movement times with ongoing visual control. Ergonomics 2012, 55, 1513–1523. [Google Scholar] [CrossRef]
- Drews, F.A.; Zadra, J.R.; Gleed, J. Electronic health record on the go: Device form factor and Fitts’ law. Int. J. Med. Inform. 2018, 111, 37–44. [Google Scholar] [CrossRef]
- Melo, F.; Conde, M.; Godinho, C.; Domingos, J.; Sanchez, C. Hand motor slowness in Parkinson disease patients performing Fitts’ task. Annu. Med. 2019, 51, 49. [Google Scholar] [CrossRef] [Green Version]
- Welford, A.T. The measurement of sensory-motor performance: Survey and reappraisal of twelve years progress. Ergonomics 1960, 3, 189–230. [Google Scholar] [CrossRef]
- Mackenzie, I.S. A note on the information-theoretic basis for Fitts’ law. J. Motor Behav. 1989, 21, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Gan, K.C.; Hoffmann, E.R. Geometrical conditions for ballistic and visually controlled movements. Ergonomics 1988, 31, 829–839. [Google Scholar] [CrossRef]
- Hoffmann, E.R. Effective target tolerance in an inverted Fitts’ task. Ergonomics 1995, 38, 828–836. [Google Scholar] [CrossRef]
- Murata, A.; Iwase, H. Extending Fitts’ law to a three-dimensional pointing task. Hum. Mov. Sci. 2001, 20, 791–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, Y.; Myung, R. Extended Fitts’ law for 3D pointing tasks using 3D target arrangements. Int. J. Ind. Ergon. 2013, 43, 350–355. [Google Scholar] [CrossRef]
- Baird, K.M.; Hoffmann, E.; Drury, C.G. The effects of probe length on Fitts’ law. Appl. Ergon. 2002, 33, 9–14. [Google Scholar] [CrossRef]
- Guttentag, D.A. Virtual reality: Applications and implications for tourism. Appl. Ergon. 2010, 31, 637–651. [Google Scholar] [CrossRef]
- Carmigniani, J.; Furht, B.; Anisetti, M.; Ceravolo, P.; Damiani, E.; Ivkovic, M. Augmented reality technologies, systems, and applications. Multimed. Tools. Appl. 2011, 51, 341–377. [Google Scholar] [CrossRef]
- Drascic, D.; Milgram, P. Perceptual issues in augmented reality. In Proceedings of the Sterescopic Displays and Virtual Reality Systems III, San Jose, CA, USA, 10 April 1996; Volume 2653, pp. 123–134. [Google Scholar]
- Wu, H.K.; Lee, S.; Chang, H.Y.; Liang, J.C. Current status, opportunities and challenges of augmented reality in education. Comput. Educ. 2013, 62, 41–49. [Google Scholar] [CrossRef]
- Ibáñez, M.B.; Kloos, C.D. Augmented reality for STEM learning: A systematic review. Comput. Educ. 2018, 123, 109–123. [Google Scholar] [CrossRef]
- Terhoeven, J.; Schiefelbein, F.P.; Wischniewski, S. User expectations on smart glasses as work assistance in electronics manufacturing. Procedia CIRP 2018, 72, 1028–1032. [Google Scholar] [CrossRef]
- Cardoso, L.F.S.; Mariano, F.C.M.Q.; Zorzal, E.R. A survey of industrial augmented reality. Comput. Ind. Eng. 2020, 139, 106159. [Google Scholar] [CrossRef]
- Milgram, P.; Kishino, F. A Taxonomy of mixed reality visual displays. IEICE T. Inf. Syst. 1994, 77, 1321–1329. [Google Scholar]
- Wang, X.; Ong, S.K.; Nee, A.Y.C. Multi-modal augmented-reality assembly guidance based on bare-hand interface. Adv. Eng. Inform. 2016, 30, 406–421. [Google Scholar] [CrossRef]
- Gattullo, M.; Laviola, E.; Evangelista, A.; Fiorentino, M.; Uva, A.E. Towards the evaluation of augmented reality in the metaverse: Information presentation modes. Appl. Sci. 2022, 12, 12600. [Google Scholar] [CrossRef]
- Lubos, P.; Bruder, G.; Steinicke, F. Analysis of direct selection in head-mounted display environments. In Proceedings of the IEEE Symp 3D User Interfaces, Minneapolis, MN, USA, 29–30 March 2014; pp. 11–18. [Google Scholar] [CrossRef]
- Schwind, V.; Leusmann, J.; Henze, N. Understanding visual-haptic integration of avatar hands using a Fitts’ law task in virtual reality. In Proceedings of the Mensch und Computer 2019, Hamburg, Germany, 8–11 September 2019; pp. 211–222. [Google Scholar] [CrossRef]
- Triantafyllidis, E.; Li, Z. The challenges in modeling human performance in 3d space with Fitts’ law. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–9. [Google Scholar] [CrossRef]
- Lin, C.J.; Woldegiorgis, B.H. Interaction and visual performance in stereoscopic displays: A review. J. Soc. Inf. Disp. 2015, 23, 319–332. [Google Scholar] [CrossRef]
- Swan, J.E.; Singh, G.; Ellis, S.R. Matching and reaching depth judgments with real and augmented reality targets. IEEE T. Vis. Comput. Gr. 2015, 21, 1289–1298. [Google Scholar] [CrossRef]
- Lin, C.J.; Woldegiorgis, B.H. Egocentric distance perception and performance of direct pointing in stereoscopic displays. Appl. Ergon. 2017, 64, 66–74. [Google Scholar] [CrossRef]
- Batmaz, A.U.; Machuca, M.D.B.; Pham, D.M.; Stuerzlinger, W. Do head-mounted display stereo deficiencies affect 3D pointing tasks in AR and VR? In Proceedings of the IEEE Conference Virtual Real 3D User Interfaces, Osaka, Japan, 23–27 March 2019; pp. 585–592. [Google Scholar] [CrossRef]
- Machuca, M.D.B.; Stuerzlinger, W. The effect of stereo display deficiencies on virtual hand pointing. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–14. [Google Scholar] [CrossRef]
- Ha, T.; Woo, W. An empirical evaluation of virtual hand techniques for 3D object manipulation in a tangible augmented reality environment. In Proceedings of the 2010 IEEE Symposium on 3D User Interface, Waltham, MA, USA, 20–21 March 2010; pp. 91–98. [Google Scholar] [CrossRef]
- Deng, C.L.; Geng, P.; Hu, Y.F.; Kuai, S.G. Beyond Fitts’ law: A three-phase model predicts movement time to position an object in an immersive 3D virtual environment. Hum. Factors 2019, 61, 879–894. [Google Scholar] [CrossRef]
- Clark, L.D.; Bhagat, A.B.; Riggs, S.L. Extending Fitts’ law in three-dimensional virtual environments with current low-cost virtual reality technology. Int. J. Hum-Comput. St. 2020, 139, 102413. [Google Scholar] [CrossRef]
- Barcali, E.; Iadanza, E.; Manetti, L.; Francia, P.; Nardi, C.; Bocchi, L. Augmented reality in surgery: A scoping review. Appl. Sci. 2022, 12, 6890. [Google Scholar] [CrossRef]
- Crossman, E.R.F.W.; Goodeve, P.J. Feedback control of hand movement and Fitts’ law. Q. J. Exp. Psychol. 1983, 35A, 251–278. [Google Scholar] [CrossRef]
- El Barhoumi, N.; Hajji, R.; Bouali, Z.; Ben Brahim, Y.; Kharroubi, A. Assessment of 3D models placement methods in augmented reality. Appl. Sci. 2022, 12, 10620. [Google Scholar] [CrossRef]
- Card, S.K.; English, W.K.; Burr, B.J. Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection on a CRT. Ergonomics 1978, 21, 601–613. [Google Scholar] [CrossRef]
- Langolf, G.D.; Chaffin, D.B.; Foulke, J.A. An investigation of Fitts’ law using a wide range of movement amplitudes. J. Motor Behav. 1976, 8, 113–128. [Google Scholar] [CrossRef]
- Mackenzie, I.S. Fitts’ throughput and the remarkable case of touch-based target selection. In Human-Computer Interaction: Interaction Technologies, Lecture Notes Computer Science, Proceedings of the HCI 2015, Los Angeles, CA, USA, 2–7 August 2015; Kurosu, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9170. [Google Scholar] [CrossRef]
Horizontal | Movement | Vertical | Movement | |
---|---|---|---|---|
Width | Height | Width | Height | |
Large | 76 | 14 | 37 | 37 |
Medium | 56 | 14 | 37 | 25 |
Small | 37 | 14 | 37 | 14 |
Origin-Target Key | Wave (mm) | Distance (mm) | ID | |
---|---|---|---|---|
Horizontal | ||||
Large | C-ln | 3.5 | 156 | 6.5 |
C-( | 2.5 | 312 | 8 | |
C- | 4.5 | 468 | 7.7 | |
Medium | C-ln | 3.5 | 116 | 5.1 |
C-( | 2.5 | 232 | 7.5 | |
C- | 4.5 | 348 | 7.3 | |
Small | C-ln | 3.5 | 78 | 5.5 |
C-( | 2.5 | 156 | 7 | |
C- | 4.5 | 234 | 6.7 | |
Vertical | ||||
Large | ln-sinh | 4 | 39 | 4.3 |
ln-tanh | 4 | 117 | 5.9 | |
Ln-0 × 16 | 4 | 195 | 6.6 | |
Medium | ln-sinh | 4 | 27 | 3.8 |
ln-tanh | 4 | 81 | 5.3 | |
ln-0 × 16 | 4 | 135 | 6.1 | |
Small | ln-sinh | 4 | 16 | 3 |
ln-tanh | 4 | 48 | 4.6 | |
ln-0 × 16 | 4 | 80 | 5.3 |
Regression | Coefficient | |||||
---|---|---|---|---|---|---|
Gender | Hand | a | b | c | d | R2 |
Horizontal | Movement | |||||
Female | D | 633.8 | 134.4 | 118.7 * | −970.1 | 0.76 |
ND | 660.6 | 144.1 | 109.8 * | −1025.9 | 0.73 | |
Male | D | 365.7 | 141.6 | 227.3 | −846.8 | 0.75 |
ND | 454.8 | 143.4 | 217.7 | −910.1 | 0.77 | |
Vertical | Movement | |||||
Female | D | 1028.6 | 66.8 | 68.0 † | −855.6 | 0.74 |
ND | 1051.4 | 74.5 | 85.7 † | −908.5 | 0.73 | |
Male | D | 878 | 62.8 | 133.5 | −755.2 | 0.79 |
ND | 924.3 | 67.6 | 143.8 | −803.4 | 0.78 |
Gender | Hand | c′ | d′ | 1/b (bit/s) |
---|---|---|---|---|
Horizontal | Movement | |||
Female | D | 0.88 | −7.22 | 7.4 |
Female | ND | 0.76 | −7.12 | 6.9 |
Male | D | 1.61 | −5.98 | 7.1 |
Male | ND | 1.52 | −6.35 | 7 |
Vertical | Movement | |||
Female | D | 1.02 | −12.81 | 15 |
Female | ND | 1.15 | −12.19 | 13.4 |
Male | D | 2.13 | −12.03 | 15.9 |
Male | ND | 2.13 | −11.88 | 14.8 |
Movement Direction | Gender | Hand | Physical Pointing | Virtual Pointing |
---|---|---|---|---|
Horizontal | Female | D | 11.75 | 8.94 |
ND | 11.15 | 8.84 | ||
Male | D | 12.54 | 9.76 | |
ND | 11.9 | 9.4 | ||
Vertical | Female | D | 11.6 | 13.17 |
ND | 11.29 | 12.22 | ||
Male | D | 12.55 | 14.98 | |
ND | 11.9 | 14.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Li, K.W.; Peng, L. Movement Time for Pointing Tasks in Real and Augmented Reality Environments. Appl. Sci. 2023, 13, 788. https://doi.org/10.3390/app13020788
Zhao C, Li KW, Peng L. Movement Time for Pointing Tasks in Real and Augmented Reality Environments. Applied Sciences. 2023; 13(2):788. https://doi.org/10.3390/app13020788
Chicago/Turabian StyleZhao, Caijun, Kai Way Li, and Lu Peng. 2023. "Movement Time for Pointing Tasks in Real and Augmented Reality Environments" Applied Sciences 13, no. 2: 788. https://doi.org/10.3390/app13020788
APA StyleZhao, C., Li, K. W., & Peng, L. (2023). Movement Time for Pointing Tasks in Real and Augmented Reality Environments. Applied Sciences, 13(2), 788. https://doi.org/10.3390/app13020788