Possible Locking Shock Time in 2–48 Hours
Abstract
:1. Introduction
2. Temporal Characteristics of Near-Surface Atmospheric Electrostatic Abnormalities before an EQ
3. A Successful Single-Station Alarm for Nearby Moderate-Magnitude Earthquakes
4. Discussion
5. Summary
- (1)
- There is a special critical window before an EQ to detect drastic changes in deep fault movement.
- (2)
- The duration of this window is 2–48 h.
- (3)
- During these 2–48 h, the near-surface vertical atmospheric electrostatic field always exhibits an abnormal negative signal.
- (4)
- At the fault near the epicenter, many anomalous signals can be observed in the surface vertical atmospheric electrostatic field.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulinets, S.; Ouzounov, D.; Davidenko, D. The Possibility of Earthquake Forecasting; IOP Publishing Ltd.: Bristol, UK, 2018. [Google Scholar]
- Huang, F.Q.; Li, M.; Ma, Y.C.; Han, Y.Y.; Tian, L.; Yan, W.; Li, X.F. Studies on earthquake precursors in China: A review for recent 50 years. Geod. Geodyn. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Pritchard, M.E.; Allen, R.M.; Becker, T.W.; Behn, M.D.; Vincent, H. New opportunities to study earthquake precursors. Seismol. Res. Lett. 2020, 91, 2444–2447. [Google Scholar] [CrossRef]
- Choudhury, A.; Guha, A.; De, B.K.; Roy, R. A statistical study on precursory effects of earthquakes observed through the atmospheric vertical electric field in northeast India. Ann. Geophys. 2013, 56, R0331. [Google Scholar] [CrossRef]
- Hao, J.G.; Pan, H.W.; Mao, G.M.; Zhang, Y.F.; Tang, T.M.; Li, R.D.; Li, S. Anomaly of quasi-static electric field and earthquake—Exploration of a reliable earthquake precusor. Seismol. Geomagn. Obs. Res. 2000, 21, 3–166. (in Chinese). [Google Scholar] [CrossRef]
- Korsunova, L.P.; Khegai, V.V.; Mikhailov, Y.M.; Smirnov, S.E. Regularities in the manifestation of earthquake precursors in the ionosphere and near-surface atmospheric electric fields in Kamchatka. Geomagn. Aeron. 2013, 53, 227–233. [Google Scholar] [CrossRef]
- Li, Y.D.; Zhang, L.; Zhang, K.; Jin, X.B. Research on the Atmospheric Electric Field Abnormality near the Ground Surface before “5.12” Wenchuan Earthquake. Plateau Mt. Meteorol. Res. 2017, 37, 49–53. [Google Scholar] [CrossRef]
- Mikhailova, G.A.; Mikhailov, Y.M.; Kapustina, O.V.; Smirnov, S.E. Effects of thunderstorm activity in power spectra of the electric field in the near-surface atmosphere at Kamchatka. Geomagn. Aeron. 2010, 50, 814–823. [Google Scholar] [CrossRef]
- Smirnov, S. Association of the negative anomalies of the quasistatic electric field in atmosphere with Kamchatka seismicity. Nat. Hazards Earth Syst. Sci. 2008, 8, 745–749. [Google Scholar] [CrossRef]
- Hao, J.G.; Pan, H.W.; Li, D.R. Regional features of atmospheric electric field anomalies before earthquakes. Earthquake 1993, 6, 48–54. [Google Scholar]
- Omori, Y.; Nagahama, H.; Kawada, Y.; Yasuoka, Y.; Ishikawa, T.; Tokonami, S.; Shinogi, M. Perseismic alternation of atmospheric electrical conditions due to anomalous radon emanation. Phys. Chem. Earth 2009, 34, 435–440. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, X.X.; Zhang, X.M.; Jin, X.B.; Wu, H.; Ti, S.; Li, R.K.; Li, L.; Wang, S.H. Imminent estimation of earthquake hazard by regional network monitoring the near surface vertical atmospheric electrostatic field. Chin. J. Geophys. 2021, 64, 1145–1154. [Google Scholar]
- Jin, X.; Zhang, L.; Bu, J.; Qiu, G.; Ma, L.; Liu, C.; Li, Y. Discussion on anomaly of atmospheric electrostatic field in Wenchuan Ms8. 0 earthquake. J. Electrost. 2020, 104, 103423. [Google Scholar] [CrossRef]
- Chen, C.H.; Sun, Y.Y.; Lin, K.; Liu, J.; Wang, Y.; Gao, Y.; Zhang, D.; Xu, R.; Chen, C. The LAI Coupling Associated with the M6 Luxian Earthquake in China on 16 September 2021. Atmosphere 2021, 12, 1621. [Google Scholar] [CrossRef]
- Chen, T.; Li, L.; Zhang, X.X.; Ma, Q.M.; Li, W.; Ti, S.; Wu, H.; Li, R.K.; Luo, J.; Su, J.F. Near-epicenter weather conditions several hours before strong earthquakes (Ms ≥ 6). Nat. Hazards 2022, 110, 57–68. [Google Scholar] [CrossRef]
- Namgaladze, A.A. Earthquakes and global electrical circuit. Russ. J. Phys. Chem. B 2013, 7, 589–593. [Google Scholar] [CrossRef]
- Nikiforova, N.N.; Michnowski, S. Atmospheric electric field anomalies analysis during great carpatian earthquakes at polish observatory Swider. In Proceedings of the IUGG XXI General Assembly, Abstracts, Boulder, CO, USA, 2–14 July 1995; p. VA11D-16. [Google Scholar]
- Rulenko, O.P.; Ivanov, A.V.; Shumeiko, A.V. A short-term atmospheric electric precursor of the kamchatka earthquake of march 6, 1992 (M = 6.1). Dokl. Akad. Nauk. 1992, 326, 980–982. [Google Scholar]
- Smirnov, S. Negative anomalies of the Earth’s electric field as earthquake precursors. Geosciences 2019, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, S.E.; Mikhailova, G.A.; Mikhailov YMKapustina, O.V. Effects of strong earthquakes in variations of electrical and meteorological parameters of the near-surface atmosphere in Kamchatka region. Geomagn. Aeron. 2017, 57, 610–617. [Google Scholar] [CrossRef]
- Mikhailova, G.A.; Mikhailov, Y.M. Possible biophysical mechanism of the effect of the solar activity on the human central nervous system. In Proceedings of the 35th COSPAR Sientific Assembly 2004, Paris, France, 18–25 July 2004; p. F 2.2-0002-0004. [Google Scholar]
- Mikhailova, G.A.; Kapustina, O.V.; Smirnov, S.E. Nature of the sunrise effect in daily electric field variations at Kamchatka: 2. Electric field frequency variations. Geomagn. Aeron. 2013, 53, 234–242. [Google Scholar] [CrossRef]
- Mikhailov, Y.M.; Mikhailova, G.A.; Kapustina, O.V.; Druzhin, G.I.; Smirnov, S.E. Electric and electromagnetic processes in the near-Earth atmosphere before earthquakes on Kamchatka. Geomagn. Aeron. 2006, 46, 796–808. [Google Scholar] [CrossRef]
- Chen, T.; Wang, S.H.; Li, L.; Yang, M.P.; Zhang, L.Q.; Zhang, X.M.; Huang, F.Q.; Liu, J.; Xiong, P.; Ti, S.; et al. Analysis of the abnormal signal of atmospheric electric field before the Luanzhou Ms4.3 earthquake on April 16, 2021. J. Geod. Geodyn. 2022, 42, 771–776. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; American Geophysical Union: Washington, DC, USA, 2018. [Google Scholar]
- Etiope, G.; Martinelli, G. Migration of carrier and trace gases in the geosphere: An overview. Phys. Earth Planet. Inter. 2002, 129, 185–204. [Google Scholar] [CrossRef]
- Martell, E.A. Enhanced ion production in convective storms by transpired radon isotopes and their decay products. J. Geophys. Res. 1985, 90, 5909–5916. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Alekseev, V.A.; Legen’ka, A.D.; Khegai, V.V. Radon and metallic aerosols emanation before strong earthquakes and their role in atmosphere and ionosphere modification. Adv. Space Res. 1997, 20, 2173–2176. [Google Scholar] [CrossRef]
- Liperovsky, V.A.; Meister, C.V.; Liperovskaya, E.V.; Davidov, V.F.; Bogdanov, V.V. On the possible influence of radon and aerosol injection on the atmosphere and ionosphere before earthquakes. Nat. Hazards Earth Syst. Sci. 2005, 5, 783–789. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Yaschenko, A.K.; Hayakawa, M. A perturbation of DC electric field caused by light ion adhesion to aerosols during the growth in seismic-related atmospheric radioactivity. Nat. Hazards Earth Syst. Sci. 2007, 7, 155–163. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Yashchenko, A.K.; Hayakawa, M. Electric field perturbation caused by an increase in conductivity related to seismicity-induced atmospheric radioactivity growth. Russ. J. Phys. Chem. B 2007, 1, 644–648. [Google Scholar] [CrossRef]
- Liperovsky, V.A.; Meister, C.V.; Liperovskaya, E.V.; Bogdanov, V.V. On the generation of electric field and infrared radiation in aerosol clouds due to radon emanation in the atmosphere before earthquakes. Nat. Hazards Earth Syst. Sci. 2008, 8, 1199–1205. [Google Scholar] [CrossRef]
Date | Epicenter | Magnitude | Depth | Advance Time | VEF Depth | VEF Duration | Weather | Citation |
---|---|---|---|---|---|---|---|---|
(yyyy/mm/dd) | (M) | (km) | (h) | (−kV/m) | (h) | |||
1976/08/23 | Sichuan–Gansu border region, China | 7.2 | 23 | 23 | 17 | 26.5 | Fair | Hao et al. (2000) [5] |
1986/8/30 | Romania | 7.2 | 132.3 | 18.5 | 0.28 | 2 | Fair | Nikiforova and Michnowski (1995) [17] |
1992/3/5 | Off the east coast of the Kamchatka Peninsula, Russia | 6.4 | 45.2 | 9.5 | 0.4 | 1 | Fair | Rulenko et al. (1992) [18] |
1997/9/24 | Near the east coast of the Kamchatka Peninsula, Russia | 4.4 | 33 | 19 | 0.8 | 1.7 | Fair | Smirnov (2019) [19] |
1999/9/6 | Off the east coast of the Kamchatka Peninsula, Russia | 5 | 55.4 | 26 | 0.3 | 8 | Fair | Smirnov et al. (2017) [20] |
1999/9/9 | Kuril Islands | 5.5 | 33 | 27 | 0.3 | 7 | Fair | Smirnov et al. (2017) [20] |
1999/9/18 | Off the east coast of the Kamchatka Peninsula, Russia | 6 | 60 | 29.5 | 0.7 | 5 | Fair | Mikhailova and Mikhailov (2004) [21]; Mikhailova et al. (2013) [22]; Smirnov et al. (2017) [20] |
1999/10/24 | Off the east coast of the Kamchatka Peninsula, Russia | 5.3 | 44.4 | 2.5 | 0.4 | 1.1 | Fair | Smirnov (2019) [19] |
2002/10/16 | Off the east coast of the Kamchatka Peninsula, Russia | 6.2 | 102.4 | 34 | 0.3 | 3 | Fair | Mikhailov et al. (2006) [23] |
2008/5/12 | Eastern Sichuan, China | 7.9 | 19 | 7 | 2.75 | 7 | Fair | Chen et al. (2021b) [15] |
2009/7/26 | Andaman Islands, India region | 5.2 | 10 | 8.3 | 0.714 | 1 | Fair | Choudhury et al. (2013) [4] |
2009/12/12 | Maharashtra, India | 5 | 10 | 5.3 | 0.548 | 0.9 | Fair | Choudhury et al. (2013) [4] |
2009/12/13 | India | 5.1 | 10 | 11.3 | 0.633 | 0.9 | Fair | Choudhury et al. (2013) [4] |
2010/5/1 | Andaman Islands, India region | 4.6 | 12 | 10.1 | 0.834 | 0.9 | Fair | Choudhury et al. (2013) [4] |
2010/9/10 | Meghalaya, India region | 4.8 | 15 | 11.3 | 0.804 | 1.2 | Fair | Choudhury et al. (2013) [4] |
2010/12/12 | India | 4.8 | 15 | 6.1 | 0.457 | 1.1 | Fair | Choudhury et al. (2013) [4] |
2011/2/12 | India | 4 | 10 | 7.7 | 0.515 | 0.9 | Fair | Choudhury et al. (2013) [4] |
2012/4/24 | Nicobar Islands, India region | 5.5 | 10 | 12.3 | 0.684 | 1 | Fair | Choudhury et al. (2013) [4] |
2012/5/11 | India | 5.4 | 20 | 12.7 | 0.562 | 1.3 | Fair | Choudhury et al. (2013) [4] |
2018/12/16 | 24 km WSW of Zhongcheng, China | 5.4 | 27.34 | 24 | 0.385 | - | Fair | Smirnov et al. (2017) [20] |
2019/6/17 | 6 km WNW of Yanling, China | 6 | 16 | 23 | 11 | 1.1 | Fair | Chen et al. (2021b) [15] |
2010/6/13 | Nicobar Islands, India region | 7.8 | 10 | 14.1 | 1.385 | 0.7 | Fair | Choudhury et al. (2013) [4] |
2021/4/16 | Luanzhou, Hebei, China | 4.3 | 9 | 6.6 | 2.7 | 8.6 | Fair | Chen et al. (2022) [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Li, L.; Zhang, X.; Wang, C.; Jin, X.; Wu, H.; Ti, S.; Wang, S.; Song, J.; Li, W.; et al. Possible Locking Shock Time in 2–48 Hours. Appl. Sci. 2023, 13, 813. https://doi.org/10.3390/app13020813
Chen T, Li L, Zhang X, Wang C, Jin X, Wu H, Ti S, Wang S, Song J, Li W, et al. Possible Locking Shock Time in 2–48 Hours. Applied Sciences. 2023; 13(2):813. https://doi.org/10.3390/app13020813
Chicago/Turabian StyleChen, Tao, Lei Li, Xiaoxin Zhang, Chi Wang, Xiaobing Jin, Han Wu, Shuo Ti, Shihan Wang, Jiajun Song, Wen Li, and et al. 2023. "Possible Locking Shock Time in 2–48 Hours" Applied Sciences 13, no. 2: 813. https://doi.org/10.3390/app13020813
APA StyleChen, T., Li, L., Zhang, X., Wang, C., Jin, X., Wu, H., Ti, S., Wang, S., Song, J., Li, W., Luo, J., Cai, C., Zhang, X., Che, S., Peng, X., & Hu, X. (2023). Possible Locking Shock Time in 2–48 Hours. Applied Sciences, 13(2), 813. https://doi.org/10.3390/app13020813