Cosmeceuticals and Thalassotherapy: Recovering the Skin and Well-Being after Cancer Therapies
Abstract
:1. Introduction
2. Skin Disorders after Oncological Therapies
2.1. Xerosis
2.2. Skin Rash
2.3. Toxic Erithema in Chemotherapy
2.4. Pruritus
2.5. Ulcerations
2.6. Hand–Foot Syndrome
2.7. Linphedema
2.8. Alopecia and Other Hair Disorders
2.9. Nail Disorders
2.10. Mucosal Disorders
2.11. Other Skin Alterations Derived from Chemotherapy
2.11.1. Hyperpigmentation
2.11.2. Photosensitivity
2.11.3. Vascular Disorders
2.12. Radiodermatitis
2.13. Other Skin Problems
- -
- Hypersensitivity to certain cosmetics, with a tendency to redden.
- -
- Color changes, vascular or brown spots.
- -
- Alteration of the pores, which become more evident.
- -
- Facial telangiectasias.
- -
- Flaccidity increases (cheekbones accentuate and eyes sink).
- -
- Sallow tone and loss of luminosity.
3. Cosmeceuticals for Skin Care of Oncologic Patient
3.1. Oils and Butters
3.2. Vitamins
3.2.1. Vitamin A and Its Precursor Beta-Carotene
3.2.2. B Vitamins
3.2.3. Vitamin C or Ascorbic Acid
3.2.4. Vitamin D (Cholecalciferol, Ergocalciferol)
3.2.5. Vitamin E (⍺-Tocopherol)
3.2.6. Antioxidants
3.2.7. Hydrophilic Film-Forming Substances
3.2.8. Thermal Spring Waters
3.2.9. Clays
3.2.10. Peloids
3.2.11. Plant Extracts and Other Botanicals
3.2.12. Algae and Derivatives
3.2.13. Other Compounds of Interest
4. Thalassotherapy for Improving Well-Being and Post-Oncology Recovery
4.1. Sea Water: Effects on Skin
4.2. Procedures and Techniques of Thalassotherapy
4.3. Thalassotherapy and Post-Oncological Recovery
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Titeca, G.; Poot, F.; Cassart, D.; Defays, B.; Pirard, D.; Comas, M.; Vereecken, P.; Verschaevec, V.; Simon, P.; Heenen, M. Impact of cosmetic care on quality of life in breast cancer patients during chemotherapy and radiotherapy: An initial randomized controlled study. J. Eur. Acad. Dermatol. Venereol. 2007, 21, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Haley, A.C.; Calahan, C.; Gandhi, M.; West, D.P.; Rademaker, A.; Lacouture, M.E. Skin care management in cancer patients: An evaluation of quality of life and tolerability. Support Care Cancer 2011, 19, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Oliveri, S.; Faccio, F.; Pizzoli, S.; Monzani, D.; Redaelli, C.; Indino, M.; Pravettoni, G. A pilot study on aesthetic treatments performed by qualified aesthetic practitioners: Efficacy on health-related quality of life in breast cancer patients. Qual. Life Res. 2019, 28, 1543–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakeda, T.; Okamura, T.; Kawahara, T.; Heike, Y. Camouflage makeup improves quality of life in cancer patients with treatment-related skin changes. Tumori J. 2020, 106, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Sibaud, V.; Guerrero, D.; Georgescu, V. Long lasting cutaneous adverse events after breast cancer and evaluation of hydrotherapy as supportive care. Ann. Dermatol. Venereol. 2020, 147, 1S37–1S43. [Google Scholar] [CrossRef]
- Lacouture, M.; Sibaud, V. Toxic Side Effects of Targeted Therapies and Immunotherapies Affecting the Skin, Oral Mucosa, Hair, and Nails. Am. J. Clin. Dermatol. 2018, 19, 31. [Google Scholar] [CrossRef] [Green Version]
- Kaszycki, M.A.; Leventhal, J. Review of Immune Checkpoint Inhibitors and Radiotherapy Related Skin Toxicities. J. Dermatol. Skin Sci. 2021, 3, 10–19. [Google Scholar] [CrossRef]
- Li, Y.; Fu, R.; Jiang, T.; Duan, D.; Wu, Y.; Li, C.; Li, Z.; Ni, R.; Li, L.; Liu, Y. Mechanism of Lethal Skin Toxicities Induced by Epidermal Growth Factor Receptor Inhibitors and Related Treatment Strategies. Front. Oncol. 2022, 12, 804212. [Google Scholar] [CrossRef]
- Galimont-Collen, A.; Vos, L.; Lavrijsen, A.; Ouwerkerk, J.; Gelderblom, H. Classification and management of skin, hair, nail and mucosal side-effects of epidermal growth factor receptor (EGFR) inhibitors. Eur. J. Cancer 2007, 43, 845–851. [Google Scholar] [CrossRef]
- Reyes-Habito, C.M.; Roh, E.K. Cutaneous reactions to chemotherapeutic drugs and targeted therapy for cancer. Part II. Targeted therapies. J. Am. Acad. Dermatol. 2014, 71, 217. [Google Scholar] [CrossRef]
- Jatoi, A.; Green, E.M.; Rowland, J.K.M.; Sargent, D.J.; Alberts, S.R. Clinical Predictors of Severe Cetuximab-Induced Rash: Observations from 933 Patients Enrolled in North Central Cancer Treatment Group Study N0147. Oncology 2009, 77, 120–123. [Google Scholar] [CrossRef] [Green Version]
- Linsley, C.; Aziz, M. A Case of Azacitidine-Induced Toxic Erythema of Chemotherapy. SKIN J. Cutan. Med. 2019, 3. [Google Scholar] [CrossRef]
- Sibaud, V. Toxic erythema of chemotherapy. Ann. Dermatol. Venereol. 2015, 142, 81–84. [Google Scholar] [CrossRef]
- Hunjan, M.K.; Nowsheen, S.; Ramos-Rodriguez, A.J.; Hashmi, S.K.; Bridges, A.G.; Lehman, J.S.; El-Azhary, R. Clinical and histopathological spectrum of toxic erythema of chemotherapy in patients who have undergone allogeneic hematopoietic cell transplantation. Hematol. Oncol. Stem Cell Ther. 2019, 12, 19–25. [Google Scholar] [CrossRef]
- Bolognia, J.L.; Cooper, D.L.; Glusac, E.J. Toxic erythema of chemotherapy: A useful clinical term. J. Am. Acad. Dermatol. 2008, 59, 524–529. [Google Scholar] [CrossRef]
- Martorell-Calatayud, A.; Sanmartín, O.; Botella-Estrada, R.; Balmer, N.N.; Serra-Guillén, C.; Moyano, E.G.; Traves-Zapata, V.; Requena, C.; Nagore, E.; Llombart-Cussac, B.; et al. Chemotherapy-related bilateral dermatitis associated with eccrine squamous syringometaplasia: Reappraisal of epidemiological, clinical, and pathological features. J. Am. Acad. Dermatol. 2011, 64, 1092–1103. [Google Scholar] [CrossRef]
- Pathania, Y.S.; Budania, A. Toxic erythema of chemotherapy. QJM Int. J. Med. 2021, 114, 611–612. [Google Scholar] [CrossRef]
- Sibaud, V.; Delord, J.P.; Robert, C. Dermatology of Cancer Treatments: Practical Guide; Editions Privat: Toulouse, France, 2015; pp. 59–64. ISBN 978-2-7089-3947-9. (In Spanish) [Google Scholar]
- Larson, V.A.; Tang, O.; Ständer, S.; Kang, S.; Kwatra, S.G. Association between itch and cancer in 16,925 patients with pruritus: Experience at a tertiary care center. J. Am. Acad. Dermatol. 2019, 80, 931–937. [Google Scholar] [CrossRef]
- D’Epiro, S.; Salvi, M.; Luzi, A. Drug cutaneous side effect: Focus on skin ulceration. Clin. Ter. 2014, 165, e323–e329. [Google Scholar] [CrossRef]
- Miller, K.K.; Gorcey, L.; McLellan, B.N. Chemotherapy-induced hand-foot syndrome and nail changes: A review of clinical presentation, etiology, pathogenesis, and management. J. Am. Acad. Dermatol. 2014, 71, 787–794. [Google Scholar] [CrossRef]
- Kwakman, J.J.; Elshot, Y.S.; Punt, C.J.; Koopman, M. Management of cytotoxic chemotherapy-induced hand-foot syndrome. Oncol. Rev. 2020, 14, 442. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, P. Lymphedema in Cancer Patients. In The MASCC Textbook of Cancer Supportive Care and Survivorship; Olver, I., Ed.; Springer: Cham, Switzerland, 2018; pp. 323–335. [Google Scholar] [CrossRef]
- Thappa, D.M.; Naveed, S.; Dubashi, B.; Pandjatcharam, J.; Munisamy, M.; Singh, N. Mucocutaneous adverse reactions of cancer chemotherapy and chemoradiation. Indian J. Dermatol. 2019, 64, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Anupama, C.; Anuradha, H.V.; Vinayak, V.M. Trastuzumab induced radiation recall dermatitis: An interesting case. Int. J. Basic Clin. Pharmacol. 2018, 7, 2465–2467. [Google Scholar] [CrossRef]
- Seité, S.; Bensadoun, R.-J.; Mazer, J.-M. Prevention and treatment of acute and chronic radiodermatitis. Breast Cancer. 2017, 9, 551–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spasić, B.; Jovanović, M.; Golušin, Z.; Ivanov, O.; Tešanović, D. Radiodermatitis—Review of treatment options. Serbian J. Dermatol. Venerol. 2018, 10, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Antepazo, E.; Mourelle, M.L. Restorative Aesthetics. Specialization in Post-Traumatic and Post-Surgical Care; Estética & Wellness: Madrid, Spain, 2017; pp. 141–160. ISBN 978-84-947229-0-5. (In Spanish) [Google Scholar]
- Lacouture, M.E.; Patel, A.B.; Rosenberg, J.E.; O’Donnell, P.H. Management of Dermatologic Events Associated With the Nectin-4-directed Antibody-Drug Conjugate Enfortumab Vedotin. Oncologist 2022, 27, e223–e232. [Google Scholar] [CrossRef]
- Lacouture, M.; Choi, J.; Ho, A.; Leventhal, J.; McLellan, B.; Andriessen, A.; Sauder, M.; Mitchell, E. US Cutaneous Oncodermatology Management (USCOM): A Practical Algorithm. J. Drugs Dermatol. 2021, 20, s3–s19. [Google Scholar] [CrossRef]
- Girnita, A.; Lorentzen, H.; Kauppi, S.; Lynde, C.; Sauder, M.; Schmidt, H.; Andriessen, A.; Stensvold, A. Supplement individual article: Skincare for Cancer Patients in Scandinavia. J. Drugs Dermatol. 2021, 20, s4–s14. [Google Scholar] [CrossRef]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy. Cosmetics 2017, 4, 46. [Google Scholar] [CrossRef]
- Sabater, I.; Mourelle, M.L. Cosmetics Applied to Comprehensive Aesthetics and Well-Being, 2nd ed.; Estética & Wellness: Madrid, Spain, 2019; pp. 19–32. ISBN 978-84-947229-2-9. (In Spanish) [Google Scholar]
- Chirinos, R.; Zuloeta, G.; Pedreschi, R.; Mignolet, E.; Larondelle, Y.; Campos, D. Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chem. 2013, 14, 1732–1739. [Google Scholar] [CrossRef]
- Krautheim, A.; Gollnick, H.P.M. Vitamins and skin. In Retinoids and Carotenoids in Dermatology; Vahlquist, A., Duvic, M., Eds.; Informa Healthcare: New York, NY, USA, 2005; pp. 291–308. [Google Scholar]
- Tanno, O.; Ota, Y.; Kitamura, N.; Katsube, T.; Inoue, S. Nicotinamide increases biosynthesis of ceramides as well as other stratum corneum lipids to improve the epidermal permeability barrier. Br. J. Dermatol. 2000, 143, 524–531. [Google Scholar] [CrossRef]
- Wohlrab, J.; Bangemann, N.; Kleine-Tebbe, A.; Thill, M.; Kuemmel, S.; Grischke, E.-M.; Richter, R.; Seite, S.; Lueftner, D. Barrier protective use of skin care to prevent chemotherapy-induced cutaneous symptoms and to maintain quality of life in patients with breast cancer. Breast Cancer 2014, 6, 115–122. [Google Scholar] [CrossRef]
- Ebner, F.; Heller, A.; Rippke, F.; Tausch, I. Topical Use of Dexpanthenol in Skin Disorders. Am. J. Clin. Dermatol. 2002, 3, 427–433. [Google Scholar] [CrossRef]
- Censabella, S.; Claes, S.; Orlandini, M.; Braekers, R.; Thijs, H.; Bulens, P. Retrospective study of radiotherapy-induced skin reactions in breast cancer patients: Reduced incidence of moist desquamation with a hydroactive colloid gel versus dexpanthenol. Eur. J. Oncol. Nurs. 2014, 18, 499–504. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, L.; Wang, Q.; Shen, J. Pyridoxine for Prevention of Hand-Foot Syndrome Caused by Chemotherapy: A Systematic Review. PLoS ONE 2013, 8, e72245. [Google Scholar] [CrossRef] [Green Version]
- Denda, M.; Inoue, K.; Fuziwara, S.; Denda, S. P2X Purinergic Receptor Antagonist Accelerates SkinBarrier Repair and Prevents Epidermal Hyperplasia Inducedby Skin Barrier Disruption. J. Investig. Dermatol. 2013, 119, 1034–1040. [Google Scholar] [CrossRef] [Green Version]
- Depeint, F.; Bruce, W.R.; Shangari, N.; Mehta, R.; O’Brien, P.J. Mitochondrial function and toxicity: Role of the B vitamin family on mitochondrial energy metabolism. Chem. Biol. Interact. 2006, 163, 94–112. [Google Scholar] [CrossRef]
- Depeint, F.; Bruce, W.R.; Shangari, N.; Mehta, R.; O’Brien, P.J. Mitochondrial function and toxicity: Role of B vitamins on the one-carbon transfer pathways. Chem. Interact. 2006, 163, 113–132. [Google Scholar] [CrossRef]
- Szuster, M.; Uram, S.; Filipowicz-Rachwał, A.; Wołowiec, S.; Wałajtys-Rode, E. Evaluation of the localization and biological effects of PAMAM G3 dendrimer-biotin/pyridoxal conjugate as HaCaT keratinocyte targeted nanocarrier. Acta Biochim. Pol. 2019, 66, 191–200. [Google Scholar] [CrossRef]
- Pinnell, S.R.; Yang, H.; Omar, M.; Monteiro-Riviere, N.; DeBuys, H.V.; Walker, L.C.; Wang, Y.; Levine, M. Topical L-Ascorbic Acid: Percutaneous Absorption Studies. Dermatol. Surg. 2001, 27, 137–142. [Google Scholar] [CrossRef]
- Arnold, F.; Mercier, M.; Luu, M.T. Metabolism of Vitamin D in Skin: Benefits for Skin Care Applications. Cosmet. Toilet. 2009, 124, 40–46. [Google Scholar]
- Bikle, D.D. Vitamin D, Calcium, and the Epidermis. In Vitamin D (Volume 1): Biochemistry, Physiology and Diagnostics, 4th ed.; Feldman, D., Ed.; Academic Press: London, UK, 2018; pp. 527–544. [Google Scholar] [CrossRef]
- Nasser, N.J.; Fenig, S.; Ravid, A.; Nouriel, A.; Ozery, N.; Gardyn, S.; Koren, R.; Fenig, E. Vitamin D ointment for prevention of radiation dermatitis in breast cancer patients. NPJ Breast Cancer 2017, 3, 10. [Google Scholar] [CrossRef]
- Thiele, J.J.; Ekanayake-Mudiyanselage, S. Vitamin E in human skin: Organ-specific physiology and considerations for its use in dermatology. Mol. Asp. Med. 2007, 28, 646–667. [Google Scholar] [CrossRef] [PubMed]
- Aykin-Burns, N.; Pathak, R.; Boerma, M.; Kim, T.; Hauer-Jensen, M. Utilization of Vitamin E Analogs to Protect Normal Tissues While Enhancing Antitumor Effects. Semin. Radiat. Oncol. 2019, 29, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, T.M.; Johnson, T.; Peterson, N.; Homer, L.; Walts, D.; Johnson, N. Combination glutathione and anthocyanins as an alternative for skin care during external-beam radiation. Am. J. Surg. 2005, 189, 627–631. [Google Scholar] [CrossRef]
- Burke, K.E. Protection From Environmental Skin Damage With Topical Antioxidants. Clin. Pharmacol. Ther. 2018, 105, 36–38. [Google Scholar] [CrossRef] [Green Version]
- Weindl, G.; Schaller, M.; Schäfer-Korting, M.; Korting, H.C. Hyaluronic Acid in the Treatment and Prevention of Skin Diseases: Molecular Biological, Pharmaceutical and Clinical Aspects. Skin Pharmacol. Physiol. 2004, 17, 207–213. [Google Scholar] [CrossRef]
- Primavera, G.; Carrera, M.; Berardesca, E.; Pinnaro, P.; Messina, M.; Arcangeli, G. A Double-Blind, Vehicle-Controlled Clinical Study to Evaluate the Efficacy of MAS065D (XClair™), a Hyaluronic Acid-Based Formulation, in the Management of Radiation-Induced Dermatitis. Cutan. Ocul. Toxicol. 2006, 25, 165–171. [Google Scholar] [CrossRef]
- Elmashad, N.H.; Fatma Zakaria Hussen, F.Z.; Eltatawy, R.A. Efficacy of Topical Hyaluronic acid during adjuvant Breast Cancer Radiotherapy for radiation dermatitis prophylaxis. Life Sci. J. 2015, 12, 237–238. [Google Scholar]
- Guerrero, D.; Garrigue, E. Eau thermale d’Avène et dermatite atopique. Ann. Dermatol. Venereol. 2017, 144, S27–S34. [Google Scholar] [CrossRef]
- Nocera, T.; Jean-Decoster, C.; Georgescu, V.; Guerrero, D. Benefits of Avène thermal hydrotherapy in chronic skin diseases and dermatological conditions: An overview. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 49–52. [Google Scholar] [CrossRef]
- Zöller, N.; Valesky, E.; Hofmann, M.; Bereiter-Hahn, J.; Bernd, A.; Kaufmann, R.; Meissner, M.; Kippenberger, S. Impact of Different Spa Waters on Inflammation Parameters in Human Keratinocyte HaCaT Cells. Ann. Dermatol. 2015, 27, 709–714. [Google Scholar] [CrossRef] [Green Version]
- Castex-Rizzi, N.; Charveron, M.; Merial-Kieny, C. Inhibition of TNF-alpha induced-adhesion molecules by Avène Thermal Spring Water in human endothelial cells. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 6–11. [Google Scholar] [CrossRef]
- Deleuran, M.; Georgescu, V.; Jean-Decoster, C. An Emollient Containing Aquaphilus dolomiae Extract is Effective in the Management of Xerosis and Pruritus: An International, Real-World Study. Dermatol. Ther. 2020, 10, 1013–1029. [Google Scholar] [CrossRef]
- Rasmont, V.; Valois, A.; Gueniche, A.; Sore, G.; Kerob, D.; Nielsen, M.; Berardesca, E. Vichy volcanic mineralizing water has unique properties to strengthen the skin barrier and skin defenses against exposome aggressions. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 5–15. [Google Scholar] [CrossRef]
- Eliasse, Y.; Galliano, M.-F.; Redoules, D.; Espinosa, E. Effect of thermal spring water on human dendritic cell inflammatory response. J. Inflamm. Res. 2019, 12, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Eliasse, Y.; Redoules, D.; Espinosa, E. Impact of Avène Thermal Spring Water on immune cells. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 21–26. [Google Scholar] [CrossRef]
- Hirabayashi, T.; Yamashita, M.; Wada, N.; Takenoya, F.; Ikeda, H.; Kamei, J.; Ryushi, T.; Yamamoto, N.; Shioda, S. Analgesic effect of mineral cream containing natural spa minerals for use on the skin. Biomed. Res. 2018, 39, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Seité, S.; Mahe, Y.F.; Perez, M.-J.; Tacheau, C.; Fanchon, C.; Martin, R.; Rousset, F. A new Vitreoscilla filiformis extract grown on spa water-enriched medium activates endogenous cutaneous antioxidant and antimicrobial defenses through a potential Toll-like receptor 2/protein kinase C, zeta transduction pathway. Clin. Cosmet. Investig. Dermatol. 2013, 6, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Zeichner, J.; Seite, S. From Probiotic to Prebiotic Using Thermal Spring Water. J. Drugs Dermatol. 2018, 17, 657–662. [Google Scholar]
- Aries, M.-F.; Hernandez-Pigeon, H.; Vaissière, C.; Delga, H.; Caruana, A.; Lévêque, M.; Bourrain, M.; Helffer, K.R.; Chol, B.; Nguyen, T.; et al. Anti-inflammatory and immunomodulatory effects of Aquaphilus dolomiae extract on in vitro models. Clin. Cosmet. Investig. Dermatol. 2016, 9, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Noizet, M.; Bianchi, P.; Galliano, M.; Caruana, A.; Brandner, J.; Bessou-Touya, S.; Duplan, H. Broad spectrum repairing properties of an extract of Aquaphilus dolomiae on in vitro and ex vivo models of injured skin. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Chol, B.; Maitre, M.; Ravard-Helffer, K.; Farinole, F.; Lestienne, F.; Castex-Rizzi, N. Additional pharmacological activity of I-modulia and generation of two newly designed extracts of Aquaphilus dolomiae culture for dermocosmetic actives. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Lestienne, F.; Viodé, C.; Ceruti, I.; Carrere, S.; Bessou-Touya, S.; Duplan, H.; Castex-Rizzi, N. Cutaneous sensitivity modulation by Aquaphilus dolomiae extract-G3 on in vitro models of neuro-inflammation. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Galliano, M.; Bäsler, K.; Caruana, A.; Mias, C.; Bessou-Touya, S.; Brandner, J.; Duplan, H. Protective effect of Aquaphilus dolomiae extract-G1, ADE-G1, on tight junction barrier function in a Staphylococcus aureus-infected atopic dermatitis model. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 30–36. [Google Scholar] [CrossRef]
- Gueniche, A.; Valois, A.; Kerob, D.; Rasmont, V.; Nielsen, M. A combination of Vitreoscilla filiformis extract and Vichy volcanic mineralizing water strengthens the skin defenses and skin barrier. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 16–25. [Google Scholar] [CrossRef]
- Gueniche, A.; Valois, A.; Calixto, L.S.; Hevia, O.S.; Labatut, F.; Kerob, D.; Nielsen, M. A dermocosmetic formulation containing Vichy volcanic mineralizing water, Vitreoscilla filiformis extract, niacinamide, hyaluronic acid, and vitamin E regenerates and repairs acutely stressed skin. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 26–34. [Google Scholar] [CrossRef]
- Lüftner, D.; Dell’Acqua, V.; Selle, F.; Khalil, A.; Leonardi, M.C.; Tomás, A.D.L.T.; Shenouda, G.; Fernandez, J.R.; Orecchia, R.; Moyal, D.; et al. Evaluation of supportive and barrier-protective skin care products in the daily prevention and treatment of cutaneous toxicity during systemic chemotherapy. OncoTargets Ther. 2018, 11, 5865–5872. [Google Scholar] [CrossRef] [Green Version]
- Vendrely, V.; Mayor-Ibarguren, A.; Stennevin, A.; Ortiz-Brugués, A. An Emollient PLUS Balm Is Useful for the Management of Xerosis in Patients Treated for Cancer: A Real-World, Prospective, Observational, Multicenter Study. Dermatol. Ther. 2022, 12, 683–699. [Google Scholar] [CrossRef]
- Ribet, V.; Salas, S.; Levecq, J.; Bastit, L.; Alfonsi, M.; De Rauglaudre, G.; Talon, B.; Allavena, C.; Miot, C.; Boisseau, J.; et al. Interest of a sterilised anti-burning gel in radiation dermatitis: Results of a comparative study. Ann. Dermatol. Venereol. 2008, 1, 5–10. [Google Scholar] [CrossRef]
- Guerrero, D.; Calmette, R. Therapeutic patient education: The Avène-Les-Bains experience. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 53–57. [Google Scholar] [CrossRef]
- García-Villén, F.; Faccendini, A.; Miele, D.; Ruggeri, M.; Sánchez-Espejo, R.; Borrego-Sánchez, A.; Cerezo, P.; Rossi, S.; Viseras, C.; Sandri, G. Wound Healing Activity of Nanoclay/Spring Water Hydrogels. Pharmaceutics 2020, 12, 467. [Google Scholar] [CrossRef]
- Mourelle, M.L.; Gómez, C.P. Thermal spring cosmetics. Applications in the field of health and beauty. In Proceedings of the Ist International Congress on Water Healing SPA and Quality of Life, Madrid, Spain, 23–24 September 2015; pp. 389–398. (In Spanish). [Google Scholar]
- Meijide, R.; Mourelle, M.L. Dermatological disorders and dermothermal cosmetics. In Técnicas y Tecnologías en Hidrología Médica e Hidroterapia; Hernàndez Torres, A., Ed.; Agencia de Evaluación de Tecnologías Sanitarias: Madrid, Spain; Instituto Carlos III: Madrid, Spain, 2006; pp. 175–194. ISBN 84-95463-33-4. (In Spanish) [Google Scholar]
- Meijide, R.; Mourelle, M.L.; Vela, A.; Muíños, E.; Fernández-Bruguera, E.; Gómez, C.P. Pelotherapy in dermatological pathologies: Clinical applications. In Peloterapia: Aplicaciones Médicas y Cosméticas de Fangos Termales; Hernàndez Torres, A., Ed.; Fundación Bílbilis: Madrid, Spain, 2014; pp. 169–183. ISBN 978-84-617-0086-8. (In Spanish) [Google Scholar]
- Al Bawab, A.; Bozeya, A.; Abu-Mallouh, S.; Daqour, I.; Abu-Zurayk, R.A. The Dead Sea Mud and Salt: A Review of Its Characterization, Contaminants, and Beneficial Effects. IOP Conf. Ser. Mater. Sci. Eng. 2018, 305, 012003. [Google Scholar] [CrossRef]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Microalgal Peloids for Cosmetic and Wellness Uses. Mar. Drugs 2021, 19, 666. [Google Scholar] [CrossRef]
- Sherwani, M.A.; Tufail, S.; Muzaffar, A.F.; Yusuf, N. The skin microbiome and immune system: Potential target for chemoprevention? Photodermatol. Photoimmunol. Photomed. 2018, 34, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, M.; Donelli, D. Mud therapy and skin microbiome: A review. Int. J. Biometeorol. 2018, 62, 2037–2044. [Google Scholar] [CrossRef]
- Richardson, B.N.; Lin, J.; Buchwald, Z.S.; Bai, J. Skin Microbiome and Treatment-Related Skin Toxicities in Patients With Cancer: A Mini-Review. Front. Oncol. 2022, 15, 924849. [Google Scholar] [CrossRef]
- Sahu, P.K.; Giri, D.D.; Singh, R.; Pandey, P.; Gupta, S.; Shrivastava, A.K.; Kumar, A.; Pandey, K.D. Therapeutic and Medicinal Uses of Aloe vera: A Review. Pharmacol. Pharm. 2013, 4, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Bosley, C.; Smith, J.; Baratti, P.; Pritchard, D.; Xiong, X.; Li, C.; Merchant, T. A phase III trial comparing an anionic phospholipid-based (APP) cream and aloe vera-based gel in the prevention and treatment of radiation dermatitis. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, S438. [Google Scholar] [CrossRef]
- Lakhani, R.; Mahadalkar, P. Effectiveness of topical application of aloe vera gel on radiation induced mucositis in patients receiving radiotherapy for head and neck malignancies. IJNR 2017, 3, 92–98. [Google Scholar]
- Hoopfer, D.; Holloway, C.; Gabos, Z.; Alidrisi, M.; Chafe, S.; Krause, B.; Lees, A.; Mehta, N.; Tankel, K.; Strickland, F.; et al. Three-Arm Randomized Phase III Trial: Quality Aloe and Placebo Cream Versus Powder as Skin Treatment During Breast Cancer Radiation Therapy. Clin. Breast Cancer 2014, 15, 181–190.e4. [Google Scholar] [CrossRef] [PubMed]
- McQuestion, M. Evidenced-based skin care management in radiation therapy. Semin. Oncol. Nurs. 2006, 22, 163–173. [Google Scholar] [CrossRef] [PubMed]
- McQuestion, M. Evidence-Based Skin Care Management in Radiation Therapy: Clinical Update. Semin. Oncol. Nurs. 2011, 27, e1–e17. [Google Scholar] [CrossRef] [PubMed]
- Tastekin, D.; Tambas, M.; Kilic, K.; Erturk, K.; Arslan, D. The efficacy of Pistacia Terebinthus soap in the treatment of cetuximab-induced skin toxicity. Investig. New Drugs 2014, 32, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.; Rudrawar, S.; Zunk, M.; Bernaitis, N.; Arora, D.; McDermott, C.M.; Anoopkumar-Dukie, S. Protection against Radiotherapy-Induced Toxicity. Antioxidants 2016, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Jia, L.; Pei, Y.; Yu, R.; Gao, Y.; Deng, C.; Lou, Y. Clinical study for external Chinese herbal medicine LC09 treating hand-foot skin reaction associated with the antitumor tar-geted drugs: Protocol for a prospective, randomized, controlled, double-blind, and monocentric clinical trial. Medicine 2020, 99, e18849. [Google Scholar] [CrossRef] [Green Version]
- Igielska-Kalwat, J.; Połoczańska-Godek, S.; Murawa, D.; Poźniak-Balicka, R.; Wachowiak, M.; Demski, G.; Cieśla, S. The effect of the RadioProtect cosmetic formulation on the skin of oncological patients treated with selected cytostatic drugs and ionizing radiation. Adv. Dermatol. Allergol. 2022, 39, 47–51. [Google Scholar] [CrossRef]
- Pereira, L. Thalassotherapy and Marine Cosmeceuticals. In Therapeutic and Nutritional Uses of Algae, 1st ed.; CRC Press/Taylor & Francis Group: Abingdon, UK, 2017; Chapter 12; pp. 503–522. [Google Scholar] [CrossRef]
- Pereira, L. Seaweeds as Source of Bioactive Substances and Skin Care Therapy—Cosmeceuticals, Algotheraphy, and Thalassotherapy. Cosmetics 2018, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Di Franco, R.; Sammarco, E.; Calvanese, M.G.; De Natale, F.; Falivene, S.; Di Lecce, A.; Giugliano, F.M.; Murino, P.; Manzo, R.; Cappabianca, S.; et al. Preventing the acute skin side effects in patients treated with radiotherapy for breast cancer: The use of corneometry in order to evaluate the protective effect of moisturizing creams. Radiat. Oncol. 2013, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Bensadoun, R.J.; Humbert, P.; Krutmann, J.; Luger, T.; Triller, R.; Rougier, A.; Seité, S.; Dreno, B. Daily baseline skin care in the prevention, treatment, and supportive care of skin toxicity in oncology patients: Recommendations from a multinational expert panel. Cancer Manag. Res. 2013, 5, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Hong, J.T.; Kim, Y.; Han, S.-B. Stimulatory Effect of β-glucans on Immune Cells. Immune Netw. 2011, 11, 191–195. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Jung, Y.K.; Kim, J.H.; Cho, S.B.; Kim, D.Y.; Kim, M.Y.; Kim, H.J.; Seo, Y.S.; Yoon, K.T.; Hong, Y.M.; et al. Effect of urea cream on sorafenib-associated hand–foot skin reaction in patients with hepatocellular carcinoma: A multicenter, randomised, double-blind controlled study. Eur. J. Cancer 2020, 140, 19–27. [Google Scholar] [CrossRef]
- Lien, R.; Tung, H.; Wu, S.; Hu, S.H.; Lu, L.; Lu, S. Validation of the prophylactic efficacy of urea-based creams on sorafenib-induced hand-foot skin reaction in patients with advanced hepatocellular carcinoma: A randomised experiment study. Cancer Rep. 2022, 5, e1532. [Google Scholar] [CrossRef]
- Jesenak, M.; Majtan, J.; Rennerova, Z.; Kyselovic, J.; Banovcin, P.; Hrubisko, M. Immunomodulatory effect of pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Int. Immunopharmacol. 2013, 15, 395–399. [Google Scholar] [CrossRef]
- Bai, J.; Ren, Y.; Li, Y.; Fan, M.; Qian, H.; Wang, L.; Wu, G.; Zhang, H.; Qi, X.; Xu, M.; et al. Physiological functionalities and mechanisms of β-glucans. Trends Food Sci. Technol. 2019, 88, 57–66. [Google Scholar] [CrossRef]
- Di Franco, R.; Ravo, V.; Falivene, S.; Argenone, A.; Borzillo, V.; Giugliano, F.M.; Sammarco, E.; Muto, M.; Cappabianca, S.; Muto, P. Prevention and Treatment of Radiation Induced Skin Damage in Breast Cancer. J. Cosmet. Dermatol. Sci. Appl. 2014, 4, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.-C.; Ahn, S.-D.; Choi, D.-H.; Kang, M.K.; Chung, W.-K.; Wu, H.-G. The safety and efficacy of EGF-based cream for the prevention of radiotherapy-induced skin injury: Results from a multicenter observational study. Radiat. Oncol. J. 2014, 32, 156–162. [Google Scholar] [CrossRef]
- Pickart, L.; Margolina, A. Skin Regenerative and Anti-Cancer Actions of Copper Peptides. Cosmetics 2018, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.E.; Lee, S.H. Skin Barrier and Calcium. Ann. Dermatol. 2018, 30, 265–275. [Google Scholar] [CrossRef]
- De Rauglaudre, G.; Courdi, A.; Delaby-Chagrin, F.; d’Hombres, A.; Hannoun-Levi, J.M.; Moureau-Zabotto, L.; Richard-Tallet, A.; Rouah, Y.; Salem, N.; Thomas, O.; et al. Tolerance of the association sucralfate/Cu-Zn salts in radiation dermatitis. Ann. Dermatol. Venereol. 2008, 125, 11–15. [Google Scholar] [CrossRef]
- Meuleneire, F.; Rügnagal, H. Soft silicones made easy. Int. Wound J. 2013. Available online: http://tinyurl.com/ou5bses (accessed on 20 October 2022).
- Morgan, K. Radiotherapy-induced skin reactions: Prevention and cure. Br. J. Nurs. 2014, 23, S24–S32. [Google Scholar] [CrossRef] [PubMed]
- Herst, P.M.; Bennett, N.C.; Sutherland, A.E.; Peszynski, R.I.; Paterson, D.B.; Jasperse, M.L. Prophylactic use of Mepitel Film prevents radiation-induced moist desquamation in an intra-patient randomised controlled clinical trial of 78 breast cancer patients. Radiother. Oncol. 2014, 110, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.B.; Poonam, P.; Bennett, N.C.; Peszynski, R.I.; Van Beekhuizen, M.-J.; Jasperse, M.L. Randomised intra-patient controlled trial of Mepilex Lite dressings versus aqueous cream in managing radiation induced skin reactions post mastectomy. J. Cancer Sci. Ther. 2012, 4, 347–356. [Google Scholar] [CrossRef]
- Bonomo, P.; Desideri, I.; Loi, M.; Ciccone, L.P.; Russo, M.L.; Becherini, C.; Greto, D.; Simontacchi, G.; Pimpinelli, N.; Livi, L. Management of severe bio-radiation dermatitis induced by radiotherapy and cetuximab in patients with head and neck cancer: Emphasizing the role of calcium alginate dressings. Support Care Cancer 2019, 27, 2957–2967. [Google Scholar] [CrossRef]
- Yang, B.; Wang, X.; Li, Z.; Qu, Q.; Qiu, Y. Beneficial effects of silver foam dressing on healing of wounds with ulcers and infection control of burn patients. Pak. J. Med. Sci. 2015, 31, 1334–1339. [Google Scholar] [CrossRef] [PubMed]
- Vuong, T.; Franco, E.; Lehnert, S.; Lambert, C.; Portelance, L.; Nasr, E.; Faria, S.; Hay, J.; Larsson, S.; Shenouda, G.; et al. Silver leaf nylon dressing to prevent radiation dermatitis in patients undergoing chemotherapy and external beam radiotherapy to the perineum. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Aquino-Parsons, C.; Lomas, S.; Smith, K.; Hayes, J.; Lew, S.; Bates, A.T.; Macdonald, A.G. Phase III Study of Silver Leaf Nylon Dressing vs Standard Care for Reduction of Inframammary Moist Desquamation in Patients Undergoing Adjuvant Whole Breast Radiation Therapy. J. Med. Imaging Radiat. Sci. 2000, 41, 215–221. [Google Scholar] [CrossRef]
- Yu, D.; Yang, D.-X.; Li, Y.; Guan, B.; Ming, Q.; Li, Y.; Zhu, Y.-P.; Chen, L.-Q.; Luo, W.-X. Nano-Silver Medical Antibacterial Dressing Combined with High-Flow Oxygen Therapy Facilitates Ulcer Wound Healing of Superficial Malignant Tumors. Cancer Manag. Res. 2021, 13, 9007–9013. [Google Scholar] [CrossRef]
- Ramos, T.I.; Pérez, D.A.; González, M.T.; Pedrero, M.L.P.; Bojórquez, A.M.; Cruz, A.B. Clinical practice guideline for prevention and treatment of acute radiodermatitis. Dermatol. Rev. Mex. 2012, 56. (In Spanish) [Google Scholar]
- Cury-Martins, J.; Eris, A.P.M.; Abdalla, C.M.Z.; Silva, G.D.B.; de Moura, V.P.T.; Sanches, J.A. Management of dermatologic adverse events from cancer therapies: Recommendations of an expert panel. An. Bras. Dermatol. 2020, 95, 221–237. [Google Scholar] [CrossRef]
- Yan, J.; Yuan, L.; Wang, J.; Li, S.; Yao, M.; Wang, K.; Herst, P.M. Mepitel Film is superior to Biafine cream in managing acute radiation-induced skin reactions in head and neck cancer patients: A randomised intra-patient controlled clinical trial. J. Med. Radiat. Sci. 2020, 67, 208–216. [Google Scholar] [CrossRef]
- Lucchetta, M.C.; Monaco, G.; I Valenzi, V.; Russo, M.V.; Campanella, J.; Nocchi, S.; Mennuni, G.; Fraioli, A. The historical-scientific foundations of thalassotherapy: State of the art. Clin. Ter. 2008, 158, 533–541. (In Italian) [Google Scholar]
- Gutenbrunner, C.; Bender, T.; Cantista, P.; Karagülle, Z. A proposal for a worldwide definition of health resort medicine, balneology, medical hydrology and climatology. Int. J. Biometeorol. 2010, 54, 495–507. [Google Scholar] [CrossRef]
- Maraver, F.; Michan-Doña, A.; Morer, C.; Aguilera, L. Is thalassotherapy simply a type of climatotherapy? Int. J. Biometeorol. 2010, 55, 107–108. [Google Scholar] [CrossRef]
- Gomes, C.S.F.; Fernandes, J.V.; Fernandes, F.V.; Silva, J.B.P. Salt Mineral Water and Thalassotherapy. In Minerals Latu Sensu and Human Health, 1st ed.; Springer: Cham, Switzerland, 2021; Chapter 16; pp. 631–656. [Google Scholar] [CrossRef]
- Drioli, E.; Giorno, L.; Fontananova, E. Comprehensive Membrane Science and Engineering; Elsevier Science & Technology: Oxford, UK, 2017; ISBN 9780444637758. [Google Scholar]
- Yoshizawa, Y.; Tanojo, H.; Kim, S.J.; Maibach, H.I. Sea water or its components alter experimental irritant dermatitis in man. Skin Res. Technol. 2001, 7, 36–39. [Google Scholar] [CrossRef]
- Yoshizawa, Y.; Kitamura, K.; Kawana, S.; Maibach, H.I. Water, salts and skin barrier of normal skin. Skin Res. Technol. 2003, 9, 31–33. [Google Scholar] [CrossRef]
- Schempp, C.M.; Dittmar, H.C.; Hummler, D.; Simon-Haarhaus, B.; Schöpf, E.; Simon, J.C.; Schulte-Mönting, J. Magnesium ions inhibit the antigen-presenting function of human epidermal Langerhans cells in vivo and in vitro. Involvement of ATPase, HLA-DR, B7 molecules, and cytokines. J. Investig. Dermatol. 2000, 115, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Proksch, E.; Nissen, H.-P.; Bremgartner, M.; Urquhart, C. Bathing in a magnesium-rich Dead Sea salt solution improves skin barrier function, enhances skin hydration, and reduces inflammation in atopic dry skin. Int. J. Dermatol. 2005, 44, 151–157. [Google Scholar] [CrossRef]
- Bak, J.-P.; Kim, Y.-M.; Son, J.; Kim, C.-J.; Kim, E.-H. Application of concentrated deep sea water inhibits the development of atopic dermatitis-like skin lesions in NC/Nga mice. BMC Complement. Altern. Med. 2012, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Bae, I.-H.; Min, D.J.; Kim, H.-J.; Park, N.H.; Choi, J.H.; Shin, J.S.; Kim, E.J.; Lee, H.K. Skin Hydration Effect of Jeju Lava Sea Water. J. Soc. Cosmet. Sci. Korea 2016, 42, 343–349. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Chun, S.-Y.; Lee, K.-S.; Nam, K.-S. Refined Deep-Sea Water Suppresses Inflammatory Responses via the MAPK/AP-1 and NF-κB Signaling Pathway in LPS-Treated RAW 264.7 Macrophage Cells. Int. J. Mol. Sci. 2017, 18, 2282. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-S.; Chun, S.-Y.; Lee, M.-G.; Kim, S.; Jang, T.-J.; Nam, K.-S. The prevention of TNF-α/IFN-γ mixture-induced inflammation in human keratinocyte and atopic dermatitis-like skin lesions in Nc/Nga mice by mineral-balanced deep sea water. Biomed. Pharmacother. 2018, 97, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Carbajo, J.M.; Maraver, F. Salt water and skin interactions: New lines of evidence. Int. J. Biometeorol. 2018, 62, 1345–1360. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.C.-N.; Everts, V.; Leethanakul, C.; Pavasant, P.; Ampornaramveth, R.S. Rinsing with Saline Promotes Human Gingival Fibroblast Wound Healing In Vitro. PLoS ONE 2016, 11, e0159843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantore, S.; Ballini, A.; Saini, R.; Altini, V.; De Vito, D.; Pettini, F.; DiPalma, G.; Inchingolo, F. Effects of sea salt rinses on subjects undergone to oral surgery: A single blinded randomized controlled trial. Clin. Ter. 2020, 170, e46–e52. [Google Scholar]
- Ballini, A.; Cantore, S.; Signorini, L.; Saini, R.; Scacco, S.; Gnoni, A.; Inchingolo, A.D.; De Vito, D.; Santacroce, L.; Inchingolo, F.; et al. Efficacy of Sea Salt-Based Mouthwash and Xylitol in Improving Oral Hygiene among Adolescent Population: A Pilot Study. Int. J. Environ. Res. Public Health 2020, 18, 44. [Google Scholar] [CrossRef]
- Samidah, S.; Prihantono; Ahmad, M.; Jompa, J.; Rafiah, S.; Usman, A.N. The effectiveness of 7% table salt concentration test to increase collagen in the healing process of wound. Gac. Sanit. 2021, 35, S199–S201. [Google Scholar] [CrossRef]
- Schuh, A.; Nowak, D. Evidence-based acute and long-lasting effects of climatotherapy in moderate altitudes and on the seaside. DMW—Dtsch. Med. Wochenschr. 2011, 136, 135–139. [Google Scholar] [CrossRef]
- Ezhov, V. Climate-therapy at seaside resorts in modern medical and wellness practice. Vopr. Kurortol. Fizioter. Lech. Fiz. Kult. 2021, 98, 60–66. [Google Scholar] [CrossRef]
- Munteanu, C.; Munteanu, D.; Hoteteu, M.; Dogaru, G. Balneotherapy—Medical, scientific, educational and economic relevance reflected by more than 250 articles published in Balneo Research Journal. Balneo PRM Res. J. 2019, 10, 174–203. [Google Scholar] [CrossRef]
- Morer, C.; Michan-Doña, A.; Alvarez-Badillo, A.; Zuluaga, P.; Maraver, F. Evaluation of the Feasibility of a Two-Week Course of Aquatic Therapy and Thalassotherapy in a Mild Post-Stroke Population. Int. J. Environ. Res. Public Health 2020, 17, 8163. [Google Scholar] [CrossRef]
- Hoteteu, M.; Romanian Association of Balneology; Munteanu, C.; Ionescu, E.V.; Almășan, R.E. Bioactive substances of the Techirghiol therapeutic mud. Balneo PRM Res. J. 2018, 9, 5–10. [Google Scholar] [CrossRef]
- Antonelli, M.; Donelli, D. Thalassotherapy, Health Benefits of Sea Water, Climate and Marine Environment: A Narrative Review. In Proceedings of the 6th International Electronic Conference on Water Sciences, Babylon, Iraq, 15–30 November 2021. [Google Scholar] [CrossRef]
- Eröksüz, R.; Forestier, F.B.E.; Karaaslan, F.; Forestier, R.; Işsever, H.; Erdoğan, N.; Karagülle, M.Z.; Dönmez, A. Comparison of intermittent and consecutive balneological outpatient treatment (hydrotherapy and peloidotherapy) in fibromyalgia syndrome: A randomized, single-blind, pilot study. Int. J. Biometeorol. 2020, 64, 513–520. [Google Scholar] [CrossRef]
- Varzaityte, L.; Kubilius, R.; Rapoliene, L.; Bartuseviciute, R.; Balcius, A.; Ramanauskas, K.; Nedzelskiene, I. The effect of balneotherapy and peloid therapy on changes in the functional state of patients with knee joint osteoarthritis: A randomized, controlled, single-blind pilot study. Int. J. Biometeorol. 2020, 64, 955–964. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, S. Evaluation of the Role of Balneotherapy in Rehabilitation Medicine. J. Nippon Med. Sch. 2018, 85, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Dalenc, F.; Ribet, V.; Rossi, A.; Guyonnaud, J.; Bernard-Marty, C.; de Lafontan, B.; Salas, S.; Royo, A.-L.R.; Sarda, C.; Levasseur, N.; et al. Efficacy of a global supportive skin care programme with hydrotherapy after non-metastatic breast cancer treatment: A randomised, controlled study. Eur. J. Cancer Care 2018, 27, e12735. [Google Scholar] [CrossRef]
- Gálvez, I.; Torres-Piles, S.; Ortega-Rincón, E. Balneotherapy, Immune System, and Stress Response: A Hormetic Strategy? Int. J. Mol. Sci. 2018, 19, 1687. [Google Scholar] [CrossRef] [Green Version]
- Massiero, S. Health Resort Medicine and Human Immune Response. How Balneology Can Protect and Improve Our Health. FEMTEC Editions. 2020. Available online: https://www.femteconline.org/NEWS/0075-balneology-immunology.pdf (accessed on 20 October 2022).
- Strauss-Blasche, G.; Gnad, E.; Ekmekcioglu, C.; Hladschik, B.; Marktl, W. Combined inpatient rehabilitation and spa therapy for breast cancer patients: Effects on quality of life and CA 15-3. Cancer Nurs. 2005, 28, 390–398. [Google Scholar] [CrossRef]
- Vareka, I.; Stejskal, D.; Varekova, R.; Burianova, K.; Hnatek, J. Changes in Clusterin Serum Concentration Levels in Oncologic Patients During the Course Of Spa Therapy—A Pilot Study. Biomed. Pap. 2009, 153, 117–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwiatkowski, F.; Mouret-Reynier, M.; Duclos, M.; Leger-Enreille, A.; Bridon, F.; Hahn, T.; Van Praagh-Doreau, I.; Travade, A.; Gironde, M.; Bézy, O.; et al. Long term improved quality of life by a 2-week group physical and educational intervention shortly after breast cancer chemotherapy completion. Results of the ‘Programme of Accompanying women after breast Cancer treatment completion in Thermal resorts’ (PACThe) randomised clinical trial of 251 patients. Eur. J. Cancer 2013, 49, 1530–1538. [Google Scholar] [CrossRef]
- Kwiatkowski, F.; Mouret-Reynier, M.-A.; Duclos, M.; Bridon, F.; Hanh, T.; Van Praagh-Doreau, I.; Travade, A.; Vasson, M.-P.; Jouvency, S.; Roques, C.; et al. Long-term improvement of breast cancer survivors’ quality of life by a 2-week group physical and educational intervention: 5-year update of the ‘PACThe’ trial. Br. J. Cancer 2017, 116, 1389–1393. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-L.; Chen, X.-P.; Lee, K.-C.; Fang, F.-F.; Chao, Y.-F. The Effects of Warm-Water Footbath on Relieving Fatigue and Insomnia of the Gynecologic Cancer Patients on Chemotherapy. Cancer Nurs. 2010, 33, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Cantarero-Villanueva, I.; Fernández-Lao, C.; Caro-Morán, E.; Morillas-Ruiz, J.; Castillo, N.G.; Rodriguez, L.D.; Arroyo-Morales, M. Aquatic exercise in a chest-high pool for hormone therapy-induced arthralgia in breast cancer survivors: A pragmatic controlled trial. Clin. Rehabil. 2012, 27, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Cantarero-Villanueva, I.; Fernández-Lao, C.; Cuesta-Vargas, A.I.; Del Moral-Avila, R.; Fernández-De-Las-Peñas, C.; Arroyo-Morales, M. The Effectiveness of a Deep Water Aquatic Exercise Program in Cancer-Related Fatigue in Breast Cancer Survivors: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2013, 94, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Mourgues, C.; Gerbaud, L.; Leger, S.; Auclair, C.; Peyrol, F.; Blanquet, M.; Kwiatkowski, F.; Leger-Enreille, A.; Bignon, Y.-J. Positive and cost-effectiveness effect of spa therapy on the resumption of occupational and non-occupational activities in women in breast cancer remission: A French multicentre randomised controlled trial. Eur. J. Oncol. Nurs. 2014, 18, 505–511. [Google Scholar] [CrossRef]
- Reger, M.; Kutschan, S.; Freuding, M.; Schmidt, T.; Josfeld, L.; Huebner, J. Water therapies (hydrotherapy, balneotherapy or aqua therapy) for patients with cancer: A systematic review. J. Cancer Res. Clin. Oncol. 2022, 148, 1277–1297. [Google Scholar] [CrossRef]
- Matceyevsky, D.; Hahoshen, N.Y.; Vexler, A.; Noam, A.; Khafif, A.; Ben-Yosef, R. Assessing the effectiveness of Dead Sea products as prophylactic agents for acute radiochemotherapy-induced skin and mucosal toxicity in patients with head and neck cancers: A phase 2 study. Isr Med. Assoc. J. IMAJ 2007, 9, 439–442. [Google Scholar]
- De Andrade, S.C.; de Carvalho, R.F.P.P.; Soares, A.S.; Freitas, R.P.D.A.; Guerra, L.M.D.M.; Vilar, M.J. Thalassotherapy for fibromyalgia: A randomized controlled trial comparing aquatic exercises in sea water and water pool. Rheumatol. Int. 2008, 29, 147–152. [Google Scholar] [CrossRef]
- Chennaoui, M.; Gomez-Merino, D.; Van Beers, P.; Guillard, M.; Drogou, C.; Lagarde, D.; Bougard, C. Benefits of Thalassotherapy with Sleep Management on Mood States and Well-being, and Cognitive and Physical Capacities in Healthy Workers. J. Sleep Disord. Ther. 2018, 7, 5. [Google Scholar] [CrossRef]
- Kim, N.-I.; Kim, S.-J.; Jang, J.-H.; Shin, W.-S.; Eum, H.-J.; Kim, B.; Choi, A.-R.; Lee, S.-S. Changes in Fatigue Recovery and Muscle Damage Enzymes after Deep-Sea Water Thalassotherapy. Appl. Sci. 2020, 10, 8383. [Google Scholar] [CrossRef]
- Blain, H.; Bernard, P.L.; Canovas, G.; Raffort, N.; Desfour, H.; Soriteau, L.; Noguès, M.; Camuzat, T.; Mercier, J.; Dupeyron, A.; et al. Combining balneotherapy and health promotion to promote active and healthy ageing: The Balaruc-MACVIA-LR® approach. Aging Clin. Exp. Res. 2016, 28, 1061–1065. [Google Scholar] [CrossRef] [Green Version]
- Greenlee, H.; DuPont-Reyes, M.J.; Rn, L.G.B.; Carlson, L.E.; Cohen, M.R.; Deng, G.; Johnson, J.A.; Mumber, M.; Seely, D.; Zick, S.M.; et al. Clinical practice guidelines on the evidence-based use of integrative therapies during and after breast cancer treatment. CA Cancer J. Clin. 2017, 67, 194–232. [Google Scholar] [CrossRef]
- Turner, R.R.; Steed, L.; Quirk, H.; Greasley, R.U.; Saxton, J.M.; Taylor, S.J.; Rosario, D.J.; A Thaha, M.; Bourke, L. Interventions for promoting habitual exercise in people living with and beyond cancer. Cochrane Database Syst. Rev. 2018, 9, CD010192. [Google Scholar] [CrossRef]
- Lyman, G.H.; Greenlee, H.; Bohlke, K.; Bao, T.; DeMichele, A.M.; Deng, G.E.; Fouladbakhsh, J.M.; Gil, B.; Hershman, D.L.; Mansfield, S.; et al. Integrative Therapies During and After Breast Cancer Treatment: ASCO Endorsement of the SIO Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 2647–2655. [Google Scholar] [CrossRef]
- Grant, S.J.; Hunter, J.; Seely, D.; Balneaves, L.G.; Rossi, E.; Bao, T. Integrative Oncology: International Perspectives. Integr. Cancer Ther. 2019, 18, 1534735418823266. [Google Scholar] [CrossRef] [Green Version]
- Ruiz Vozmediano, J. Influence of Diet, Physical Exercise and Mindfulness in Survivors of Stage IIa-IIb Breast Cancer. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 2020. (In Spanish). [Google Scholar]
- Zhevago, N.A.; Zimin, A.A.; Glazanova, T.V.; Davydova, N.I.; Bychkova, N.V.; Chubukina, Z.V.; Buinyakova, A.I.; Ballyuzek, M.F.; Samoilova, K.A. Polychromatic light (480–3400 nm) similar to the terrestrial solar spectrum without its UV component in post-surgical immunorehabilitation of breast cancer patients. J. Photochem. Photobiol. B Biol. 2017, 166, 44–51. [Google Scholar] [CrossRef]
- Ray, H.; Jakubec, S.L. Nature-based experiences and health of cancer survivors. Complement. Ther. Clin. Pract. 2014, 20, 188–192. [Google Scholar] [CrossRef]
- Liamputtong, P.; Suwankhong, D. Therapeutic landscapes and living with breast cancer: The lived experiences of Thai women. Soc. Sci. Med. 2015, 128, 263–271. [Google Scholar] [CrossRef]
- Sauder, M.B.; Addona, M.; Andriessen, A.; Butler, M.; Claveau, J.; Feugas, N.; Hijal, T.; Iannattone, L.; Kalia, S.; Teague, L.; et al. The Role of Skin Care in Oncology Patients. Skin Ther. Lett. Editor: Dr. Richard Thomas, Special Edition. October 2020. Available online: https://www.skintherapyletter.com/dermatology/skin-care-role-oncology/ (accessed on 20 October 2022).
Parameter | Worldwide Average |
---|---|
Chloride, Cl− | 18,980 |
Sodium, Na+ | 10,556 |
Sulphate, SO4−2 | 2649 |
Magnesium, Mg+2 | 1272 |
Calcium, Ca+2 | 400 |
Potassium, K+ | 380 |
Bicarbonate, HCO3− | 140 |
Bromide, Br− | 65 |
Borate, H2BrO3− | 26 |
Strontium, Sr+2 | 13 |
Fluoride, F− | 1.0 |
TDS | 34,482 |
Thalassotherapy Techniques | Other Complementary Techniques |
---|---|
Aerosols | Sauna and steam baths |
Bubbling bath | Pressotherapy |
Hydromassage bath | Electrotherapy |
Underwater massage | Thermo- and Criotherapy |
Jet showers | Lymphatic draining |
Affussion showers | Massages (therapeutic, antistress, etc.) |
Vichy showers | Osteopathy |
Scottish showers | Oriental massages (Shiatsu, Thai, etc.) |
Phlebologic path | Yoga, Tai-chi and others |
Hand and Foot Baths | Reeducational therapies |
Hydrotherapy pool | Nutritional therapies and counselling |
Seaweed wrappings | Water therapies: Watsu, Ai Chi, etc. |
Marine mud applications | Aquagym, Aquabike, etc. |
Thalassotherapy Center | Program Web Page |
---|---|
Thalasso Deauville | https://www.thalasso-deauville.com/en/12-day/125-post-cancer-stopover.html (accessed on 25 November 2022) |
Atlanthal Hotel & Thalasso | https://www.atlanthal.com/es/curas/178-thalasso-post-cancer.html (accessed on 25 November 2022) |
Roscoff-Hôtel Valdys, Beau Rivage Thalasso & Spa | https://www.thalasso.com/destination/roscoff (accessed on 25 November 2022) |
Hôtel Thalasso & Spa Emeria Dinard | https://www.emeriadinard.com/ (accessed on 25 November 2022) |
Thalasso Concerneau | https://www.concarneau-thalasso.com/ (accessed on 25 November 2022) |
Côte Thalasso Banyuls-sur-Mer | https://www.cote-thalasso.fr/banyuls-sur-mer/cures (accessed on 25 November 2022) |
Hotel Talaso Atlántico | https://www.talasoatlantico.com/es/talaso.html (accessed on 25 November 2022) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Cosmeceuticals and Thalassotherapy: Recovering the Skin and Well-Being after Cancer Therapies. Appl. Sci. 2023, 13, 850. https://doi.org/10.3390/app13020850
Mourelle ML, Gómez CP, Legido JL. Cosmeceuticals and Thalassotherapy: Recovering the Skin and Well-Being after Cancer Therapies. Applied Sciences. 2023; 13(2):850. https://doi.org/10.3390/app13020850
Chicago/Turabian StyleMourelle, M. Lourdes, Carmen P. Gómez, and José L. Legido. 2023. "Cosmeceuticals and Thalassotherapy: Recovering the Skin and Well-Being after Cancer Therapies" Applied Sciences 13, no. 2: 850. https://doi.org/10.3390/app13020850
APA StyleMourelle, M. L., Gómez, C. P., & Legido, J. L. (2023). Cosmeceuticals and Thalassotherapy: Recovering the Skin and Well-Being after Cancer Therapies. Applied Sciences, 13(2), 850. https://doi.org/10.3390/app13020850