An Improved Multiple-Target Tracking Scheme Based on IGGM–PMBM for Mobile Aquaculture Sensor Networks
Abstract
:1. Introduction
- GAM distribution is introduced to present the augmented state of unknown and changing target detection probability. The intensity of newborn targets is adaptively derived presented by IG distribution on the basis of this augmented state.
- The measurement likelihood is presented as a gamma distribution for the augmented state. Closed-form solutions are derived on these bases by means of approximating the intensity of target birth and potential targets to an IGGM form and the density of existing Bernoulli components to a single IGGM form. Furthermore, the target cardinality distribution is estimated in the proposed filter, which is a rare solution in most PMBM filters.
- A distributed fusion strategy GCI is applied to a large-scale aquaculture tracking network.
2. Related Works
3. System Models
3.1. Multitarget Bayes Filter
3.2. PMBM RFS
3.3. PMBM Recursion
3.4. The Inverse Gamma Distribution and Gamma Distribution
3.5. GCI Fusion
4. Our Proposed GCI–IGGM–PMBM Scheme
4.1. Augmented State Model
4.2. Recursion Based on Augmented States
- PPP process
- MBM process
- Update for undetected targets
- Update for potential targets detected for the first time
- Update for MBM
4.3. IGGM Implementation
- PPP process
- MBM process
- Update for undetected targets
- Update for potential targets detected for the first time
- Missed detection of MBM
- Update for MBM
4.4. Fusion
Algorithms 1 A framework of GCI-IGGM-PMBM algorithms |
Step 1: Initialization For , , Adopt HTC scheme and establish one-hop and two-hop neighbor lists; then, obtain the location information at . At timestep ; Input: ;; Output: . Step 2: Prediction Prediction for PPP for time step : Input: ; Output: ; for , use Equations (63) and (64); end for Prediction for survival for timestep : Input: ; Output: ; for , use Equations (65)–(68); end for Step 3: Update based on augmented variable for timestep : Update for undetected targets, Input: ; Output: ; for , use Equation (71); end for Update for potential targets detected for the first time, Input: ; Output: ; for , use Equations (72) and (73); end for Missed detection of MBM, Input: ; Output: ; for , use Equations (74) and (75); end for Update for MBM, Input: ; Output: ; for , use Equations (76)–(78); end for Step 4: Fusion Input: ; Output: ; for , use Equations (79)–(81)’ end for Step 5: State extraction The state estimation set at time : . |
5. Performance Analysis
5.1. Validations of Unknown Detection Probability
5.2. Validation of Adaptive Newborn Distribution
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, W.H.; Xing, J.L.; Milan, A.X.; Zhang, Q.; Liu, W.; Kim, T.K. Multiple object tracking: A literature review. Artif. Intell. 2021, 293, 103448. [Google Scholar] [CrossRef]
- Kumar, M.; Mondal, S. Recent developments on target tracking problems: A review. Ocean Eng. 2021, 236, 109558. [Google Scholar] [CrossRef]
- Xu, C.A.; Yao, L.B.; Liu, Y.; Su, H.; Wang, H.Y.; Gu, X.Q. A novel SMC-PHD filter for multi-target tracking without clustering. Displays 2022, 71, 102113. [Google Scholar]
- Li, G.C.; Kong, L.J.; Yi, W.X.; Li, L. Robust Poisson Multi-Bernoulli Mixture Filter with Unknown Detection Probability. IEEE Trans. Veh. Technol. 2021, 70, 886–899. [Google Scholar] [CrossRef]
- García-Fernández, Á.F.; Williams, J.L.; Svensson, L.; Xia, Y.X. A Poisson Multi-Bernoulli Mixture Filter for Coexisting Point and Extended Targets. IEEE Trans. Signal Process. 2021, 69, 2600–2610. [Google Scholar] [CrossRef]
- Granstrom, K.; Baum, M.; Reuter, S. Extended Object Tracking: Introduction, Overview and Applications. J. Adv. Inf. Fusion 2017, 12, 139–174. [Google Scholar]
- García-Fernández, Á.F.; Svensson, L. Tracking Multiple Spawning Targets Using Poisson Multi-Bernoulli Mixtures on Sets of Tree Trajectories. IEEE Trans. Signal Process. 2022, 70, 1987–1999. [Google Scholar] [CrossRef]
- García-Fernández, A.F.; Svensson, L.; Williams, J.L.; Xia, Y.X.; Granstrom, K. Trajectory Poisson Multi-Bernoulli Filters. IEEE Trans. Signal Process. 2020, 68, 4933–4945. [Google Scholar] [CrossRef]
- Ma, D.D.; Lian, F.; Liu, J. Sequential Monte Carlo implementation of cardinality balanced multi-target multi-Bernoulli filter for extended target tracking. IET Radar Sonar Navig. 2016, 10, 272–277. [Google Scholar] [CrossRef]
- Kropfreiter, T.; Meyer, F.; Hlawatsch, F. An Efficient Labeled/Unlabeled Random Finite Set Algorithm for Multiobject Tracking. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 5256–5275, Early Acces. [Google Scholar] [CrossRef]
- Xia, Y.X. Poisson Multi-Bernoulli Mixtures for Multiple Object Tracking. Ph.D. Thesis, Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden, 2022. [Google Scholar]
- García-Fernández, Á.F.; Williams, J.L.; Granström, K.; Svensson, L. Poisson Multi-Bernoulli Mixture Filter: Direct Derivation and Implementation. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1883–1901. [Google Scholar] [CrossRef] [Green Version]
- Granström, K.; Fatemi, M.; Svensson, L. Poisson Multi-Bernoulli Mixture Conjugate Prior for Multiple Extended Target Filtering. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 208–225. [Google Scholar] [CrossRef]
- Xia, Y.X.; Granström, K.; Svensson, L.; Fatemi, M.; García-Fernández, Á.F.; Williams, J.L. Poisson Multi-Bernoulli Approximations for Multiple Extended Object Filtering. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 890–906. [Google Scholar] [CrossRef]
- Shen, K.C.; Zhang, X.; Dong, P.; Jing, Z.L.; Leung, H. Consensus-Based Labeled Multi-Bernoulli Filter With Event-Triggered Communication. IEEE Trans. Signal Process. 2022, 70, 1185–1196. [Google Scholar] [CrossRef]
- Wu, S.Y.; Zhou, Y.S.; Xie, Y.; Xue, Q.T. Robust Poisson multi-Bernoulli mixture filter using adaptive birth distributions for extended targets. Digit. Signal Process. 2022, 126, 103459. [Google Scholar] [CrossRef]
- Su, Z.Z.; Ji, H.B.; Tian, C.; Zhang, Y.Q. A robust Poisson multi-Bernoulli filter for multi-target tracking based on arithmetic average fusion. Chin. J. Aeronaut. 2022, 36, 179–190. [Google Scholar] [CrossRef]
- Huang, Q.; Xie, L.; Su, H.Y. Estimations of time-varying birth cardinality distribution and birth intensity in Gaussian mixture CPHD filter for multi-target tracking. Signal Process. 2022, 190, 108321. [Google Scholar] [CrossRef]
- Ristic, B.; Clark, D.; Vo, B.N.; Vo, B.T. Adaptive Target Birth Intensity for PHD and CPHD Filters. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1656–1668. [Google Scholar] [CrossRef]
- Li, C.; Wang, W.; Kirubarajan, T.; Sun, J.; Lei, P. PHD and CPHD filtering with unknown detection probability. IEEE Trans. Signal Process. 2018, 66, 3784–3798. [Google Scholar] [CrossRef]
- Lu, X.C.; Jing, D.H.; Jiang, D.F.; Gao, Y.Y.; Yang, J.L.; Li, Y.; Li, W.D.; Tao, J.; Liu, M. Trajectory PHD Filter for Adaptive Measurement Noise Covariance Based on Variational Bayesian Approximation. Appl. Sci. 2022, 12, 6388. [Google Scholar] [CrossRef]
- Munjani, J.; Joshi, M. A non-conventional lightweight Auto Regressive Neural Network for accurate and energy efficient target tracking in Wireless Sensor Network. ISA Trans. 2021, 115, 12–31. [Google Scholar] [CrossRef]
- Gao, C.; Yan, J.K.; Zhou, S.H.; Varshney, P.K. Long short-term memory-based deep recurrent neural networks for target tracking. Inf. Sci. 2019, 502, 279–296. [Google Scholar] [CrossRef]
- Cui, Y.Q.; He, Y.; Tang, T.T.; Liu, Y. A new target tracking filter based on deep learning. Chin. J. Aeronaut. 2022, 35, 11–24. [Google Scholar] [CrossRef]
- Yoon, Y.C.; Kim, D.Y.; Song, Y.M.; Yoon, K.; Jeon, M. Online multiple pedestrians tracking using deep temporal appearance matching association. Inf. Sci. 2021, 561, 326–351. [Google Scholar] [CrossRef]
- Li, J.; Jia, L.H.; Zhang, C.J.; Li, H.Q. Optimal couple-group tracking control for the heterogeneous multi-agent systems with cooperative-competitive interactions via reinforcement learning method. Inf. Sci. 2022, 610, 401–424. [Google Scholar] [CrossRef]
- Zhang, J.M.; Sun, J.; Wang, J.; Li, Z.P.; Chen, X. An object tracking framework with recapture based on correlation filters and Siamese networks. Comput. Electr. Eng. 2022, 98, 107730. [Google Scholar] [CrossRef]
- Zhou, S.R.; Yin, J.P.; Zhang, J.M. Local binary pattern (LBP) and local phase quantization (LBQ) based on Gabor filter for face representation. Neurocomputing 2013, 116, 260–264. [Google Scholar] [CrossRef]
- Jiang, Y.; Tong, G.X.; Yin, H.N.; Xiong, N.X. A pedestrian detection method based on genetic algorithm for optimize XGBoost training parameters. IEEE Access 2019, 7, 118310–118321. [Google Scholar] [CrossRef]
- Liu, Q.L.; Li, Y.B.; Dong, Q.H.; Ye, F. Scene-Specialized Multitarget Detector with an SMC-PHD Filter and a YOLO Network. Comput. Intell. Image Video Anal. 2022, 2022, 1010767. [Google Scholar] [CrossRef]
- Battistelli, G.; Chisci, L.; Fantacci, C.; Farina, A.; Graziano, A. Consensus CPHD filter for distributed multitarget tracking. IEEE J. Sel. Top. Signal Process. 2013, 7, 508–520. [Google Scholar] [CrossRef]
- Li, G.C.; Li, G.; He, Y. Distributed GGIW-CPHD-Based Extended Target Tracking Over a Sensor Network. IEEE Signal Process. Lett. 2022, 29, 842–846. [Google Scholar] [CrossRef]
- Zhu, J.P.; Lv, C.F.; Tao, Z.S. Performance Analyses and Improvements for IEEE 802.15.4 CSMA/CA Scheme in Wireless Multi-hop Sensor Networks Based on HTC Algorithm. Int. J. Distrib. Sens. Netw. 2013, 9, 452423. [Google Scholar]
- Lv, C.F.; Zhu, J.P.; Tao, Z.S.; Pi, Y.H. An Improved Target Tracking Scheme based on MC-MPMC Method for Mobile Wireless Sensor Networks. EURASIP J. Wirel. Commun. Netw. 2022, in press. [Google Scholar] [CrossRef]
- Schuhmacher, D.; Vo, B.T.; Vo, B.N. A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Signal Process 2008, 56, 3447–3457. [Google Scholar] [CrossRef] [Green Version]
- Rahmathullah, A.S.; Garcia-Fernandez, A.F.; Svensson, L. Generalized optimal sub-pattern assignment metric. In Proceedings of the 20th International Conference on Information Fusion, Xi’an, China, 10–13 July 2017; pp. 1–8. [Google Scholar]
- Kumar, P.; Kumar, R.; Srivastava, G.; Gupta, G.P.; Tripathi, R.; Gadekallu, T.R.; Xiong, N.N. PPSF: A privacy-preserving and secure framework using blockchain-based machine-learning for IoT-driven smart cities. IEEE Trans. Netw. Sci. Eng. 2021, 8, 2326–2341. [Google Scholar] [CrossRef]
Target Index | Initialization Targets States | Birth Time (s) | Death Time (s) |
---|---|---|---|
Target 1 | [−310, −280, 5.23, 4.12, 0] | 1 | 100 |
Target 2 | [−300, 480, 4.12, −3.23, −2.78] | 20 | 100 |
Target 3 | [−410, 470, 3.45, −4.32, 0.41] | 58 | 100 |
Target 4 | [0, 0, 2.74, −4.54, −0.56] | 15 | 78 |
Target 5 | [−310, −280, 3.65, 3.56, 0.61] | 37 | 90 |
Target 6 | [−390, 110, 5.32, −2.35, −2.21] | 1 | 50 |
Target 7 | [20, 350, 4.23, −4.12, 3.02] | 45 | 80 |
Target 8 | [0, −490, 3.23, 5.23, −0.34] | 67 | 92 |
Target 9 | [−388, 108, 3.54, 3.37, 0.43] | 1 | 100 |
Target 10 | [−388, 108, 1.32, 0.32, 0.75] | 1 | 30 |
Target 11 | [−19, 22, 2.12, −4.72, −4.27] | 67 | 100 |
Target 12 | [202, 0, −0.37, −1.53, −0.23] | 45 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, C.; Zhu, J.; Xiong, N.; Tao, Z. An Improved Multiple-Target Tracking Scheme Based on IGGM–PMBM for Mobile Aquaculture Sensor Networks. Appl. Sci. 2023, 13, 926. https://doi.org/10.3390/app13020926
Lv C, Zhu J, Xiong N, Tao Z. An Improved Multiple-Target Tracking Scheme Based on IGGM–PMBM for Mobile Aquaculture Sensor Networks. Applied Sciences. 2023; 13(2):926. https://doi.org/10.3390/app13020926
Chicago/Turabian StyleLv, Chunfeng, Jianping Zhu, Naixue Xiong, and Zhengsu Tao. 2023. "An Improved Multiple-Target Tracking Scheme Based on IGGM–PMBM for Mobile Aquaculture Sensor Networks" Applied Sciences 13, no. 2: 926. https://doi.org/10.3390/app13020926
APA StyleLv, C., Zhu, J., Xiong, N., & Tao, Z. (2023). An Improved Multiple-Target Tracking Scheme Based on IGGM–PMBM for Mobile Aquaculture Sensor Networks. Applied Sciences, 13(2), 926. https://doi.org/10.3390/app13020926