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Abstract: With shorter wavelengths than microwaves and greater penetration depth than infrared
light, waves in the terahertz spectrum offer unique material testing opportunities. Terahertz tech-
nology offers non-invasive and non-destructive testing in the form of spectroscopy and imaging.
The most used systems for terahertz imaging are time-domain spectroscopy systems. However,
frequency domain spectroscopy systems could offer excellent frequency resolution and be more
suitable for biomedical applications. Terahertz imaging based on frequency domain spectroscopy
systems is slow, and suffers from frequency tuning errors. A novel one-dimensional imaging principle
is presented in this paper. In addition, frequency range optimization based on convolutional neural
networks and occlusion sensitivity is utilized for frequency range optimization. Frequency range
optimization is used to determine the optimal frequency range for data acquisition. The optimal
frequency range or bandwidth should be wide enough for effective phase detection, and should
be at the intersection of several spectral footprints in the observed medium. The intersection of
spectral footprints is estimated using the proposed frequency range optimization algorithm based on
a convolutional neural network and occlusion sensitivity algorithm. The proposed algorithm selects
the most sensitive frequency band of THz spectrum automatically, and enables very fast acquisitions
for object inspection and classification.

Keywords: terahertz; spectroscopy; imaging; convolutional neural network; occlusion sensitivity;
optimization

1. Introduction

Terahertz (THz) technology has become one of the most promising in non-invasive
and non-destructive object detection and recognition. The THz band is located between
the microwave spectrum and infrared spectrum, with frequencies ranging from 0.1 THz
to 10 GHz [1]. The most significant advantage of THz waves is that they are non-ionizing
and non-destructive at a reasonably short wavelength. That provides the opportunity for
material testing in chemistry [2], biology [3], agriculture [4], and other fields.

Methods for generating and detecting THz waves are divided into optical, opto-
electrical, and electrical methods [1]. While optical methods provide the widest bandwidth,
they are too expensive and complex for industrial applications. On the other hand, electrical
methods are the cheapest of the three, but with limited bandwidth below 1 THz. The most
promising are opto-electric methods, divided into wideband and continuous wave (CW)
methods. Both methods can utilize photoconductive antennas (PCAs) for generating
and detecting THz waves. Wideband systems use a femtosecond laser to generate optical
signals, while CW systems use the beating of two optical signals with different wavelengths.
Both systems can be utilized for THz spectroscopy. Time-domain spectroscopy (TDS) based
on broadband THz systems is much more favorable in material testing, as shown in [5],
since it is less complex and has a higher acquisition speed. Frequency domain spectroscopy
(FDS) uses CW THz systems. The frequency resolution in THz-FDS systems is higher than
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in THz-TDS systems, but the acquisition speed is much lower. Some of the main advantages
of THz-FDS systems are their cost, flexibility, and lower impact from the surroundings,
since THz-FDS systems can be implemented using fiber optics.

In recent years, THz imaging techniques have been used for material inspection and
testing. The most works were done using TDS THz systems, and different techniques were
used for image acquisition, such as raster imaging [6], Synthetic Aperture Radar (SAR) [7],
compressive imaging [8], tomography [9], and others. The most used imaging techniques
in THz imaging are based on well-known principles, while implemented in the reflection
mode. Shorter wavelengths compared to microwaves and longer penetration depth com-
pared to the infrared spectrum offers unique possibilities for applications using THz waves.
Imaging applications were deployed in the fields of medicine [6], security [10], and others.
Researchers proposed different approaches to image processing and enhancement from
other imaging fields, such as compressive imaging [11] and deconvolution [12].

THz-TDS systems are the main opto-electronic methods in current THz imaging appli-
cations. However, despite the THz-FDS shortcomings, some applications were developed
using THz-FDS systems, as shown in [13]. There could be some advantages in using THz-
FDS systems, as shown in [14]. Authors in [13] divided imaging based on THz-FDS systems
into single-point scanning, full-field imaging, and three-dimensional imaging. Single-point
scanning or raster imaging has a focusing lens and scans the observed object pixel-by-pixel.
The system for single point scanning utilizes optics for focusing the THz beam to an as
small as possible pixel, and can be implemented in reflection mode or transmission mode.
Full-field imaging utilizes an array of receivers. A wider THz beam is generated, and then
sampled using the full-field receiver. The resolution can be enhanced using compressive
imaging or other techniques. Three-dimensional imaging uses more advanced and expen-
sive devices. Examples of three-dimensional imaging are holographic imaging [15] and
tomography [16].

A new approach to THz imaging was proposed in the preliminary work [17]. The pro-
posed method used a deconvolution technique with a combination of single-point imaging
and full-field imaging. A wide and collimated THz beam was generated and detected
with the single-point receiver. The transmitter and receiver in transmission mode are then
moved as in single-point scanning, and a spectrogram image is generated. Each trace
in the spectrogram was generated in the frequency range between 710 GHz to 810 GHz.
The acquired spectrogram image was processed using the proposed Gauss Spotlight Fil-
ter (GSF), and then compressed into a one-dimensional (1D) image. The GSF method
assumes that the intensity profile or spotlight of the PCA antenna has a Gauss intensity
function [18]. One-dimensional image compression was developed for amplitude images
and phase images.

The low acquisition time was the first problem mitigated with the proposed THz
imaging techniques applied to material classification. Each material in the sample was
observed in a wide frequency range. Based on an expert opinion, the frequency range was
set from 710 GHz to 810 GHz. A narrower bandwidth and bidirectional scanning helped
reduce the acquisition time significantly. The second problem mitigated by the proposed
THz imaging technique was frequency tuning. Frequency tuning in THz-FDS systems is
performed by shifting the wavelengths. Wavelength shift can be achieved by heating or
cooling the laser diode. Since the actual frequency is too high to be measured, it is estimated
based on the temperature difference. The actual frequency differs from the target frequency,
and the resulting data will have additional phase shifts. With a broader frequency range,
the phase shifts occur because of the tuning error.

The proposed THz imaging proved to mitigate some of the THz-FDS’s problems.
However, the acquisition time still needed to be lowered for practical applications. An ap-
proach to frequency range optimization is proposed in this paper. In the preliminary work,
the expert chose the frequency range and, in this paper, a convolutional neural network
(CNN) and occlusion sensitivity were used for frequency range optimization. A windowing
spectrum dilation (WSD) [19] algorithm was proposed for the transformation of data series
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to two-dimensional (2D) images. The 2D images created using WSD were then used to
train the CNN and for sample classification. The WSD algorithm leans onto the measured
data’s properties so that, at lower frequencies, the intensity of the detected THz waves is
much higher; therefore, spectral footprints at lower frequencies will have a higher impact
on the classification. The proposed WSD algorithm mitigated frequency tuning errors while
retaining full spectrum information.

In this paper, the WSD algorithm and classification using CNN were used to dis-
tinguish between different materials in the observed sample. The goal was to use CNN
visualization features, and determine which features are the most suitable for material
classification and, based on a CNN visualization output, select the optimized frequency
range. The CNN was analyzed and visualized using occlusion sensitivity. Occlusion sensi-
tivity is one of many CNN analytics tools, as shown in [20], and its result is the occlusion
map of the same size as the input image to the CNN. In the first step of the occlusion
sensitivity, the algorithm selects the first pixel or area in the image. The image with the
occluded pixel is used for prediction, and a change is estimated in the probability score.
The change in the probability score is stored in the occlusion map, and the next pixel or area
of the image is processed. The algorithm repeats until every pixel or area in the image has
been processed. Any pixel or area with a high probability score change has a high impact
on the classification. The occlusion sensitivity function (OSF) can be estimated, since we
can estimate the frequency from the measured spectrum in the 2D image created using
inverse WSD transformation. The optimized frequency range can be selected from the OSF.
Occlusion sensitivity was used successfully in different applications, such as COVID-19
detection [21].

The experimental validation of the proposed method is presented in this paper.
The sample was built from three different materials. The materials were all polyethene
plastic plates of varying density, with different additives and with the same geometry.
Fifty frequency scans were acquired in the range between 50 GHz and 1210 GHz for each
material. The WSD algorithm was applied for every frequency scan, and the CNN was
trained to classify the materials. The optimized frequency range was determined using
occlusion sensitivity and predetermined criteria. The results were evaluated for three
frequency ranges, and they were compared to the results in the preliminary work [17].
The results show a decrease in acquisition time, while frequency resolution and contrast
stayed reasonable. Frequency tuning error, bias towards lower frequencies and phase
shift because of frequency tuning were all mitigated in the proposed frequency range
optimization algorithm.

2. THz-FDS System for Generating and Detecting THz Waves

Common THz-FDS is based on beating two optical signals with different wave-
lengths [22]. Tunable laser sources are used as optical signal sources, as shown in Figure 1.
The frequency modulation happens in an optical fiber coupler, where two optical signals
are mixed. The resulting optical signal contains THz carrier frequency ν, estimated as:

ν = c · n · ∆λ

λ1λ2
(1)

where c = 299,792,458 m/s is the speed of light in vacuum, n is the refractive index of the
light propagation medium (n ≈ 1.4682 for optical fiber), and ∆λ = λ1 − λ2. Tunable laser
sources are usually distributed feedback (DFB) laser diodes. DFB laser diodes can be tuned
with temperature—if the DFB laser diode is heated or cooled, the wavelength of the emitted
optical signal will shift while the spectral line will not change. In the standard telecom DFB
laser diode, wavelength shift is estimated to be around 0.1 nm/°C [23].
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Figure 1. THz-FDS System.

A THz-FDS system can work in two modes: transmission mode, shown in Figure 2,
and reflection mode. This paper is focused on transmission mode. In transmission mode,
the emitted THz beam from the emitter PCA travels through the sample and is detected
using a PCA detector on the other side. There are several ways of focusing the THz
beam. One of the most common methods in THz-FDS is the beam’s collimation, as shown
in Figure 2. A collimation mirror collates the THz beam emitted from the THz emitter.
At the detector side, another collimation mirror is used for focusing the THz beam on
the PCA’s structure. The measured characteristic of the sample in transmission mode is
transmittance, or how much of the original field has passed the sample. Transmittance T
can be estimated as:

T =
n2|ET |2

n1|EI |2
(2)

where ET is the remaining field after propagation through the medium, and EI is the initial
field. The initial field’s value is hard to measure, which is why the reference measurement
is performed. The reference field is detected in the same environment as the remaining
field after propagation through the sample. Equation (2) can now be expressed as:

T ≈ IT
I0

(3)

where IT is the measured intensity with the sample obstructing the THz beam’s path, and I0
is the reference intensity with the unobstructed THz beam’s path. In the presented THz-FDS
system, the emitted THz wave is modulated with a bias signal on the PCA. Because of that,
coherent detection can be used using a lock-in amplifier (LIA). The inbound electric field
will induce a photocurrent in the PCA receiver, which will be modulated with the bias
signal’s frequency. The induced photocurrent is then detected using the LIA and can be
measured. If the length of both the emitter and receiver arms are the same, the detected
intensity can be estimated as:

I0(ν) = ETHz cos F(ν, L) (4)

where ETHz is the inbound THz field at the receiver PCA, and L is the distance between
the antennas, and F is the phase fringe frequency. From Equation (4), the phase fringe
frequency F can be estimated as:

F(ν, L) = 2πν · L
c

(5)

Combining Equations (4) and (5), the detected photocurrent depends on the THz carrier
frequency ν and distance from the PCA emitter and PCA detector L. Sweeping either ν or
L will result in phase fringe detection, as shown in Figure 3.
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Figure 2. Collimation of the THz beam in transmission mode.
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Figure 3. Peak envelope and unwrapped phase estimated from the detected phase fringes. The peak
envelope represents the amplitude spectrum, and the unwrapped phase represents the phase spectrum.

The sample’s spectral characteristics will impact the detected intensity and shift the
phase. The absorption coefficient α is introduced, since the classical electromagnetic theory
using Maxwell equations can describe the propagation of THz waves on the macro level [1].
If frequency depended absorption is introduced to Equation (4), the detected intensity
could be estimated as:

IT(ν) = I0e−α(ν)d (6)

where d is the thickness of the observed medium, and I0 is the initial THz beam intensity.
From classical electromagnetic theory, dispersion in the medium is introduced. The disper-
sion or change in the propagation speed will result in phase difference ∆φD, estimated as:

∆φD =
2 · π · ν

c
· (n2 − n1) · d (7)

where n1 � n2. By combining Equations (6) and (7), the intensity IT can be estimated as:

IT(ν) = ETHze−α(ν)d cos (2πν · L/c + ∆φL) (8)

A photocurrent is induced in detector PCA when the THz field hits the antenna
structure. Induced current in detector PCA can then be detected using an LIA and, based
on Equation (8), it will have a sinusoidal shape. The amplitude and phase spectrum can be
estimated from the detected photocurrent. The amplitude spectrum can be estimated by
identifying the peak envelope, which is carried out by detecting signal maxima and using
spline interpolation. The phase spectrum can be estimated by determining zero crossings
and linear interpolation.
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There are two main problems with the presented system: The relation between the emit-
ted wavelength and temperature can only be determined empirically [24], and wavelength-
tuning using temperature is a slow process and unsuitable for fast wavelength shifts [23].
The empirically determined relation between the emitted wavelength and the DFB laser
diode’s temperature can never be completely accurate. There are also no cheap and readily
available methods for measuring optical frequency in the THz band. Because of those two
shortcomings, the set THz frequency and actual THz carrier frequency will always be differ-
ent, which can impact the measurements’ repeatability. The second major drawback, slow
wavelength sweeps, results in time-consuming measurements and makes the technology
unsuitable for fast quality control applications in industry.

The third major drawback is the environment itself. Changes in temperature and a
change in absolute humidity will impact the measurements drastically. In ideal conditions,
measurements should be performed in a vacuum or near vacuum, or air should be supple-
mented with other gases. However, this reduces the robustness of the processing methods
and increases the complexity of the system.

3. Proposed Method for One-Dimensional Image Reconstruction

The proposed method for image reconstruction is based on our previous research [17]
and presents a combination of full-field imaging and single-point scanning. A linear actua-
tor with small steps is used to move PCAs over the sample, similar to single-point scanning.
Because of the relatively large spotlight compared to the translation step, the acquired
single trace will overlap with its neighboring traces. If the linear step is much smaller than
the spotlight’s radius, and if the spotlight’s intensity profile is known or can be modeled,
the neighboring values can be used to determine the pixel value. This is similar to full-field
imaging, where techniques such as compressed sensing are used to determine single pixel
value. In the proposed image reconstruction method, a linear step determines the image
resolution. The setup for image acquisition is presented in Figure 1. THz wave generation
and detection was performed using commercially available system TeraScan 1550 from
Toptica Photonics, and the LTS300/M linear rail from Thorlabs was used as translation
stage. The linear rail’s speed was set to 1 mm/s and the linear rail’s acceleration to 1 mm/s2.
Step distance of LTS300/M was set to 0.5 mm.

In our preliminary work, [17], the proposed method was proven to mitigate some of
the shortcomings of the THz-FDS system. The peak envelope and phase shift are extracted
from the detected photocurrent in the first processing stage. The peak envelope is extracted
using maxima detection and spline interpolation, and the phase shift is extracted using
zero crossing detection and linear interpolation. Figure 3 shows the estimated amplitude
and phase spectrums. At starting, the frequency phase was set to zero, since we were more
interested in the phase change because of the dispersion, as shown in Equation (7).

GSF was applied in the second processing stage of the proposed image reconstruction
algorithm. The authors in [18] determined that the PCA’s intensity profile can be estimated
using the Gauss function. While using the THz-TDS system, THz beam profile modeling
was used in [12] to enhance the resolution and contrast of the acquired image. In the
acquisition setup shown in Figure 1, the THz beam is directed through a silicon lens and
collimated through collimation mirrors. The intensity profile will stay the same after
collimation. Therefore, the THz beam will propagate through the sample with a Gauss
intensity profile. The empirically determined spotlight’s diameter was 8 mm, while the
linear step was set to 0.5 mm. The intensity profile was modeled using a 1D Gauss function
using 8 mm/0.5 mm = 16 samples. As shown in Figure 4, GSF was applied to the samples
at the same vertical position in the acquired spectrogram.
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Figure 4. Principle of proposed Gauss Spotlight Filter (GSF). The filter moves through the spectrogram
on every vertical position or every target frequency.

In the last processing stage of the proposed image reconstruction algorithm, the ampli-
tude and phase spectrum were compressed into a single pixel. The boxcar filter averages
the set of measurements into a single pixel. Using the boxcar average, we focussed on
the sum of intensity in the broadband signal shape. The broadband signal is limited in its
bandwidth, representing frequency limitations in the amplitude spectrum. By adding the
detected amplitude spectrum between the initial and end frequencies in the frequency scan,
we can extract the information about absorption in a limited bandwidth. A single pixel in
the amplitude image was estimated as:

I =
ν

∑
f=ν0

PT( f ) (9)

where ν0 is the initial frequency and ν is the end frequency in the sweep, and PT is the
peak envelope of detected photocurrent. With adding the amplitude spectrum in a certain
bandwidth, the result represents the sum of the intensity of the broadband signal with
equivalent bandwidth. Phase compression is based on Equation (7). If the propagation
speed changes in the observed sample, the phase will experience an additional shift,
which can be detected in the unwrapped phase. Phase shifts caused by the dispersion in
the observed sample are smaller than the wave shift resulting from a frequency sweep.
Nevertheless, the latter will always be similar in value, since it depends on the frequency
sweep and distance between the PCA emitter and the PCA detector. Phase compression
can then be carried out as phase difference detection, and can be estimated as:

∆φ = φ(ν)− φ(ν0) = φ(ν) (10)

where φ(ν0) = 0 is the unwrapped phase at the start frequency in the sweep, and φ(ν) is
the unwrapped phase at the last frequency in the sweep. The proposed algorithm’s results
are intensity image and phase image.

4. CNN for Material Classification

In a preliminary work [19], the CNN was used for pigment classification. Samples
made from polyethene (PE) were chosen, since PE is opaque to THz waves, and different
pigments could be detected in the material. The proposed preprocessing method uses the
WSD algorithm for data ordering and measurement transformation. Lower frequencies
are expected to have more impact on the material classification, since the amplitude of
the detected photocurrents are several orders of magnitude higher than those seen at
higher frequencies, as shown in Figure 3. However, the WSD algorithm shows promise
in mitigating the THz-FDS system’s drawback with uncertainties in frequency tuning.
Because of the nature of the WSD algorithm, it can be used to determine the appropriate
bandwidth and frequency resolution with the greatest sensitivity on the measured spectral
image of the target material. This section presents preprocessing, the WSD algorithm,
the CNN structure and occlusion sensitivity used for frequency range optimization.



Appl. Sci. 2023, 13, 974 8 of 18

4.1. Samples

The Isokon company provided all the sample materials. The sample materials were PE
plastic plates of different densities and with different additives. The material specifications
are proprietary to Isokon, and will not be disclosed. The plastic plates were visually
distinguishable by color, as shown in Figure 5. The geometry of the plastic plates was
the same (30 × 45 mm, 5 mm thickness). For classification purposes, batches of 50 scans
for each sample material were acquired using a TeraScan 1550 from Toptica Photonics.
The spectral range was set from 50 GHz to 1210 GHz, which is the maximal range of the
device. The frequency step was set to 0.1 GHz, and the integration time was set to 30 ms.
Each frequency scan took around 12 min. All scans were performed in similar conditions
with constant absolute humidity and temperature deviation of 3 °C. Both temperature and
humidity deviations were desired, and will make classification more robust.

30 mm 15 mm

Scan Direction

15 mm

30 mm

30 mm

Figure 5. Plastic samples in grey, black and white color. The dimensions of the plastic samples were
30 × 45 mm with 5 mm thickness.

4.2. Preprocessing Using the Windowing Spectrum Dilation Algorithm

Since the WSD algorithm was shown to be a good preprocessing algorithm for ma-
terial classification in the preliminary work, [19], it was chosen to determine the optimal
frequency range for the imaging applications. The WSD algorithm transforms the series
to a 2D array so that each image contains data from the preselected frequency span of the
extracted envelope with the dilation factor. Each image row extends the spectrum with a
dilation step. At the end of each consecutive row, the original data belongs to the higher
or lower measured spectra, which depends on the WSD dilation direction. The dilation
direction can proceed from lower to higher frequency or vice versa. Each subsequent
row contains the data of the dilated spectra, where the first row represents only starting
frequencies, while the last row embraces the whole spectra. The WSD reduces measurement
uncertainty and overcomes the problem with spectrum alignment in THz-FDS systems.
The WSD transformation for dataset D is described as:

ri = Di, (11)

n = | d
m |, (12)

Di = {x|x ∈ {Dj}j∈N , j = i · k}, (13)

IWSD = {ri|ri ∈ D, 1 ≤ i ≤ m} (14)

where ri is the i-th row of the image, i = [1, 2, . . . , m] is the running index and k is dilation
factor. The WSD can also be applied to a down-sampled dataset to lower image resolution
and preserve the spectral characteristics of the dataset. Adequately down-sampled data
preserves the peak envelope’s shape, and WSD preserves the shape of the envelope in
all rows of the image. Those mentioned above confirm that WSD transformation should
be more resilient to measurement uncertainties and data misalignment. The WSD data
structure is presented in Figure 6. In the given experiment, the presented WSD algorithm
focuses on lower frequencies, which have a higher amplitude, therefore, a higher impact
on classification. To determine the optimal frequency range, the input series to the WSD
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algorithm should be normalized. Transmittance T based on Equation (2) was used to
normalize the input series.

Figure 6. WSD transforms series into a two-dimensional image.

4.3. CNN Structure and Machine Learning

Classification of different materials depends on their spectral characteristics. Each
material has its spectral footprints, and this paper aims to detect the intersection of those
spectral footprints. The advantage of CNN in the case of classification is recognition
robustness, which can mimic the eye’s natural phenomena of cortex vision [25,26]. In the
preliminary work [19], the WSD algorithm proved superior to algorithms using 1D THz-
FDS data. One of CNN advantages is that the features can be extracted even if they
are distributed randomly spatially. As described in Section 2, pseudo random spatial
distribution is one of the shortcomings of THz-FDS systems, which is the result of the
frequency tuning method.

The efficiency of the CNN depends on the prepared training dataset, network structure,
and hyperparameter selection [27]. This paper’s single CNN structure was designed for
moderate resolution, benefiting from short training time and high classification speed while
maintaining high classification accuracy. Figure 7 shows the proposed CNN structure,
where Conv, ReLu, Maxpool, FC and Cross are abbreviations for convolution operation,
rectified linear activation function, max pooling, fully connected layer and cross-entropy,
respectively. The number after the forward slash in Figure 7 represents the stride layer.

2×2/1

2×2/1

Conv1 Conv2Maxpool1 Maxpool2 FC Cross

Input image 
WSD

16/1 3
8/ 1

4×4

Figure 7. Proposed CNN structure.

The CNN’s structure starts with the normalization function for scaling 2D input into
an arbitrary span. The first layer in the proposed CNN structure starts with convolutional
filters (CF) or kernels. The CF is a fixed-value moving window with a preselected structure
and stride. Repeated pattern extraction is allowed with the convolution operation over
the inspected image. The output from the convolution operation is a feature map. The CF
selection is a trade-off between network complexity and extraction potential.

The rectified linear activation function (ReLu) is used as the activation function. ReLu
speeds up the learning process and is not prone to a vanishing gradient. The second layer
in proposed CNN is the pooling layer. The pooling layer reduces the data dimensions
by extracting maximal values from a certain area. A max-pooling layer of size 2 × 2 was
used in the proposed CNN. In the preliminary work it was determined that, if WSD was
used, the pooling layer could be omitted, due to the down-sampling procedure of the WSD
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algorithm. However, max-pooling is used to minimize the proposed CNN’s complexity.
Another convolution operation layer, ReLu and max pooling layer follows. The last layer of
the proposed CNN is a fully connected layer. The fully connected layer turns 2D data into a
single dimension vector. A cross-entropy layer’s dimension is the number of classes. In the
case of this paper, the CNN was used to classify between three different plastic materials,
as described in Section 4.1.

A The CNN’s hyperparameters are determined through training. The proposed
network was trained using the ADAM optimizer [28]. The classification accuracy and
reliability are related strongly to the number and types of layers and the preprocessing
algorithm. The proposed CNN training parameters were similar as in [19]. Training
dataset consisted of the 1D THz-FDS data acquired from different batches with three
different plastic materials. Each batch contained 50 images. In the 1D THz-FDS data
acquisition process, it was desired to have a limited temperature, atmospheric pressure,
and absolute humidity fluctuations. Limited fluctuations in environmental parameters will
increase prediction reliability and could reduce overfit. Ten batches were used for CNN
training, representing 500 samples for each plastic material. The samples were divided
into training (50% of samples), validation (30% of samples), and testing (20% of samples)
groups. The CNN’s learning time and achieved accuracy are presented in Table 1.

Table 1. CNN Training results, where µ is the learning accuracy, t1 is the learning time in hours, α is
the initial learning rate, and emax is the maximal number of epochs.

µ t1 (h) α emax

0.992 0.1 0.0001 100

5. Frequency Range Optimization

The frequency range in THz-FDS is linked directly to the longer acquisition times.
To be able to estimate a phase shift using a zero-crossing detection algorithm, the fre-
quency resolution needs to be high enough. The detected THz wave frequency dependent
photocurrent in the PCA receiver is integrated over a set integration time to increase the
fidelity of the measurement. This paper aims for the automatic selection of frequency range,
while frequency resolution and integration time would stay the same. With a narrower
frequency range, the acquisition time will be lower. Figure 8 shows the principle of this
paper. A dataset for material classification was acquired in the first phase. The dataset
consisted of 10 batches of 50 wide-spectrum measurements for each plastic plate used in
the observed sample. The dataset was then transformed using WSD, and used for CNN
training, as shown in Section 4. The trained CNN was utilized in the proposed frequency
range optimization (FRO) algorithm. The first step in the proposed FRO is the CNN’s
occlusion sensitivity estimation, followed by the occlusion sensitivity function estimation
and frequency range selection using predefined criteria. The selected frequency ranges
were to be used in image acquisition and compared against the empirically-determined
frequency range by the expert in the field, as shown in the preliminary work [17].

Figure 8. Principle of the proposed frequency range optimization.

The proposed frequency range optimization (FRO) algorithm, shown in Figure 9, is
based on occlusion sensitivity. Occlusion sensitivity will provide a map of features that
have a higher impact on classification. CNNs are typically a black box. With the help of
CNN visualization tools, such as occlusion sensitivity, the inner workings of CNN can
be inspected, as shown in [20]. How a CNN predicts the results and which features are
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important for predicting with high accuracy can be crucial in the CNN’s design and data
preparation. CNN visualization tools can also present a unique opportunity for specific
applications, such as [21]. Occlusion sensitivity analysis is a relatively simple process. It
assumes that the probability score in the CNN’s class prediction will change if an area of
the image is occluded. An occluded area, or occlusion mask, can be a single pixel or a larger
area in the image. The probability score differences can be overleaped if the occluded area is
moved across the image. The probability score differences will form an occlusion map—an
image of the same size as the original image, but its pixel values are the probability score
differences. The occlusion sensitivity principle is shown in Figure 10.
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Figure 9. Proposed frequency range optimization algorithm based on occlusion sensitivity.

Figure 10. Occlusion sensitivity principle.

The occlusion map is created for a single class. Three different classes were chosen
in the proposed solution—gray, white, and a black plastic plate. Several occlusion maps
were estimated for each class, and all occlusion maps were averaged. In the resulting
average occlusion sensitivity map (AOSM), an intersection was performed between points
of interest. The AOSM withholds information on areas in the 2D image most important for
successful prediction for all three classes. In the second step of the proposed FRO algorithm,
rows in the AOSM are combined to form an occlusion sensitivity function (OSF). An OSF is
a function of frequency and not a position in a 2D image. An inverse WSD algorithm and
linear interpolation were used for creating the OSF. The data series’ length was estimated
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as k = m · n, where m is the number of columns, and n is the number of rows in the AOSM.
The data in the first row of the AOSM represent the first m frequencies in the spectrum,
and the data in the second AOSM’s row represent the first m · 2 frequencies. Following
this principle, the last row represents the full spectrum, dilated with dilation factor k = n.
The resulting OSF is shown in Figure 11. The OSF shows which frequencies are the most
important for distinguishing between the three different materials in the observed sample.
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Figure 11. OSF function with marked peaks.

The local maximums in the OSF were detected and the optimal frequency range was
selected in the third step of the proposed FRO algorithm. Local maximums represent the
frequencies at which the prediction obtained with the CNN would be the most sensitive
(i.e., which frequencies in the observed spectrum were the most important in the prediction).
The optimal frequency range can be determined around the detected local maximums using
the following criteria:

ν0 → O(ν0) = O(νpeak · 0.99), ν0 ≤ νpeak (15)

ν1 → O(ν1) = O(νpeak · 0.99), ν1 ≥ νpeak (16)

where ν0 is the starting frequency and ν1 is the end frequency. Based on the proposed crite-
rion, three frequency ranges were detected, and are shown in Table 2. The second optimized
frequency range was wider between the determined frequency ranges. Therefore, the im-
age acquisition speed improvement would be lower, but the acquired image could have
a higher contrast. As it is, the most improvement in acquisition speed could be provided
with the last frequency range, which was the narrower among the three selected ranges.

Table 2. Extracted frequency ranges based on the proposed algorithm.

ν0 (GHz) νpeak (GHz) ν1 (GHz)

1170 1185 1200
760 790 820
416 420 430

6. Experimental Results

This paper proposes a frequency range optimization based on a CNN’s occlusion
sensitivity. Proposed frequency range optimization was experimentally evaluated using the
THz-FDS imaging principle proposed in preliminary work [17] and described in Section 3.
In this paper, a CNN and occlusion sensitivity were used for frequency range optimiza-
tion, as shown in Section 5. The optimal frequency range should have a relatively short
bandwidth, and would have to retain the spectral characteristics of the observed sample or
materials. The expert empirically determined the optimal frequency range from 710 GHz
to 810 GHz, while the proposed algorithm in Section 5 determined three ranges: 1170 GHz
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to 1200 GHz, 770 GHz to 810 GHz, and 416–430 GHz. New datasets were acquired in
frequency ranges stated in Table 3 and the 1D images were reconstructed for all the acquired
datasets. Each of the images seemed to retain spectral information, but the most visually
distinguishable was the frequency range between 770 GHz and 810 GHz. In addition,
measurements in all frequency ranges were faster than the reference measurements.

In the second part of the experiment, measurements were performed in the frequency
ranges from Table 2. Other settings remained the same as in the reference measurement.
Figure 12 shows the resulting images for measurements in the frequency range between
416 GHz and 430 GHz. Figure 12e,f show a compressed 1D intensity image and com-
pressed 1D phase image, respectively. In both images the plastic plates are distinguishable.
However, the spectral features are not as clearly visible as in the reference measurement.
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Figure 12. Spectrograms and images for acquisition in the frequency range 416–430 GHz: (a) Peak
envelope spectrogram. (b) Unwrapped phase spectrogram. (c) Peak envelope spectrogram processed
using GSF. (d) Unwrapped phase spectrogram processed using GSF. (e) Compressed 1D intensity
image with marked plastic plates‘ positions. (f) Compressed 1D phase image with marked plastic
plates’ positions.

Figure 13 shows the resulting images for measurements in the frequency range be-
tween 770 GHz and 810 GHz. Figure 13e,f show a compressed 1D intensity image and
compressed 1D phase image, respectively. The plastic plates are distinguishable among
them and are clearly distinguishable from the environment. The results in Figure 13 are
similar to the results from the reference measurements shown in Figure 14. However,
because of the shorter frequency range, some uncertainties are present.

Figure 15 shows the resulting images for measurements in the frequency range be-
tween 1170 GHz and 1200 GHz. Figure 15e,f show a compressed 1D intensity image and
compressed 1D phase image, respectively. However, their spectral characteristics are not
distinguishable, and this image could be deemed unusable for further processing.
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Figure 13. Spectrograms and images for acquisitions in the frequency range 770–810 GHz: (a) Peak
envelope spectrogram. (b) Unwrapped phase spectrogram. (c) Peak envelope spectrogram processed
using GSF, (d) Unwrapped phase spectrogram processed using GSF. (e) Compressed 1D intensity
image with marked plastic plates‘ positions. (f) Compressed 1D phase image with marked plastic
plates’ positions.
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Figure 14. Spectrograms and images for acquisition in the frequency range 710–810 GHz: (a) Peak
envelope spectrogram. (b) Unwrapped phase spectrogram. (c) Peak envelope spectrogram processed
using GSF. (d) Unwrapped phase spectrogram processed using GSF. (e) Compressed 1D intensity
image with marked plastic plates’ positions. (f) Compressed 1D phase image with marked plastic
plates’ positions.

The visual results show that the selected optimal frequency ranges could be adequate
for further processing. The proposed FRO algorithm was intended to help mitigate the
long acquisition times in CW THz imaging. The acquisition time of a single pixel is
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linked to bandwidth B, frequency step δ f and integration time ti and can be estimated as
tpx = ti · B/δ f . The frequency step and integration time were kept the same throughout
all four measurements, while the bandwidth was changed. First row of Table 3 shows
acquisition parameters for the whole available spectrum. Image acquisition utilizing
the whole spectrum would take more than 34 hours to complete. The second row of
Table 3 shows acquisition parameters for the empirically determined frequency range.
With narrower bandwidth, there is a big drop in image acquisition time. The optimised
frequency ranges all have a lot shorter single-pixel acquisition times, as shown in fourth
column of Table 3. Shorter single-pixel acquisition times will improve the overall image
acquisition times, as shown in the last column of Table 3.
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Figure 15. Spectrograms and images for acquisition in the frequency range 1170–1200 GHz: (a) Peak
envelope spectrogram, (b) Unwrapped phase spectrogram. (c) Peak envelope spectrogram processed
using GSF. (d) Unwrapped phase spectrogram processed using GSF. (e) Compressed 1D intensity
image with marked plastic plates’ positions. (f) Compressed 1D phase image with marked plastic
plates’ positions.

Table 3. Estimated image acquisition times for frequency ranges from Table 2 and for the refer-
ence measurement.

ν0 (GHz) ν1 (GHz) Bandwidth (GHz) Pixel Acquisition
Time (s)

Image Acquisi-
tion Time (s)

50 1210 1160 348 125,280
710 810 100 30 10,800
1170 1200 30 9 3240
770 810 40 12 4320
416 430 14 4.2 1512

7. Conclusions

This paper proposes an FRO algorithm for CW-THz imaging based on a CNN and
an occlusion sensitivity algorithm. THz imaging is based mainly on THz-TDS systems.
However, THz-FDS systems could be more suited for certain applications. THz-FDS
systems suffer from two main disadvantages. The first disadvantage is low acquisition
speed, and the second disadvantage is high tuning error and low repeatability. A novel
imaging principle for THz-FDS imaging is proposed in this paper. The imaging principle
is a combination of raster imaging and full-field imaging. A relatively wide collimated
THz beam passes through the sample and is detected in transmission mode. With a linear
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rail, the position of the PCAs change in a way that overleaps other measurements. If the
linear rail’s movement step is much smaller than the THz beam’s apperture, the proposed
GSF can be used for the THz-FDS’s frequency tuning error mitigation. The proposed
imaging principle solved the problem of long acquisition times. In this paper, a CNN and
occlusion sensitivity are used for frequency range optimization, which, in principle, would
find an ideal frequency range. The deal frequency range should have a relatively short
bandwidth, and would have to retain the spectral characteristics of the observed samples
or materials. The proposed frequency range algorithm was evaluated experimentally,
and compared to an expert‘s opinion. The expert determined the ideal frequency range from
710 GHz to 810 GHz, while the proposed algorithm determined three ranges: 1170 GHz
to 1200 GHz, 770 GHz to 810 GHz, and 416–430 GHz. One-dimensional images were
reconstructed for all the optimized frequency ranges. Each of the images seemed to retain
all the spectral information, but the most visually distinguishable was the frequency range
between 770 GHz and 810 GHz. In addition, measurements in all frequency ranges were
faster than the reference measurement. The proposed frequency range optimization was
used successfully for frequency range optimization. The proposed THz imaging principle
and frequency range optimization algorithm could mitigate the two shortcomings of THz-
FDS systems in imaging applications: low acquisition speed and frequency tuning error.
In further research, the proposed imaging principle and frequency range optimization
could be used for 2D image acquisition and reconstruction.
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