Optimization of Experimental Parameters in the Solvent Extraction of Trans-Resveratrol from Pruning Waste of Vitis vinifera, Fetească Neagră Variety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vine Pruning Samples
2.2. Reagent and Chemicals
2.3. Standard Solutions
2.4. Sample Collection and Processing
2.4.1. Solvent Selection
2.4.2. Solid–Liquid Ratio
2.4.3. Maceration Time
2.4.4. Granulosity Selection
2.4.5. Number of Extractions on the Same Material
2.5. Analytical HPLC Procedure
2.6. Statistical Analysis
3. Results
3.1. Statistical Analysis of Variance
3.2. Solvent Selection
3.3. Solid–Liquid Ratio
3.4. Time of Maceration
3.5. Granulosity Selection
3.6. Number of Extractions on the Same Material
3.7. Optimization of Extracting Parameters
4. Discussion
4.1. Solvent Selection
4.2. Solid–Liquid Ratio
4.3. Time of Maceration
4.4. Granulosity Selection
4.5. Number of Extractions on the Same Material
4.6. Optimization of Extracting Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piñeiro, Z.; Marrufo-Curtido, A.; Vela, C.; Palma, M. Microwave-assisted extraction of stilbenes from woody vine material. Food Bioprod. Process. 2017, 103, 18–26. [Google Scholar] [CrossRef]
- Angelov, G.; Boyadzhiev, L.; Georgieva, S. Useful Bioactive Substances from Wastes: Recovery of Trans-Resveratrol from Grapevine Stems. Open Chem. Eng. J. 2016, 10, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Langcake, P.; Pryce, R.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol. 1976, 9, 77–86. [Google Scholar] [CrossRef]
- Billet, K.; Houillé, B.; Besseau, S.; Mélin, C.; Oudin, A.; Papon, N.; Courdavault, V.; Clastre, M.; Giglioli-Guivarc’h, N.; Lanoue, A. Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned byproduct. Food Chem. 2018, 240, 1022–1027. [Google Scholar] [CrossRef]
- Howitz, K.; Bietterman, K.J.; Cohen, Y.H.; Lamming, D.W.; Wood, J.; Zipkin, R.E.; Chimg, P.; Kisielewski, A.; Zhang, L.L.; Brandy, S.; et al. Small molecule activators of sirutuins extend Saccharomyces cerevisiae lifespan. Nature 2003, 425, 191–196. [Google Scholar] [CrossRef]
- Murcia, M.A.; Marti’Nez-Tome, M. Antioxidant activity of resveratrol compared with common food additives. J. Food Prot. 2001, 64, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Oryza Oil & Fat Chemical Co., Tokyo, Japan, Resveratrol for Anti-Ageing, Anti-Oxidation, Neuron Protection & Metabolic Syndrome. 2008. Available online: http://www.oryza.co.jp/ (accessed on 3 January 2023).
- Adrian, M.; Jeandet, P.; Veneau, J.; Weston, L.; Bessis, R. Biological Activity of Resveratrol, a Stilbenic Compound from Grapevines, Against Botrytis cinerea, the Causal Agent for Gray Mold. J. Chem. Ecol. 1997, 23, 1689–1702. [Google Scholar] [CrossRef]
- Yang, C.J.; Lin, C.Y.; Hsieh, T.; Olson, S.C.; Wu, J.M. Control of eotaxin-1 expression and release by resveratrol and its metabolites in culture human pulmonary artery endothelial cells. Am. J. Cardiovasc. Dis. 2011, 1, 16–30. [Google Scholar]
- Vidavalur, R.; Otani, H.; Singal, P.; Máulik, N. Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp. Clin. Cordial. 2006, 11, 217–225. [Google Scholar]
- Kumar, V.; Pandy, A.; Jahan, S.; Shukla, R.K.; Kumar, D.; Srivastava, A.; Singh, S.; Rajpurohit, C.; Yadav, S.; Khanna, Z.K. Differential responses of trans-resveratrol on proliferation of neuronal progenitor cells and aged rat hippocampal neuro-genesis. Sci. Rep. 2016, 6, 28142. [Google Scholar] [CrossRef] [Green Version]
- Heger, A.; Ferk, F.; Nerresyam, A. Intake of a resveratrol-containing dietary supplement has no impact on DNA stability. Mutat. Res. 2012, 749, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Jeandet, P.; Clément, C.; Tisserant, L.-P.; Crouzet, J.; Courot, E. Use of grapevine cell cultures for the production of phytostilbenes of cosmetic interest. Comptes Rendus Chim. 2016, 19, 1062–1070. [Google Scholar] [CrossRef]
- Available online: https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX:32016D1190 (accessed on 20 May 2022).
- Ansarian, E.; Aminzare, M.; Azar, H.H.; Mehrasbi, M.R.; Bimakr, M. Nanoemulsion-based basil seed gum edible film containing resveratrol and clove essential oil: In vitro antioxidant properties and its effect on oxidative stability and sensory characteristic of camel meat during refrigeration storage. Meat Sci. 2021, 185, 108716. [Google Scholar] [CrossRef] [PubMed]
- Pastor, C.; Sánchez-González, L.; Chiralt, A.; Cháfer, M.; González-Martínez, C. Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocoll. 2013, 30, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Mendez, J.F.; Flórez, J.Y.; Pérez, E.; Lares, M. Effect of the consumption of chocolate enriched with tryptophan and resveratrol on biochemical markers and oxidative stress in a healthy population. Vitae 2019, 26, 8–16. [Google Scholar] [CrossRef]
- Farhadi, K.; Esmaeilzadeh, F.; Hatami, M.; Forough, M.; Molaie, R. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chem. 2016, 199, 847–855. [Google Scholar] [CrossRef]
- Pugajeva, I.; Pērkons, I.; Górnaś, P. Identification and determination of stilbenes by Q-TOF in grape skins, seeds, juice and stems. J. Food Compos. Anal. 2018, 74, 44–52. [Google Scholar] [CrossRef]
- Zagklis, D.; Paraskeva, C.A. Purification of grape marc phenolic compounds through solvent extraction, membrane filtration and resin adsorption/desorption. Sep. Purif. Technol. 2015, 156, 328–335. [Google Scholar] [CrossRef]
- Brezoiu, A.M.; Matei, C.; Deaconu, M.; Stanciuc, A.-M.; Trifan, A.; Gaspar, A.; Berger, D. Polyphenols extract from grape pomace. Characterization and valorisation through encapsulation into mesoporous silica-type matrices. Food Chem. Toxicol. 2019, 133, 110787. [Google Scholar] [CrossRef]
- Casas, L.; Mantell, C.; Rodríguez, M.; de la Ossa, E.M.; Roldán, A.; De Ory, I.; Caro, I.; Blandino, A. Extraction of resveratrol from the pomace of Palomino fino grapes by supercritical carbon dioxide. J. Food Eng. 2010, 96, 304–308. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Fathi, A.; Perego, P.; Dehghani, F. Extraction of antioxidants from winery wastes using sub-critical water. J. Supercrit. Fluids 2012, 65, 18–24. [Google Scholar] [CrossRef]
- Ewald, P.; Delker, U.; Winterhalter, P. Quantification of stilbenoids in grapevine canes and grape cluster stems with a focus on long-term storage effects on stilbenoid concentration in grapevine canes. Food Res. Int. 2017, 100, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.; Gironés-Vilaplana, A.; Teixeira, A.; Collado-González, J.; Moreno, D.A.; Gil-Izquierdo, A.; Rosa, E.; Domínguez-Perles, R. Evaluation of grape (Vitis vinifera L.) stems from Portuguese varieties as a resource of (poly) phenolic compounds: A comparative study. Food Res. Int. 2014, 65, 375–384. [Google Scholar] [CrossRef]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.P.; Torres, C.; Oliveira, A.M.; Poeta, P. Chemical composition, an-tioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Ji, M.; Li, Q.; Ji, H.; Lou, H. Investigation of the distribution and season regularity of resveratrol in Vitis amurensis via HPLC–DAD–MS/MS. Food Chem. 2014, 142, 61–65. [Google Scholar] [CrossRef]
- Aaviksaar, A.; Haga, M.; Pussa, T.; Roasto, M.; Tsoupras, G. Purification of resveratrol from vine stems. Proc. Est. Acad. Sci. Chem. 2003, 52, 155–164. [Google Scholar] [CrossRef]
- Crăciun, A.L.; Gutt, G. Study on Kinetics of Trans-Resveratrol, Total Phenolic Content, and Antioxidant Activity Increase in Vine Waste during Post-Pruning Storage. Appl. Sci. 2022, 12, 1450. [Google Scholar] [CrossRef]
- Houillé, B.; Besseau, S.; Courdavault, V.; Oudin, A.; Glévarec, G.; Delanoue, G.; Guérin, L.; Simkin, A.J.; Papon, N.; Clastre, M.; et al. Biosynthetic origin of resveratrol acummulation in grape canes during pastharvest storage. J. Agric. Food Chem. 2015, 63, 1631–1638. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Biais, B.; Richard, T.; Puertas, B.; Waffo-Teguo, P.; Merillon, J.-M.; Cantos-Villar, E. Grapevine cane’s waste is a source of bioactive stilbenes. Ind. Crops Prod. 2016, 94, 884–892. [Google Scholar] [CrossRef]
- Aresta, A.; Cotugno, P.; De Vietro, N.; Massari, F.; Zambonin, C. Determination of Polyphenols and Vitamins in Wine-Making by-Products by Supercritical Fluid Extraction (SFE). Anal. Lett. 2020, 53, 2585–2595. [Google Scholar] [CrossRef]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Maamoun, M.A.I. An Insight into the Brilliant Benefits of Grape Waste. In Mediterranean Fruits Bio-Wastes; Springer: Cham, Switzerland, 2022; pp. 433–465. [Google Scholar]
- Bimakr, M.; Rahman, R.A.; Taip, F.S.; Adzahan, N.M.; Sarker, M.Z.I.; Ganjloo, A. Optimization of ultra-sound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition. Molecules 2012, 17, 11748–11762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, D.A.; Stringer, S.J.; Spiers, J.D. Stilbene, ellagic acid, flavonol, and phenolic content of muscadine grape (Vitis rotundifolia Michx.) Cultivars. J. Pharm. Crops 2012, 3, 69–77. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Rayne, S.; Karacabey, E.; Mazza, G. Grape cane waste as a source of trans-resveratrol and trans-viniferin: High-value phytochemicals with medicinal and anti-phytopathogenic applications. Ind. Crop. Prod. 2008, 27, 335–340. [Google Scholar] [CrossRef]
- Soural, I.; Vrchotová, N.; Tříska, J.; Balík, J.; Horník, Š.; Cuřínová, P.; Sýkora, J. Various Extraction Methods for Obtaining Stilbenes from Grape Cane of Vitis vinifera L. Molecules 2015, 20, 6093–6112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piñeiro, Z.; Marrufo-Curtido, A.; Serrano, M.J.; Palma, M. Ultrasound-Assisted Extraction of Stilbenes from Grape Canes. Molecules 2016, 21, 784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pintać, D.; Majkić, T.; Torović, L.; Orčić, D.; Beara, I.; Simin, N.; Lesjak, M. Solvent selection for efficient ex-traction of bioactive compounds from grape pomace. Ind. Crops Prod. 2018, 111, 379–390. [Google Scholar] [CrossRef]
- Romero-Pérez, A.I.; Lamuela-Raventós, R.M.; Andrés-Lacueva, C.; de la Torre-Boronat, M.C. Method for the Quantitative Extraction of Resveratrol and Piceid Isomers in Grape Berry Skins. Effect of Powdery Mildew on the Stilbene Content. J. Agric. Food Chem. 2000, 49, 210–215. [Google Scholar] [CrossRef]
- Jesus, M.S.; Genisheva, Z.; Romaní, A.; Pereira, R.N.; Teixeira, J.A.; Domingues, L. Bioactive compounds recovery optimization from vine pruning residues using conventional heating and microwave-assisted extraction methods. Ind. Crops Prod. 2019, 132, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Gromova, A.S.; Tyukavkina, N.A.; Luckiy, V.I.; Kalabin, G.A.; Kushnarev, D.F. Oxystilbenes in the bark of Pinus sibirica. Khim. Prir. Soedin. 1975, 677–682. (In Russian) [Google Scholar]
- Piyaratne, P.S. Extraction and Purification of (E)-Resveratrol from the Bark of Maine’s Native Spruces. Ph.D. Thesis, University of Maine, Orono, ME, USA, 2018. [Google Scholar]
- Pajović-Šćepanović, R.; Wendelin, S.; Eder, R. Phenolic composition and varietal discrimination of Montenegrin red wines (Vitis vinifera var. Vranac, Kratošija, and Cabernet Sauvignon). Eur. Food Res. Technol. 2018, 244, 2243–2254. [Google Scholar] [CrossRef]
- Garcia, L.; Garcia, R.; Pacheco, G.; Sutili, F.; De Souza, R.; Mansur, E.; Leal, I. Optimized Extraction of Resveratrol from Arachis repens Handro by Ultrasound and Microwave: A Correlation Study with the Antioxidant Properties and Phenol Contents. Sci. World J. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gambuti, A.; Capuano, R.; Lecce, L.; Fragasso, M.G.; Moio, L. Extraction of phenolic compounds from ‘Aglianico’and ‘Uva di Troia’grape skins and seeds in model solutions: Influence of ethanol and maceration time. Vitis 2009, 48, 193–200. [Google Scholar]
- Cebrián, C.; Sánchez-Gómez, R.; Salinas, M.R.; Alonso, G.L.; Zalacain, A. Effect of post-pruning vine-shoots storage on the evolution of high-value compounds. Ind. Crops Prod. 2017, 109, 730–736. [Google Scholar] [CrossRef]
Solvent Type | Resveratrol, mg/kg D.W. | F-Value |
---|---|---|
Et 10% | 0.29 (0.007) af | 1 × 107 *** |
Et 20% | 0.46 (0.024) ae | |
Et 30% | 1.27 (0.017) z | |
Et 40% | 1.58 (0.018) w | |
Et 50% | 3.11 (0.039) t | |
Et 60% | 3.28 (0.033) s | |
Et 70% | 18.51 (0.012) o | |
Et 80% | 66.86 (0.012) h | |
Et 90% | 39.00 (0.014) l | |
Et 96% | 55.11 (0.014) k | |
Met 10% | 0.44 (0.027) ae | |
Met 20% | 1.27 (0.028) z | |
Met 30% | 1.13 (0.024) aa | |
Met 40% | 0.95 (0.012) ad | |
Met 50% | 1.00 (0.010) ac | |
Met 60% | 1.93 (0.012) v | |
Met 70% | 5.73 (0.031) p | |
Met 80% | 33.86 (0.012) m | |
Met 90% | 75.30 (0.020) f | |
Met 99.9% | 84.06 (0.015) d | |
Acet 10% | 1.34 (0.014) y | |
Acet 20% | 1.48 (0.012) x | |
Acet 30% | 1.05 (0.011) ab | |
Acet 40% | 2.02 (0.012)u | |
Acet 50% | 1.94 (0.011) v | |
Acet 60% | 4.72 (0.018) r | |
Acet 70% | 4.90 (0.025) q | |
Acet 80% | 18.69 (0.018) n | |
Acet 90% | 66.46 (0.020) i | |
Acet 99.9% | 61.29 (0.012) j | |
Met-HCl 99:1 | 92.06 (0.013) c | |
Met-HCl-H2O 1:88:19 | 67.84 (0.012) g | |
Et-Diet 1:4 | 76.80 (0.009) e | |
Et-Diet 1:1 | 92.12 (0.012) b | |
Et-Diet 4:1 | 147.14 (0.011) a |
Factor | −1 | 0 | 1 |
---|---|---|---|
Ratio S/L (g/mL) A | 1:20 | 1:35 | 1:50 |
Time (days) B | 2 | 4 | 6 |
Particle size intervals (µm) C | <125 | 500–350 | >1000 |
No. | Ratio S/L (g/mL) | Time (Days) | Particle Size Intervals (µm) | Measured Response | Predicted Response |
---|---|---|---|---|---|
1 | 1:35 | 6 | 1 mm | 148.55 | 147.43 |
2 | 1:20 | 2 | 500 | 67.13 | 91.65 |
3 | 1:20 | 4 | 1 | 43.91 | 42.95 |
4 | 1:20 | 6 | 500 | 43.70 | 45.78 |
5 | 1:50 | 2 | 500 | 128.12 | 126.04 |
6 | 1:50 | 4 | 125 | 89.17 | 90.13 |
7 | 1:35 | 2 | 125 | 108.64 | 109.76 |
8 | 1:20 | 4 | 125 | 92.35 | 66.71 |
9 | 1:50 | 4 | 1 | 158.98 | 184.62 |
10 | 1:20 | 2 | 1 | 184.39 | 160.83 |
11 | 1:20 | 6 | 125 | 104.2 | 127.76 |
12 | 1:50 | 6 | 500 | 201.02 | 176.50 |
13 | 1:35 | 4 | 500 | 205.16 | 205.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crăciun, A.L.; Gutt, G. Optimization of Experimental Parameters in the Solvent Extraction of Trans-Resveratrol from Pruning Waste of Vitis vinifera, Fetească Neagră Variety. Appl. Sci. 2023, 13, 823. https://doi.org/10.3390/app13020823
Crăciun AL, Gutt G. Optimization of Experimental Parameters in the Solvent Extraction of Trans-Resveratrol from Pruning Waste of Vitis vinifera, Fetească Neagră Variety. Applied Sciences. 2023; 13(2):823. https://doi.org/10.3390/app13020823
Chicago/Turabian StyleCrăciun, Alina Lenuța, and Gheorghe Gutt. 2023. "Optimization of Experimental Parameters in the Solvent Extraction of Trans-Resveratrol from Pruning Waste of Vitis vinifera, Fetească Neagră Variety" Applied Sciences 13, no. 2: 823. https://doi.org/10.3390/app13020823
APA StyleCrăciun, A. L., & Gutt, G. (2023). Optimization of Experimental Parameters in the Solvent Extraction of Trans-Resveratrol from Pruning Waste of Vitis vinifera, Fetească Neagră Variety. Applied Sciences, 13(2), 823. https://doi.org/10.3390/app13020823