
Citation: Kee, E.; Chong, J.J.; Choong,

Z.J.; Lau, M. Development of Smart

and Lean Pick-and-Place System

Using EfficientDet-Lite for Custom

Dataset. Appl. Sci. 2023, 13, 11131.

https://doi.org/10.3390/

app132011131

Academic Editors: Qi Song and

Qinglei Zhao

Received: 9 September 2023

Revised: 2 October 2023

Accepted: 9 October 2023

Published: 10 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Development of Smart and Lean Pick-and-Place System Using
EfficientDet-Lite for Custom Dataset
Elven Kee * , Jun Jie Chong , Zi Jie Choong and Michael Lau

Faculty of Science, Agriculture and Engineering, SIT Building at Nanyang Polytechnic Singapore, Newcastle
University in Singapore, Singapore 567739, Singapore; junjie.chong@newcastle.ac.uk (J.J.C.);
zijie.choong@newcastle.ac.uk (Z.J.C.); michael.lau@newcastle.ac.uk (M.L.)
* Correspondence: e.kee@newcastle.ac.uk

Abstract: Object detection for a pick-and-place system has been widely acknowledged as a significant
research area in the field of computer vision. The integration of AI and machine vision with pick-and-
place operations should be made affordable for Small and Medium Enterprises (SMEs) so they can
leverage this technology. Therefore, the aim of this study is to develop a smart and lean pick-and-place
solution for custom workpieces, which requires minimal computational resources. In this study, we
evaluate the effectiveness of illumination and batch size to improve the Average Precision (AP) and
detection score of an EfficientDet-Lite model. The addition of 8% optimized bright Alpha3 images
results in an increase of 7.5% in AP and a 6.3% increase in F1-score as compared to the control dataset.
Using a training batch size of 4, the AP is significantly improved to 66.8% as compared to a batch
size of 16 at 57.4%. The detection scores are improved to 80% with a low variance of 1.65 using a
uniform 135-angle lamp and 0 illumination level. The pick-and-place solution is validated using
Single-Shot Detector (SSD) MobileNet V2 Feature Pyramid Network (FPN) Lite. Our experimental
results clearly show that the proposed method has an increase of 5.19% in AP compared to SSD
MobileNet V2 FPNLite.

Keywords: object detection; EfficientDet-Lite; Average Precision

1. Introduction

One of the current trends in advanced manufacturing is to employ Artificial Intel-
ligence (AI) methods to improve the pick-and-place process. The integration of AI and
machine vision with pick-and-place operations can significantly improve the manufactur-
ing process. It should be made affordable for Small and Medium Enterprises (SMEs) so
that they can leverage the benefits come with this technology without being concerned
with allocating a significant financial budget. The fast and smooth integration of machine
vision technology with the current pick-and-place operations of SMEs is another crucial
aspect that should be taken into consideration.

In this context, any machine vision solution should be developed in a way that
the commissioning and installing can be carried out simply and quickly by the field
operators of SMEs without special skills. Therefore, one of the current trends in advanced
manufacturing is to employ object detection using Deep Learning methods to improve the
pick-and-place process. Furthermore, we study the usage of this smart and lean system in
low-light environments, such as waferfab manufacturing during the night shift. Die-sorting
machines, for example, can be used in low-light environments because they are totally
automated and require no user intervention. As such, sufficient ambient lighting is not
needed [1], and hence, our aim is to develop a smart and lean pick-and-place solution,
which requires minimal computational resources, for custom workpieces.

AI model efficiency has become increasingly important in computer vision, and object
detection using machine learning is becoming crucial for pick-and-place operation and
warehousing logistics [2,3]. Other than allowing the smart detection of objects without

Appl. Sci. 2023, 13, 11131. https://doi.org/10.3390/app132011131 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132011131
https://doi.org/10.3390/app132011131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1160-8834
https://orcid.org/0000-0003-3685-6540
https://doi.org/10.3390/app132011131
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132011131?type=check_update&version=2

Appl. Sci. 2023, 13, 11131 2 of 18

camera recalibration, AI enhances the application’s robustness to light changes, shadow,
background noise and low-illumination [4].

Continuing from our previous work [5], we aim to improve the pick-and-place opera-
tion using an Artificial Intelligence model deployed on an embedded controller. Our target
is to develop a smart and lean pick-and-place system that meets the requirements of low
power consumption, small memory usage, and fast run time.

Model efficiency has become increasingly important in computer vision to be used on
mobile devices and embedded controllers such as Raspberry Pi due to the model’s compact
size and quick inference. Convolutional Neural Network (CNN) models are crucial for
feature extraction and classification, but conventional high-performance algorithms are
expensive due to their high-power consumption and memory usage.

TensorFlow has developed several deep learning object identification models that
were designed for embedded and mobile devices, hence the name TensorFlow Lite (TFLite).
The model’s compact size and quick inference for TFLite versions make them appropriate
for a variety of applications, including wearable technology and the Internet of Things.
A pre-trained TensorFlow model is used to act as a learnt generic model because it has
previously been trained on a sizable general dataset. This helps to reduce the quantity of
data required to train a model from scratch.

Our project uses the state-of-the-art model EfficientDet-Lite [6], which was developed
by Google in 2020. Compared to other state-of-the-art models, EfficientDet-Lite detec-
tors are more precise and need fewer computational resources (working memory, power
consumption, and floating-point operations per second or FLOPS) than their predecessors.

TFLite is a model optimization toolkit provided by Google, whose purpose is also to
reduce the complexity of deep learning models and speed up the inference time. TfLite’s key
feature is size reduction, which results in a smaller model and less need for storage space
and RAM. TFLite decreases latency by quantization, which helps to simplify calculations
during inference with only a little amount of accuracy loss.

TFLite optimizes the model via quantization, clustering, and pruning. The model’s
accuracy is reduced, as it is quantized from FP64 to lower resolutions (FP32, FP16, INT8).
In order to reduce a model’s complexity by reducing the number of its unique weights, clus-
tering involves dividing the weights of the trained model’s layers into clusters and sharing
the centroid of each cluster’s weight. Pruning is the process of removing less important
model parameters that barely affect the outcomes of predictions. This aids in simplifying
the model at the expense of some accuracy loss and offers far higher performance.

EfficientDet uses the same backbone as EfficientNet and adds a bi-directional feature
pyramid network (BiFPN) to help in multi-scale feature fusion. It utilizes several opti-
mization and backbone tweaks and a compound scaling method that uniformly scales the
resolution, depth and width for all backbones, feature networks and box/class prediction
networks at the same time.

Considerable research has already been completed for object detection using AI, laying
the foundation for this work. The contribution of every work published previously in all the
relevant domains has played a significant role in developing this work. Our pick-and-place
approach is similar to a robot collecting a rock from a hopper using a vision-based image
processing algorithm [7] and a robot performing pick and place operations on deformable
items [8].

Similar to us, some researchers developed novel methods to improve the mean Average
Precision. Using Faster-RCNN, Leung [1] developed a vehicle detection approach for
insufficient and night-time illumination conditions and improved the mAP values by
0.2; however, it was not meant for a resource-constrained embedded system. Luo [9]
achieved an average detection accuracy of 57.51% on EfficientDet-D2 for the road damage
detection, which was lower than our 74.1% AP for the Alpha1 dataset. Jain [10] developed
“DeepSeaNet” to detect underwater objects with EfficientDet with a high accuracy of
98.63%, but the method was not suitable for lightweight devices due to the complexity of
the model.

Appl. Sci. 2023, 13, 11131 3 of 18

Similar to our lightweight methodology, Cirjak [11] used EfficientDet-4 on Raspberry
Pi to monitor the codling moth population and achieve a high accuracy of 99% with a
small dataset of 430 images. Wu [12] adopted EfficientDet to detect textureless objects in
an industrial environment, but this method was not suitable for Raspberry Pi due to the
heavy computation. Saurabh [13] used a web camera and ABB robot to detect color and
perform a color-sorting algorithm; this work has 100% detection but no machine learning
implementation. Konaite [14] used another lightweight model, SSD MobileNet V2, on
Raspberry Pi to detect barriers for blind people to navigate safely.

EfficientDet is used in non-industrial scenarios such as dental application. Bayaran [15]
assessed the diagnostic quality of bitewing radiographs at contact areas between teeth,
which can help the oral radiologists provide better radiographic qualities.

Other than EfficientDet, advanced CNN is used in other applications. For example,
it is used in implementing traffic signs recognition in a mobile-based application [16], a
speech recognition system using TensorFlow [17], a smart surveillance system for night
low-illumination objects [18] and a visual feedback algorithm on AlexNet [19].

The effectiveness of illumination to improve the detection scores has not been ex-
tensively studied for pick-and-place solutions, especially robots used in warehouses and
logistics areas with low illumination, and thus, our research aims to fill this gap.

We implement a smart and lightweight object detector requiring minimal computa-
tional resources which controls a pick-and-place system. The illumination effect on the
EfficientDet-Lite model deployed in Raspberry Pi are investigated and compared. Our
contributions include the following:

• The addition of 8% optimized bright Alpha3 images resulted in a 7.5% increase in
Average Precision and a 6.3% increase in F1-score.

• Obtain high detection scores over 80% and low variance of 1.65 by using 135-degree
angle and level 0 illumination in accordance with Japanese Industrial Standard (JIS).

• In-depth analysis of EfficientDet-Lite models with training batch sizes 4, 8, and 16.
Batch size 4 had the best performance with an overall mean of 66.8% and low standard
deviation of 6.23%

The remainder of this paper is organized as follows: In Section 2, we introduce the
project setup for a smart and lean pick-and-place solution as well as the data collection
and training process. In Section 3, we test our proposed method on the custom dataset
and compare it with some other state-of-the-art methods to show the effectiveness and
advantages of our method. Conclusions are drawn in Section 4.

2. Materials and Methods
2.1. Materials and Measurements Setup

Figure 1 shows the project setup for our smart and lean pick-and-place solution. The
framework of the pick-and-place solution is mainly divided into two parts; object detection
and location using an embedded system, and workpiece placement using a robot arm. A
Universal Robot 3 (UR3) collaborative robot is used to perform the pick-and-place solution.
A Logitech 2D camera of 5 Megapixels (MP)is mounted on the arm of UR3 and connected
to the USB port of a Raspberry Pi. Once the object is detected, the General-Purpose Input–
Output (GPIO) sends a signal to control the hardwired signal of the UR, as proposed by
our previous work [5]. Using 2D cameras is beneficial to the pick-and-place system, as they
are more affordable and have good accuracy [20]. Compared to other vision solutions, a 2D
camera detection engine is easy to use, thus increasing their adaptability and flexibility to
different custom-made objects.

Figure 2 shows the flowchart for our pick-and-place solution using the Raspberry
Pi. Using OpenCV on Raspberry Pi, the data images are captured, and the images are
annotated using the online Roboflow tool. The dataset is then preprocessed, augmented,
and run on Google Colab for model building and training. Using TensorFlow’s Model
Maker [21], the model is built, trained, and evaluated before being converted to TensorFlow
Lite. The lite version consumes less memory compared to the original version.

Appl. Sci. 2023, 13, 11131 4 of 18
Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 19

Figure 1. Project setup of our smart and lean pick-and-place solution.

Figure 2 shows the flowchart for our pick-and-place solution using the Raspberry Pi.
Using OpenCV on Raspberry Pi, the data images are captured, and the images are anno-
tated using the online Roboflow tool. The dataset is then preprocessed, augmented, and
run on Google Colab for model building and training. Using TensorFlow’s Model Maker
[21], the model is built, trained, and evaluated before being converted to TensorFlow Lite.
The lite version consumes less memory compared to the original version.

Figure 2. Flowchart with dataset, batch size and lamp control.

This project used 2 datasets for training: Dataset 1 for optimized bright and illumi-
nation level and Dataset 2 for batch test. The mean and variance AP are then extracted and
compared. For the batch test, we compare the AP for batch sizes 4, 8 and 16. For the illu-
mination test, we use 3 lamp angles and compare the best detection scores.

The project uses custom datasets for the initial training process. Three different colors
(yellow, blue, red) are used, and each color has 2 different shapes (cylinder, cube), as
shown in Figure 3. The project uses Roboflow [22] as an online annotation and data split-
ting tool. Using the Label Assist tool, the highest mAP is used to annotate images, and the
confidence is lowered to 20%. The confidence level is lowered to make the annotation vis-
ible for all objects. The overlap is reduced to 50% to enable detection of workpiece with
poor confidence. These values are chosen after trial and error in order for the AI tool to
add most of the annotations automatically. For faster annotation, the zoom and lock view
functions are used to ensure more accurate annotation as the workpiece looks bigger. A

Figure 1. Project setup of our smart and lean pick-and-place solution.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 19

Figure 1. Project setup of our smart and lean pick-and-place solution.

Figure 2 shows the flowchart for our pick-and-place solution using the Raspberry Pi.
Using OpenCV on Raspberry Pi, the data images are captured, and the images are anno-
tated using the online Roboflow tool. The dataset is then preprocessed, augmented, and
run on Google Colab for model building and training. Using TensorFlow’s Model Maker
[21], the model is built, trained, and evaluated before being converted to TensorFlow Lite.
The lite version consumes less memory compared to the original version.

Figure 2. Flowchart with dataset, batch size and lamp control.

This project used 2 datasets for training: Dataset 1 for optimized bright and illumi-
nation level and Dataset 2 for batch test. The mean and variance AP are then extracted and
compared. For the batch test, we compare the AP for batch sizes 4, 8 and 16. For the illu-
mination test, we use 3 lamp angles and compare the best detection scores.

The project uses custom datasets for the initial training process. Three different colors
(yellow, blue, red) are used, and each color has 2 different shapes (cylinder, cube), as
shown in Figure 3. The project uses Roboflow [22] as an online annotation and data split-
ting tool. Using the Label Assist tool, the highest mAP is used to annotate images, and the
confidence is lowered to 20%. The confidence level is lowered to make the annotation vis-
ible for all objects. The overlap is reduced to 50% to enable detection of workpiece with
poor confidence. These values are chosen after trial and error in order for the AI tool to
add most of the annotations automatically. For faster annotation, the zoom and lock view
functions are used to ensure more accurate annotation as the workpiece looks bigger. A

Figure 2. Flowchart with dataset, batch size and lamp control.

This project used 2 datasets for training: Dataset 1 for optimized bright and illumi-
nation level and Dataset 2 for batch test. The mean and variance AP are then extracted
and compared. For the batch test, we compare the AP for batch sizes 4, 8 and 16. For the
illumination test, we use 3 lamp angles and compare the best detection scores.

The project uses custom datasets for the initial training process. Three different colors
(yellow, blue, red) are used, and each color has 2 different shapes (cylinder, cube), as shown
in Figure 3. The project uses Roboflow [22] as an online annotation and data splitting tool.
Using the Label Assist tool, the highest mAP is used to annotate images, and the confidence
is lowered to 20%. The confidence level is lowered to make the annotation visible for
all objects. The overlap is reduced to 50% to enable detection of workpiece with poor
confidence. These values are chosen after trial and error in order for the AI tool to add most
of the annotations automatically. For faster annotation, the zoom and lock view functions
are used to ensure more accurate annotation as the workpiece looks bigger. A Roboflow’s
Healthcheck is performed to ensure the distribution of workpieces in the dataset.

Appl. Sci. 2023, 13, 11131 5 of 18

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 19

Roboflow’s Healthcheck is performed to ensure the distribution of workpieces in the da-
taset.

Figure 3. Custom dataset.

According to our previously published research [5], EfficientDet-Lite4 has a large file
size and may not be suitable for Raspberry Pi due to its memory limitations. Hence, in this
project, we specifically use EfficientDet-Lite 0 to 3 as our models, and these four architec-
tures are trained using the TensorFlow Lite Model Maker [23] library.

All Tensorflow models are developed and evaluated using Google Colab [23] with a
Graphic Processing Unit (GPU) Hardware Accelerator. The proposed framework aims to
be a complete object detector that only needs minimal data processing before and after
model detection and classification. After training, the EfficientDet Lite models are quan-
tized (weights of 8-bit integer) using Post-Training Quantization.

For our object detection, the evaluation criteria are the mean Average Precision
(mAP) and F1-score. According to the validation dataset COCO2017, its mAP is the same
as Average Precision in Tensorflow Model Maker [23]. For our pick-and-place application,
ARmax10 is chosen as the Recall value as we expect to have a maximum of 10 detections
per pick-and-place application.

The formula of the mean Average Precision is given as below:

𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑛𝑛
∑ 𝐴𝐴𝐴𝐴𝑘𝑘=𝑛𝑛
𝑘𝑘=1 k (1)

where APk is the Average Precision of class k, and n is the number of classes.
The F1-score is used to evaluate the models’ accuracy, since it allows for the simulta-

neous maximization of two metrics that are well known in this field: Precision, which
measures the detections of objects, and Recall, which measures the objects that are de-
tected. The F1-score is calculated based in the mAP and Recall value in the formula below:

F1 = 2∗𝑚𝑚𝑚𝑚𝑚𝑚∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴10
𝑚𝑚𝑚𝑚𝑚𝑚+𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴10

 (2)

To speed up the training, the number of epochs is fixed at 50 for the 4 models. The
threshold for detection is set at 30%. The standard deviation of the AP is calculated as
follows:

𝜎𝜎 = �∑(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2

𝑁𝑁
 (3)

where 𝜎𝜎 is the population standard deviation, N is the size of the population, xi is the
value of an AP and µ is the population mean of all APs.

The variance of the AP is calculated as follows:

Figure 3. Custom dataset.

According to our previously published research [5], EfficientDet-Lite4 has a large
file size and may not be suitable for Raspberry Pi due to its memory limitations. Hence,
in this project, we specifically use EfficientDet-Lite 0 to 3 as our models, and these four
architectures are trained using the TensorFlow Lite Model Maker [23] library.

All Tensorflow models are developed and evaluated using Google Colab [23] with a
Graphic Processing Unit (GPU) Hardware Accelerator. The proposed framework aims to be
a complete object detector that only needs minimal data processing before and after model
detection and classification. After training, the EfficientDet Lite models are quantized
(weights of 8-bit integer) using Post-Training Quantization.

For our object detection, the evaluation criteria are the mean Average Precision (mAP)
and F1-score. According to the validation dataset COCO2017, its mAP is the same as
Average Precision in Tensorflow Model Maker [23]. For our pick-and-place application,
ARmax10 is chosen as the Recall value as we expect to have a maximum of 10 detections
per pick-and-place application.

The formula of the mean Average Precision is given as below:

mAP =
1
n ∑ k=n

k=1 APk (1)

where APk is the Average Precision of class k, and n is the number of classes.
The F1-score is used to evaluate the models’ accuracy, since it allows for the simul-

taneous maximization of two metrics that are well known in this field: Precision, which
measures the detections of objects, and Recall, which measures the objects that are detected.
The F1-score is calculated based in the mAP and Recall value in the formula below:

F1 =
2 ∗ mAP ∗ ARmax10

mAP + ARmax10
(2)

To speed up the training, the number of epochs is fixed at 50 for the 4 models. The
threshold for detection is set at 30%. The standard deviation of the AP is calculated
as follows:

σ =

√
∑(xi − µ)2

N
(3)

where σ is the population standard deviation, N is the size of the population, xi is the value
of an AP and µ is the population mean of all APs.

Appl. Sci. 2023, 13, 11131 6 of 18

The variance of the AP is calculated as follows:

S2 =
∑(xi − µ)2

N
(4)

where S2 is the population variance, N is the size of the population, xi is the value of an AP
and µ is the population mean of all APs.

Data preprocessing decreases the training time and increases the performance of the AI
model by applying image transformations to all images in this dataset, as shown in Table 1.
To prevent overfitting of the model, the data augmentation process is shown in Table 2.
Both data preprocessing and augmentation are completed using the online Roboflow tool.

Table 1. Preprocessing operations applied to the original images.

Model Setting Description Batch Size

Auto-Orient Activated Rotate image 15◦ counter-clockwise Discard EXIF rotations and standardize
Resize 416 × 416 Resize all the images to square size 416 is divisible by 16

Table 2. Augmentation operations applied to the original images.

Model Setting Description Comments

Rotation −15◦ Rotate image 15◦ counter-clockwise Add variability to perspective to be more
resilient to camera’s angleRotation 15◦ Rotate image 15◦ clockwise

Shear Horizontal 15◦ Shear image horizontally by 15◦ Add variability to perspective to be more
resilient to camera’s pitch and yawShear Vertical 15◦ Shear image vertically 15◦

This project uses an augmentation technique to increase the number of images from a
small number of images. Two datasets were built: Dataset 1 with 124 images to study the
illumination effect and Dataset 2 with 82 images to study effect of batch size. Dataset 2 is a
small dataset consisting of 82 images, and it is used for batch testing. Our objective is to
determine whether there is a visible increase in mAP due to batch size despite the small
datasets. Table 3 presents the two datasets utilized for the three test trials.

Table 3. Augmented dataset for illumination, optimized brightness and batch size test.

Test
Experiment Dataset Test Application TensorFlow Model Batch

Size

Number of
Original
Images

Number of
Augmented

Images

Augmented
Ratio

1 Dataset 1 Optimized bright EfficientDet-Lite 2 8 124 1006 8.12

2 Dataset 1 Illumination level EfficientDet-Lite 2 8 124 1006 8.12

3 Dataset 2 Batch size

EfficientDet-Lite 0

4, 8, 16 82 333 4.05
EfficientDet-Lite 1
EfficientDet-Lite 2
EfficientDet-Lite 3

For test experiments 1 and 2, the model chosen is EfficientDet-Lite2 with a batch size
of 8, as it is lightweight and has a good trade-off between training speed and accuracy. For
test experiment 3, we vary the batch size to 4, 8 and 16, and we also vary the 3 Tensorflow
models from EfficientDet-Lite 0 to 3.

2.2. Image Optimization Process to Improve Mean Average Process

Table 4 shows the distribution of the workpiece in Dataset 1, where there are a total of
963 objects. The blue cylinder has highest distribution at 35.61%, which is followed by the
blue cube at 20.87%. The red cylinder has the lowest distribution at 13.33%.

Appl. Sci. 2023, 13, 11131 7 of 18

Table 4. Distribution of workpiece in Dataset 1.

Total Objects Number of
Blue Cube

Number of
Blue Cylinder

Number of
Yellow Cylinder

Number of
Yellow Cube

Number of
Red Cube

Number of
Red Cylinder

963 201 343 128 162 166 129
(100%) (20.87%) (35.61%) (13.29%) (16.82%) (17.23%) (13.33%)

The proposed pick-and-place method aims to be a complete object detector that only
needs minimal data processing before and after model detection and classification. There-
fore, we choose a small number of images to evaluate the effectiveness of this approach.
This study emphasizes the necessity of rapid and accurate label annotations, as well as fast
data processing with small datasets, using a smart and “lean” approach.

Figure 4 shows the augmentation process, where 124 original images are augmented to
327 images using the Flip-90 degree, Flip-180 degree and Rotate-15 degrees manipulation.
Similarly, the 10 bright images (8% of the total images) are augmented to 24 images. Using
the Roboflow online tool, the images are merged to produce 1006 augmented image after
undergoing image shearing manipulation.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 19

Table 4. Distribution of workpiece in Dataset 1.

Total Objects Number of
Blue Cube

Number of
Blue Cylinder

Number of
Yellow Cylinder

Number of
Yellow Cube

Number of
Red Cube

Number of
Red Cylinder

963 201 343 128 162 166 129
(100%) (20.87%) (35.61%) (13.29%) (16.82%) (17.23%) (13.33%)

The proposed pick-and-place method aims to be a complete object detector that only
needs minimal data processing before and after model detection and classification. There-
fore, we choose a small number of images to evaluate the effectiveness of this approach.
This study emphasizes the necessity of rapid and accurate label annotations, as well as
fast data processing with small datasets, using a smart and “lean” approach.

Figure 4 shows the augmentation process, where 124 original images are augmented
to 327 images using the Flip-90 degree, Flip-180 degree and Rotate-15 degrees manipula-
tion. Similarly, the 10 bright images (8% of the total images) are augmented to 24 images.
Using the Roboflow online tool, the images are merged to produce 1006 augmented image
after undergoing image shearing manipulation.

Figure 4. Process of augmentation for Dataset 1.

For the bright images, 10 images of different alpha values are added to the dataset,
as shown in Table 5. Using the addWeighted function from OpenCV, a brightness of al-
pha(α) parameter is overlayed onto the 10 images. The addWeighted function is a function
that helps by adding two images (f0 and f1) by passing varying α values of 1, 2 and 3 into
the formula below.

g(x) = (1 − α)f0(x) + αf1(x) (5)

Table 5. Optimization process with Alpha datasets.

Optimization Process Control Group Alpha1 Dataset Alpha2 Dataset Alpha3 Dataset
Base image + 10 normal images 124 + 10 normal

Base image + 10 bright Alpha1 images 124 + 10 bright level 1

Base image + 10 bright Alpha2 images
124 + 10 bright

level 2

Base image + 10 bright Alpha3 images
124 + 10 bright

level 3

The datasets are named as follows. Alpha1 has 124 base images with 10 bright im-
ages. Alpha2 has 124 base images with 10 bright images, and Alpha3 has 10 bright images.
The optimization is shown in Figure 5, where the results of brightening are clearly visible.

Figure 4. Process of augmentation for Dataset 1.

For the bright images, 10 images of different alpha values are added to the dataset, as
shown in Table 5. Using the addWeighted function from OpenCV, a brightness of alpha(α)
parameter is overlayed onto the 10 images. The addWeighted function is a function that
helps by adding two images (f0 and f1) by passing varying α values of 1, 2 and 3 into the
formula below.

g(x) = (1 − α)f 0(x) + αf 1(x) (5)

Table 5. Optimization process with Alpha datasets.

Optimization Process Control Group Alpha1 Dataset Alpha2 Dataset Alpha3 Dataset

Base image + 10 normal
images 124 + 10 normal

Base image + 10 bright
Alpha1 images 124 + 10 bright level 1

Base image + 10 bright
Alpha2 images 124 + 10 bright level 2

Base image + 10 bright
Alpha3 images 124 + 10 bright level 3

The datasets are named as follows. Alpha1 has 124 base images with 10 bright images.
Alpha2 has 124 base images with 10 bright images, and Alpha3 has 10 bright images. The
optimization is shown in Figure 5, where the results of brightening are clearly visible.

Appl. Sci. 2023, 13, 11131 8 of 18

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 19

(a) (b) (c) (d)

Figure 5. Optimized bright image using OpenCV: (a) normal; (b) Alpha1; (c) Alpha2; (d) Alpha3.

2.3. Illumination Level Setup to Improve Detection Scores
According to the Japanese Industrial Standard (JIS) Z 9110-1979 [24], the recom-

mended level of illumination shall be as shown in Table 6 below. Using an illuminance
(lux) meter and a commercially available lamp, the appropriate level of illumination is
determined for a specific work location in a typical factory environment, such as the pack-
ing, assembly and inspection area.

Table 6. JIS recommend level of illumination.

Illumination Level Lux Range Work Areas
Level 0 Less than 5 Darkroom and indoor emergency stairways
Level 1 150 to 300 Wrapping and packing
Level 2 300 to 750 Assembly, test and ordinary visual work
Level 3 750 to 1500 Inspection, selection and precise visual work
Level 4 1500 to 3000 Inspection, selection and extremely precise visual work

It is important to note that the detection scores are affected by the surface reflection
since the workpieces are made of metallic materials. Rather than mounting the lamp di-
rectly above the workpieces, the lamp is positioned on the side so that the light does not
reflect directly from the metallic surface. As shown in Figure 6, the base of the lamp is
positioned 30 cm horizontally and 25 cm vertically from the workpieces, with 3 angles of
180 degrees, 90 degrees and 135 degrees from the lowest vertical point lamp. This project
focuses on pick-and-place applications within darkrooms, corridors, and poorly illumi-
nated areas with less than 300 Lux levels, as it is less extensively studied.

Figure 6. Setup of angled lamp.

Table 7 shows the on-site lux measurement as well as classification of areas for the
proposed robot implementation in an assembly line.

Figure 5. Optimized bright image using OpenCV: (a) normal; (b) Alpha1; (c) Alpha2; (d) Alpha3.

2.3. Illumination Level Setup to Improve Detection Scores

According to the Japanese Industrial Standard (JIS) Z 9110-1979 [24], the recommended
level of illumination shall be as shown in Table 6 below. Using an illuminance (lux) meter
and a commercially available lamp, the appropriate level of illumination is determined for
a specific work location in a typical factory environment, such as the packing, assembly
and inspection area.

Table 6. JIS recommend level of illumination.

Illumination Level Lux Range Work Areas

Level 0 Less than 5 Darkroom and indoor emergency stairways
Level 1 150 to 300 Wrapping and packing
Level 2 300 to 750 Assembly, test and ordinary visual work
Level 3 750 to 1500 Inspection, selection and precise visual work
Level 4 1500 to 3000 Inspection, selection and extremely precise visual work

It is important to note that the detection scores are affected by the surface reflection
since the workpieces are made of metallic materials. Rather than mounting the lamp
directly above the workpieces, the lamp is positioned on the side so that the light does
not reflect directly from the metallic surface. As shown in Figure 6, the base of the lamp
is positioned 30 cm horizontally and 25 cm vertically from the workpieces, with 3 angles
of 180 degrees, 90 degrees and 135 degrees from the lowest vertical point lamp. This
project focuses on pick-and-place applications within darkrooms, corridors, and poorly
illuminated areas with less than 300 Lux levels, as it is less extensively studied.

Table 7 shows the on-site lux measurement as well as classification of areas for the
proposed robot implementation in an assembly line.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 19

(a) (b) (c) (d)

Figure 5. Optimized bright image using OpenCV: (a) normal; (b) Alpha1; (c) Alpha2; (d) Alpha3.

2.3. Illumination Level Setup to Improve Detection Scores
According to the Japanese Industrial Standard (JIS) Z 9110-1979 [24], the recom-

mended level of illumination shall be as shown in Table 6 below. Using an illuminance
(lux) meter and a commercially available lamp, the appropriate level of illumination is
determined for a specific work location in a typical factory environment, such as the pack-
ing, assembly and inspection area.

Table 6. JIS recommend level of illumination.

Illumination Level Lux Range Work Areas
Level 0 Less than 5 Darkroom and indoor emergency stairways
Level 1 150 to 300 Wrapping and packing
Level 2 300 to 750 Assembly, test and ordinary visual work
Level 3 750 to 1500 Inspection, selection and precise visual work
Level 4 1500 to 3000 Inspection, selection and extremely precise visual work

It is important to note that the detection scores are affected by the surface reflection
since the workpieces are made of metallic materials. Rather than mounting the lamp di-
rectly above the workpieces, the lamp is positioned on the side so that the light does not
reflect directly from the metallic surface. As shown in Figure 6, the base of the lamp is
positioned 30 cm horizontally and 25 cm vertically from the workpieces, with 3 angles of
180 degrees, 90 degrees and 135 degrees from the lowest vertical point lamp. This project
focuses on pick-and-place applications within darkrooms, corridors, and poorly illumi-
nated areas with less than 300 Lux levels, as it is less extensively studied.

Figure 6. Setup of angled lamp.

Table 7 shows the on-site lux measurement as well as classification of areas for the
proposed robot implementation in an assembly line.

Figure 6. Setup of angled lamp.

Appl. Sci. 2023, 13, 11131 9 of 18

Table 7. Classification of work areas.

Illumination
Level

On-Site Lux
Measurement Work Areas Application

0 6 Darkroom, indoor emergency stairways Robot in INDOOR in darkroom
1 242 Wrapping and packing Robot in INDOOR doing packing
2 663 Assembling, testing and ordinary visual work Robot in INDOOR doing assembly
3 950 Inspection, selection and precise visual work Robot in OUTDOOR doing inspection

4 1212 Inspection, selection and extremely precise
visual work

Robot in OUTDOOR/DIRECT
SUNLIGHT doing detailed inspection

To ensure reliability and determine the average detection score, a minimum of three
readings are taken. Figure 7 illustrates the setup of three different lamp angles (180, 135 and
90). A lamp angle has two adjustable levels of illumination—lower than 150 lux and
between 150 and 300 lux.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 19

Table 7. Classification of work areas.

Illumination
Level

On-Site Lux
Measurement

Work Areas Application

0 6 Darkroom, indoor emergency stairways Robot in INDOOR in darkroom
1 242 Wrapping and packing Robot in INDOOR doing packing
2 663 Assembling, testing and ordinary visual work Robot in INDOOR doing assembly
3 950 Inspection, selection and precise visual work Robot in OUTDOOR doing inspection

4 1212
Inspection, selection and extremely precise

visual work
Robot in OUTDOOR/DIRECT SUN-

LIGHT doing detailed inspection

To ensure reliability and determine the average detection score, a minimum of three
readings are taken. Figure 7 illustrates the setup of three different lamp angles (180, 135
and 90). A lamp angle has two adjustable levels of illumination—lower than 150 lux and
between 150 and 300 lux.

(a) (b) (c)

Figure 7. Illumination setup for varying levels: (a) 180 degree; (b) 135 degree; (c) 90 degree.

To prevent the direct reflection of the light by the metallic surface, the lamp is
mounted at the side instead of directly above the workpieces. The reason for this setup is
to reduce the direct glare from the lamp while providing enough illumination, as shown
in Figure 8. The number of frames per second (FPSs) can be seen on the top-left corner of
the image. The speed is typically in the range of 0.8 frames per second as the Python code
used to display the results using OpenCV uses a portion of the processing time.

Figure 8. Best detection scores at different illumination levels.

2.4. Training Batch size Configuration to Improve Mean Average Precision
Table 8 below defines their training settings. The batch size is set based on the GPU

Random Access Memory (RAM) with the default learning rate and input resolution. The
Tensorflow model is trained with training data with batch sizes of 4, 8 and 16, respectively.
In this project, a batch size of 4 is abbreviated to “Batch4”, a batch size of 8 is abbreviated
to “Batch8”, and a batch size of 16 is abbreviated to “Batch16”.

Figure 7. Illumination setup for varying levels: (a) 180 degree; (b) 135 degree; (c) 90 degree.

To prevent the direct reflection of the light by the metallic surface, the lamp is mounted
at the side instead of directly above the workpieces. The reason for this setup is to reduce
the direct glare from the lamp while providing enough illumination, as shown in Figure 8.
The number of frames per second (FPSs) can be seen on the top-left corner of the image.
The speed is typically in the range of 0.8 frames per second as the Python code used to
display the results using OpenCV uses a portion of the processing time.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 19

Table 7. Classification of work areas.

Illumination
Level

On-Site Lux
Measurement

Work Areas Application

0 6 Darkroom, indoor emergency stairways Robot in INDOOR in darkroom
1 242 Wrapping and packing Robot in INDOOR doing packing
2 663 Assembling, testing and ordinary visual work Robot in INDOOR doing assembly
3 950 Inspection, selection and precise visual work Robot in OUTDOOR doing inspection

4 1212
Inspection, selection and extremely precise

visual work
Robot in OUTDOOR/DIRECT SUN-

LIGHT doing detailed inspection

To ensure reliability and determine the average detection score, a minimum of three
readings are taken. Figure 7 illustrates the setup of three different lamp angles (180, 135
and 90). A lamp angle has two adjustable levels of illumination—lower than 150 lux and
between 150 and 300 lux.

(a) (b) (c)

Figure 7. Illumination setup for varying levels: (a) 180 degree; (b) 135 degree; (c) 90 degree.

To prevent the direct reflection of the light by the metallic surface, the lamp is
mounted at the side instead of directly above the workpieces. The reason for this setup is
to reduce the direct glare from the lamp while providing enough illumination, as shown
in Figure 8. The number of frames per second (FPSs) can be seen on the top-left corner of
the image. The speed is typically in the range of 0.8 frames per second as the Python code
used to display the results using OpenCV uses a portion of the processing time.

Figure 8. Best detection scores at different illumination levels.

2.4. Training Batch size Configuration to Improve Mean Average Precision
Table 8 below defines their training settings. The batch size is set based on the GPU

Random Access Memory (RAM) with the default learning rate and input resolution. The
Tensorflow model is trained with training data with batch sizes of 4, 8 and 16, respectively.
In this project, a batch size of 4 is abbreviated to “Batch4”, a batch size of 8 is abbreviated
to “Batch8”, and a batch size of 16 is abbreviated to “Batch16”.

Figure 8. Best detection scores at different illumination levels.

2.4. Training Batch Size Configuration to Improve Mean Average Precision

Table 8 below defines their training settings. The batch size is set based on the GPU
Random Access Memory (RAM) with the default learning rate and input resolution. The
Tensorflow model is trained with training data with batch sizes of 4, 8 and 16, respectively.
In this project, a batch size of 4 is abbreviated to “Batch4”, a batch size of 8 is abbreviated
to “Batch8”, and a batch size of 16 is abbreviated to “Batch16”.

Appl. Sci. 2023, 13, 11131 10 of 18

Table 8. Training setting of EfficientDet Lite0 to Lite3.

Model Input Resolution Learning Rate Batch Size Epochs

EfficientDet-Lite0 320 × 320 0.08 4, 8, 16 50
EfficientDet-Lite1 384 × 384 0.08 4, 8, 16 50
EfficientDet-Lite2 448 × 448 0.08 4, 8, 16 50
EfficientDet-Lite3 512 × 512 0.08 4, 8, 16 50

The model training and validation are completed in Google Colab (Python 3.8) using
Tensorflow Model Maker on free GPU. The Tensorflow model is trained with training data
with batch sizes of 4, 8 and 16, respectively. To speed up the training, the number of epochs
is fixed at 50 for the 4 models.

Dataset 2 is used for the batch size training; it is deliberately chosen to be a small
dataset consisting of 82 images and 1022 objects. As shown in Table 9, it has a healthy
distribution percentage of the workpieces. The small dataset allows fast training times and
practical data preparation. Its purpose is to determine an optimal number of batch sizes
with a good trade-off between the accuracy of the detected objects and training speed.

Table 9. Equal distribution of workpiece in Dataset 2.

Total Number
of Objects

Number of
Blue Cube

Number of
Blue Cylinder

Number of Yellow
Cylinder

Number of
Yellow Cube

Number of
Red Cube

Number of
Red Cylinder

1022 136 135 216 208 150 177
(100%) (13.3%) (13.2%) (21.1%) (20.3%) (14.6%) (17.3%)

3. Results
3.1. Results of Optimized Bright Images on Average Precision

Table 10 shows the results of the evaluation metrics using EfficientDet-Lite2, and
training was completed for 50 epochs. The results demonstrate that Dataset 3 has the
highest F1-score, which is to be expected given that it has the highest AP and AR Max10.
The best performance comes from Alpha3, as it results in a 10.2% increase in Average
Precision and a 6.3% increase in F1-score as compared to the Control Dataset.

Table 10. The Average Precision and calculation of F1-score.

Average Precision Control Dataset
(%)

Alpha1
(%)

Alpha2
(%)

Alpha3
(%)

AP (mAP) 73.5 75.7 70.9 81.0 (+7.5%)
AP Tflite 73.3 74.1 69.5 79.0

AR Max10 76.7 78.6 78.5 81.9
F1-score 75.1 77.1 74.5 81.4 (+6.3%)

The color of the workpiece has a direct effect on the accuracy, as shown in Table 11.
The blue cube performs the best under Alpha3 with an Average Precision increase of 24.6%
while the red cube performs the worst with the AP dropping by 28.6% in the Alpha2 dataset
and further to less than the threshold value of 30% in the Alpha3 dataset. One explanation
could be that red colors reflect more light, whilst blue colors absorb more. The blue cube
has the highest AP (90.4%) in the Alpha3 dataset, while the red cube has the lowest AP
in the Alpha2 (45%) and in Alpha3 datasets (29%). As our goal here is to have consistent
high detection scores with low variance, we choose Alpha1 instead of Alpha3 for our
subsequent projects. The average AP for Alpha1 is 0.8% higher than the control dataset.
Hence, Alpha1 is chosen to increase the AP while maintaining low variance.

Appl. Sci. 2023, 13, 11131 11 of 18

Table 11. Average Precision with Alpha datasets.

Average Precision Control Dataset
(%)

Alpha1
(%)

Alpha2
(%)

Alpha3
(%)

Yellow cube 78.9 78.1 78.9 76.2
Yellow cylinder 76.3 72.2 82.7 83.3

Red cube 73.6 85.1 45.0 (−28.6%) 29.0
Red cylinder 73.4 65.9 55.0 66.7

Blue cube 65.8 66.1 77.6 90.40 (+24.6%)
Blue cylinder 71.9 77.3 73.8 78.4

Overall APs 73.3 74.1 (+0.8%) 69.5 65.8
Variance of APs (%) 16.4 0.47 1.924 3.99

Figure 9 shows that in general, all the APs for Alpha1 and Alpha2 are higher than that
of the COCO2017 dataset, which is 33.97%. For Alpha3, only the red cube has a lower AP
than the validation mAP. The overall mean of Alpha1 is 6.2% higher than that of Alpha2.
Therefore, for a high and consistent object detection approach, we use the Alpha1 dataset
in our pick-and-place solution.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 19

Table 11. Average Precision with Alpha datasets.

Average Precision Control Dataset
(%)

Alpha1
(%)

Alpha2
(%)

Alpha3
(%)

Yellow cube 78.9 78.1 78.9 76.2
Yellow cylinder 76.3 72.2 82.7 83.3

Red cube 73.6 85.1 45.0 (−28.6%) 29.0
Red cylinder 73.4 65.9 55.0 66.7

Blue cube 65.8 66.1 77.6 90.40 (+24.6%)
Blue cylinder 71.9 77.3 73.8 78.4
Overall APs 73.3 74.1 (+0.8%) 69.5 65.8

Variance of APs (%) 16.4 0.47 1.924 3.99

Figure 9 shows that in general, all the APs for Alpha1 and Alpha2 are higher than
that of the COCO2017 dataset, which is 33.97%. For Alpha3, only the red cube has a lower
AP than the validation mAP. The overall mean of Alpha1 is 6.2% higher than that of Al-
pha2. Therefore, for a high and consistent object detection approach, we use the Alpha1
dataset in our pick-and-place solution.

Figure 9. Average Precision with Alpha datasets.

3.2. Results of Illumination Level on Detection Scores
Table 12 shows the results of various illumination angles and levels. The average is

taken from the three best detection scores for all the three different lamp angles (180, 135
and 90). Each angle has two levels of illumination—a lux level less than 150 and a lux level
in between 150 and 300. The lux measurements are taken to ensure that the detection oc-
curs during the specified illumination level, as per the JIS specification. The threshold for
detection is set at 30% and, hence, if there is any detection less than 30%, it will be shown
as ‘Nil’ below.

Table 12. Detection scores and lux level for the different angles and intensities of the lamps.

Angle and Lux Level of
Lamp Class

Reading 1
(%)

Reading
(%)

Reading 3
(%)

Average
Reading (%)

Measured
Lux Value

(lm/m2)

180° Level 0

Red cylinder 85 77 75 79.00 25
Red cube 83 80 69 77.33 23.5

Yellow cylinder 85 77 78 80.00 25.7
Yellow cube 91 77 85 84.33 25.7

Blue cylinder 77 78 75 76.67 24.1
Blue cube 77 73 75 75.00 24.1

180° Level 1 Red cylinder 80 85 75 80.00 187.9

Figure 9. Average Precision with Alpha datasets.

3.2. Results of Illumination Level on Detection Scores

Table 12 shows the results of various illumination angles and levels. The average
is taken from the three best detection scores for all the three different lamp angles (180,
135 and 90). Each angle has two levels of illumination—a lux level less than 150 and a lux
level in between 150 and 300. The lux measurements are taken to ensure that the detection
occurs during the specified illumination level, as per the JIS specification. The threshold for
detection is set at 30% and, hence, if there is any detection less than 30%, it will be shown
as ‘Nil’ below.

Table 13 shows the average detection score of workpieces and the variance. The
135-degree level 1 has the highest average detection score (81.17%), which is followed by
the 135-degree level 0 at 80.50%. The 180-degree level 1 has the lowest detection scores of
77.94%. The lowest variance is 1.65% at the 135-degree level, and the highest variance is
25.08% for the 90-degree level 1.

Appl. Sci. 2023, 13, 11131 12 of 18

Table 12. Detection scores and lux level for the different angles and intensities of the lamps.

Angle and Lux
Level of Lamp Class Reading 1

(%)
Reading 2

(%)
Reading 3

(%)
Average

Reading (%)
Measured Lux
Value (lm/m2)

180◦ Level 0

Red cylinder 85 77 75 79.00 25
Red cube 83 80 69 77.33 23.5

Yellow cylinder 85 77 78 80.00 25.7
Yellow cube 91 77 85 84.33 25.7

Blue cylinder 77 78 75 76.67 24.1
Blue cube 77 73 75 75.00 24.1

180◦ Level 1

Red cylinder 80 85 75 80.00 187.9
Red cube 80 62 65 69.00 187.8

Yellow cylinder 85 80 85 83.33 188.6
Yellow cube 92 57 86 78.33 188.9

Blue cylinder 75 73 83 77.00 188.1
Blue cube 83 70 83 80.00 187.5

135◦ Level 0

Red cylinder 78 83 86 82.33 50
Red cube 80 83 83 82.00 48

Yellow cylinder 78 80 83 80.33 50
Yellow cube 77 78 85 80.00 49

Blue cylinder 77 82 77 78.67 50
Blue cube 85 71 83 79.67 49

135◦ Level 1

Red cylinder 75 87 83 81.67 175
Red cube 86 83 86 85.00 172

Yellow cylinder 76 75 83 78.00 177
Yellow cube 80 89 83 84.00 174

Blue cylinder 73 80 78 77.00 175
Blue cube 75 83 86 81.33 176

90◦ Level 0

Red cylinder 89 51 89 76.33 28
Red cube 91 80 88 86.33 25

Yellow cylinder 91 39 83 71.00 28
Yellow cube 94 48 85 75.67 26

Blue cylinder 80 57 78 71.67 28
Blue cube 89 70 69 76.00 26

90◦ Level 1

Red cylinder 90 65 85 80 206
Red cube 93 76 83 84 189

Yellow cylinder 91 49 82 73.67 209
Yellow cube 92 62 89 81 192

Blue cylinder 80 53 86 73 207
Blue cube 88 80 65 77.67 201

Table 13. Detection scores and Lux level for 180-degree level 1 lamp.

Class 180◦ Level 0
(%)

180◦ Level 1
(%)

135◦ Level 0
(%)

135◦ Level 1
(%)

90◦ Level 0
(%)

90◦ Level 1
(%)

Yellow cube 79.00 80.00 82.33 81.67 76.33 80
Yellow cylinder 77.33 69.00 82.00 85.00 86.33 84

Red cube 80.00 83.33 80.33 78.00 71.00 73.67
Red cylinder 84.33 78.33 80.00 84.00 75.67 81

Blue cube 76.67 77.00 78.67 77.00 71.67 73
Blue cylinder 75.00 80.00 79.67 81.33 76.00 77.67

Average 78.72 77.94 80.50 81.17 76.17 78.22
Variance 8.86 19.75 1.65 8.40 25.08 15.43

Hence, to increase the average detection score to over 80%, as shown in Figure 10 below,
we propose to use a 135-degree lamp. We can observe that the illumination distribution

Appl. Sci. 2023, 13, 11131 13 of 18

is more even and that there is less surface reflection with a 135-degree lamp of level
0 illumination because of its low variance.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 19

distribution is more even and that there is less surface reflection with a 135-degree lamp
of level 0 illumination because of its low variance.

Figure 10. Bar graph of detection scores with average and variance.

3.3. Results of Variation of Batch Size on Average Precision
A comparison of Average Precision across Efficient-Det Lite models is built in order

to investigate which model performs the best with a small dataset. As shown in Table 14
below, Batch4 has the highest overall AP at 66.8%, and it has the lowest standard deviation
at 6.23%. In contrast, Batch16 has the lowest overall AP at 57.4% and highest standard
deviation at 7.87%. According to Keskar [25], this is because the large-batch methods tend
to converge to sharp minimizers of the training and testing function and as is well known,
sharp minima lead to poorer generalization. In contrast, small-batch methods consistently
converge to flat minimizers due to the inherent noise in the gradient estimation. As com-
pared to Batch16, both Batch4 and Batch8 have higher average APs of 66.1 ± 0.7% and
standard deviations of 6.245 ± 0.015%.

Table 14. Variation of batch size.

TFLite Model Average Precision
Batch4

(%)
Batch8

(%)
Batch16

(%)

EfficientDet-Lite0

Yellow cube 72.1 64.4 66.3
Yellow cylinder 47.9 53.2 40.2

Red cube 66.2 71.4 73.2
Red cylinder 62.7 64.8 56.6

Blue cube 63.4 62.2 55.6
Blue cylinder 59.1 59.9 54.4

EfficientDet-Lite1

Yellow cube 56.9 73.7 55.5
Yellow cylinder 72.5 50.3 40.7

Red cube 68.6 70.4 58.2
Red cylinder 68.1 64.0 53.9

Blue cube 63.9 63.8 49.6
Blue cylinder 71.4 59.3 50.7

EfficientDet-Lite2

Yellow cube 73.5 70.8 67.7
Yellow cylinder 62.4 59.0 49.2

Red cube 72.3 75.8 70.7
Red cylinder 68.4 63.0 55.5

Blue cube 63.3 63.8 58.3
Blue cylinder 70.8 70.3 56.8

EfficientDet-Lite3
Yellow cube 72.5 69.9 59.3

Yellow cylinder 57.6 57.6 54.7
Red cube 73.8 71.8 66.0

Figure 10. Bar graph of detection scores with average and variance.

3.3. Results of Variation of Batch Size on Average Precision

A comparison of Average Precision across Efficient-Det Lite models is built in order
to investigate which model performs the best with a small dataset. As shown in Table 14
below, Batch4 has the highest overall AP at 66.8%, and it has the lowest standard deviation
at 6.23%. In contrast, Batch16 has the lowest overall AP at 57.4% and highest standard
deviation at 7.87%. According to Keskar [25], this is because the large-batch methods
tend to converge to sharp minimizers of the training and testing function and as is well
known, sharp minima lead to poorer generalization. In contrast, small-batch methods
consistently converge to flat minimizers due to the inherent noise in the gradient estimation.
As compared to Batch16, both Batch4 and Batch8 have higher average APs of 66.1 ± 0.7%
and standard deviations of 6.245 ± 0.015%.

Table 14. Variation of batch size.

TFLite Model Average Precision Batch4
(%)

Batch8
(%)

Batch16
(%)

EfficientDet-Lite0

Yellow cube 72.1 64.4 66.3
Yellow cylinder 47.9 53.2 40.2

Red cube 66.2 71.4 73.2
Red cylinder 62.7 64.8 56.6

Blue cube 63.4 62.2 55.6
Blue cylinder 59.1 59.9 54.4

EfficientDet-Lite1

Yellow cube 56.9 73.7 55.5
Yellow cylinder 72.5 50.3 40.7

Red cube 68.6 70.4 58.2
Red cylinder 68.1 64.0 53.9

Blue cube 63.9 63.8 49.6
Blue cylinder 71.4 59.3 50.7

EfficientDet-Lite2

Yellow cube 73.5 70.8 67.7
Yellow cylinder 62.4 59.0 49.2

Red cube 72.3 75.8 70.7
Red cylinder 68.4 63.0 55.5

Blue cube 63.3 63.8 58.3
Blue cylinder 70.8 70.3 56.8

EfficientDet-Lite3

Yellow cube 72.5 69.9 59.3
Yellow cylinder 57.6 57.6 54.7

Red cube 73.8 71.8 66.0
Red cylinder 66.0 68.9 57.4

Blue cube 63.1 62.5 55.5
Blue cylinder 68.4 67.2 53.3

Average of APs 66.8 65.4 57.4
Standard deviation of APs 6.23 6.26 7.87

Appl. Sci. 2023, 13, 11131 14 of 18

From Table 15 and Figure 11 below, the overall results show that the red cube has the
highest AP at 69.9% and the second lowest standard deviation at 4.48%. The red cylinder
has the second highest AP at 62.4% with a standard deviation at 5.09%. In comparison
to other classes, the yellow cylinder has the lowest AP at 53.8% and the highest standard
deviation at 8.69%. This is consistent with our prior findings [26], which show that neutral-
colored things such as yellow cubes have lower APs than strong-colored objects such as red
cubes. As the objects for this pick-and-place action have a metallic surface, yellow objects
suffer from surface reflection from external lighting.

Table 15. Average Precision according to workpieces.

Batch Size TFLite Model
Yellow
Cube
(%)

Yellow
Cylinder

(%)

Red
Cube
(%)

Red
Cylinder

(%)

Blue
Cube
(%)

Blue
Cylinder

(%)

4 72.1 47.9 66.2 62.7 63.4 59.1
8 EfficientDet-Lite0 64.4 53.2 71.4 64.8 62.2 59.9
16 66.3 40.2 73.2 56.6 55.6 54.4

4 56.9 72.5 68.6 68.1 63.9 71.4
8 EfficientDet-Lite1 73.7 50.3 70.4 64.0 63.8 59.3
16 55.5 40.7 58.2 53.9 49.6 50.7

4 73.5 62.4 72.3 68.4 63.3 70.8
8 EfficientDet-Lite2 70.8 59.0 75.8 63.0 63.8 70.3
16 67.7 49.2 70.7 55.5 58.3 56.8

4 72.5 57.6 73.8 66.0 63.1 68.4
8 EfficientDet-Lite3 69.9 57.6 71.8 68.9 62.5 67.2
16 59.3 54.7 66.0 57.4 55.5 53.3

Average of APs 66.9 53.8 69.9 62.4 60.4 61.8
Standard Deviation of APs 6.24 8.69 4.48 5.09 4.434 7.13

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 19

Red cylinder 66.0 68.9 57.4
Blue cube 63.1 62.5 55.5

Blue cylinder 68.4 67.2 53.3
Average of APs 66.8 65.4 57.4

Standard deviation of APs 6.23 6.26 7.87

From Table 15 and Figure 11 below, the overall results show that the red cube has the
highest AP at 69.9% and the second lowest standard deviation at 4.48%. The red cylinder
has the second highest AP at 62.4% with a standard deviation at 5.09%. In comparison to
other classes, the yellow cylinder has the lowest AP at 53.8% and the highest standard
deviation at 8.69%. This is consistent with our prior findings [26], which show that neutral-
colored things such as yellow cubes have lower APs than strong-colored objects such as
red cubes. As the objects for this pick-and-place action have a metallic surface, yellow ob-
jects suffer from surface reflection from external lighting.

Table 15. Average Precision according to workpieces.

Batch Size TFLite Model
Yellow
Cube
(%)

Yellow
Cylinder

(%)

Red
Cube
(%)

Red
Cylinder

(%)

Blue
Cube
(%)

Blue
Cylinder

(%)
4 72.1 47.9 66.2 62.7 63.4 59.1
8 EfficientDet-Lite0 64.4 53.2 71.4 64.8 62.2 59.9

16 66.3 40.2 73.2 56.6 55.6 54.4
4 56.9 72.5 68.6 68.1 63.9 71.4
8 EfficientDet-Lite1 73.7 50.3 70.4 64.0 63.8 59.3

16 55.5 40.7 58.2 53.9 49.6 50.7
4 73.5 62.4 72.3 68.4 63.3 70.8
8 EfficientDet-Lite2 70.8 59.0 75.8 63.0 63.8 70.3

16 67.7 49.2 70.7 55.5 58.3 56.8
4 72.5 57.6 73.8 66.0 63.1 68.4
8 EfficientDet-Lite3 69.9 57.6 71.8 68.9 62.5 67.2

16 59.3 54.7 66.0 57.4 55.5 53.3
Average of APs 66.9 53.8 69.9 62.4 60.4 61.8

Standard Deviation of APs 6.24 8.69 4.48 5.09 4.434 7.13

Figure 11. Comparison of Average Precision across Efficientdet-Lite models.

3.4. Statistical Analysis on Variation of Batch Size
As we observed in Table 14 above, the Average APs of Batch4 and Batch8 are quite

similar. Therefore, a statistical analysis is conducted to see whether there is a significant
difference between the two groups of values. We utilize the Mann–Whitney U method as

Figure 11. Comparison of Average Precision across Efficientdet-Lite models.

3.4. Statistical Analysis on Variation of Batch Size

As we observed in Table 14 above, the Average APs of Batch4 and Batch8 are quite
similar. Therefore, a statistical analysis is conducted to see whether there is a significant
difference between the two groups of values. We utilize the Mann–Whitney U method as
it is one of the most commonly used non-parametric statistical tests [27]. Developed by
Mann and Whitney in 1947, this non-parametric test is frequently used for small samples
of data that are not normally distributed [28].

In Mann–Whitney U test, the null hypothesis states that the medians of the two
respective groups are not different. As for the alternative hypothesis, it states that one
median is larger than the other or that the two medians differ. If the null hypothesis is
not rejected, it means that the median of each group of observations is similar. If the null
hypothesis is rejected, it means the two medians differ.

Appl. Sci. 2023, 13, 11131 15 of 18

We apply the Mann–Whitney U test to our Batch4 and Batch8 as the number of
samples are small [29], less than 30, and the AP results are not normally distributed. Our
null hypothesis (H0) and alternative hypothesis (H1) follow:

H0. The median of APs is equal between Batch4 and Batch8 APs.

H1. The median of APs is not equal between Batch4 and Batch8 APs.

Using SciPy which is a Python library used for scientific computing and technical com-
puting, we obtain a p-value of 0.448. Since the p-value (0.448) is above the 0.05 significance
level, we fail to reject the null hypothesis.

We conclude there is not enough evidence to suggest a significant difference in medians
between the two datasets. As the standard deviation only differs by 0.008, we recommend
using Batch8 instead of Batch4 for faster training and evaluation.

3.5. Performance Validation

We use the pre-trained model SSD MobileNet V2 FPNLite and compared the perfor-
mance regarding the Average Precision and detection score. Table 16 shows the performance
results of our selected EfficientDet-Lite2 model and SSD MobileNet V2 FPNLite, using the
same training data for each of them. We compare the performance of the SSD MobileNet
to that of our EfficientDet-Lite2 model with the Alpha1 dataset and found that our results
were significantly better. Compared to SSD MobileNet V2 FPNLite, our model shows a
significant improvement of accuracy for the yellow cube at 40.4% and red cube at 40.1%.

Table 16. Comparison of APs for custom object detection model.

Class EfficientDet-Lite2 with Alpha1 Dataset
(%)

SSD MobileNet V2 FPNLite
(%)

Improvement of Accuracy
(%)

Yellow cube 78.1 37.7 40.4
Yellow cylinder 72.2 35.8 36.4

Red cube 85.1 45.0 40.1
Red cylinder 65.9 43.4 22.5

Blue cube 66.1 48.8 17.3
Blue cylinder 77.3 37.7 39.6
Overall mean 74.1 41.4 32.7

Table 17 shows the comparison of detection scores for the custom dataset running on
our EfficientDet-Lite2 model and SSD MobileNet V2 FPNLite. The detection scores are taken
with the project setup of the 135-degree lamp and level 0 illumination. When compared
to SSD MobileNet V2, our model significantly improves the overall detection scores by
5.19%. Comparing EfficientDet-Lite2 to SSD MobileNet V2, significant improvements are
observed for the red cube (+19.33%) and red cylinder (+20.66%).

Table 17. Comparison of detection scores with SSD MobileNet V2.

Class 135-Degree Lamp with Level
0 Illumination (%)

SSD MobileNet V2
FPNLite (%)

Comparison of
Detection Scores (%)

Yellow cube 80.00 91.50 −11.5
Yellow cylinder 80.33 94.67 −14.34

Red cube 82.00 62.67 +19.33
Red cylinder 82.33 61.67 +20.66

Blue cube 79.67 83.00 −3.33
Blue cylinder 78.67 58.33 +20.34
Overall mean 80.50 75.31 +5.19

Appl. Sci. 2023, 13, 11131 16 of 18

3.6. Comparison mAP with COCO2017 Validation Dataset

Tensorflow Lite Model Maker provides the performance of each EfficientDet-Lite
model with the mean Average Precision evaluated on the COCO2017 validation dataset.
Hence, for additional validation, we compare our AP with the COCO2017 dataset, as
shown in Table 18. As indicated in Section 3.1, we choose the Alpha1 dataset since it
performs the best in AP rather than Alpha2 or Alpha3 datasets. The results show that all
the Alpha1 datasets of the EfficientDet-Lite models outperform the COCO2017 dataset, with
EfficientDet-Lite2 outperforming it by 51.13%. As a result, we chose EfficientDet-Lite2 for
our future projects.

Table 18. Comparison of Average Precision with COCO2017 dataset.

Model Architecture COCO2017 Dataset
(%)

Alpha1 Dataset
(%)

Improvement of Accuracy
(%)

EfficientDet-Lite0 25.69 78.1 52.41
EfficientDet-Lite1 30.55 72.2 41.65
EfficientDet-Lite2 33.97 85.1 51.13
EfficientDet-Lite3 37.7 65.9 28.20

Overall AP 31.98 75.33 43.35

4. Discussions

The aim of the our project is to develop a smart and lean pick-and-place system for a
lightweight embedded controller such as Raspberry Pi. The advantage of our system is that
the robot could perform well in low-illumination area such as the wafer-cutting system.
In this study, we evaluate the effectiveness of illumination and batch size to improve the
Average Precision and detection scores of the EfficientDet model. This study is important
because our control algorithm utilizes high and consistent detection scores to establish
the location of the workpiece and regulate the arm movement. The improvement of the
Average Precision and detection scores depends on many factors and features; this study
focused on the illumination angle and level as an important feature of the control of lighting.
The results of the detection score are subject to ambience lighting and noise, which may
vary significantly if the workplace is located in an open area. Therefore, the application of
Deep Learning for custom object detection will aid in reducing this variation significantly.

This study has several limitations; for instance, the quality of the dataset plays a part
in determining the Average Precision. We observed that certain workpieces have surface
reflection from external illumination, which has an impact on the Average Precision. In this
study, we used the Japanese industrial standards for the system’s lux levels for illumination.
We acknowledge that different regions and industries may have varying standards and
requirements for illumination levels, such as the Illuminating Engineering Society of North
America (IESNA) and the European Standard EN12464-1 [25].

Currently, our method works well for application for illumination levels 0 and 1.
For future projects, we would like to expand the application to other use cases of higher
levels of illuminations. In order to attain the necessary high Average Precision and detec-
tion scores, we will take into account additional dataset preparation, optimization, and
reinforcement learning.

5. Conclusions

In this work, we have successfully developed a novel method to develop a smart
and lean pick-and-place system for custom workpieces. We evaluated the effectiveness of
illumination and batch size to improve the Average Precision and detection score of the
EfficientDet-Lite model, and we used it in our novel approach to develop a smart algorithm
for the Raspberry Pi to control the Universal Robot.

Using a lightweight embedded system, we developed advanced pick-and-place robotic
systems, enhancing automation in manufacturing processes by accurately detecting custom

Appl. Sci. 2023, 13, 11131 17 of 18

objects and controlling robot arm movement. This project has improved the detection of
objects with deep learning and implemented the state-of-the-art (SOTA) EfficientDet-Lite
model on Raspberry Pi. The validation on another SOTA model, SSD MobileNet V2 FPN-
Lite, has shown that our object detection significantly improves the Average Precision and
overall detection scores. Our experimental results clearly show that the proposed method
has an increase of 5.19% in AP compared to the SSD model. In fact, all the APs obtained
during the evaluation test exceed the AP from the COCO2017 validation test.

In the EfficientDet-Lite2 model, the addition of 8% optimized bright Alpha3 images
resulted in an increase of 7.5% in Average Precision and an increase of 6.3% in F1-score.
We observed that the blue cube has the highest AP in the Alpha3 dataset, while the red
cube has the lowest AP in the Alpha2 and Alpha3 datasets. As our goal here is to have a
consistent high detection score with low variance, we choose Alpha1 instead of Alpha3 for
our subsequent projects.

As a result of using Batch4, the overall AP across all EfficientDet-Lite models increased
significantly to 66.8% as compared to Batch8 at 65.4% and Batch16 at 57.4%. In order to
speed up the training for our subsequent projects, we use Batch8 for training rather than
Batch4. This decision is validated by the Mann–Whitney U statistical analysis, which shows
that Batch4 and Batch8 do not have any significant differences in AP.

In order to increase the overall detection score to over 80%, we utilized a 135-degree
lamp and level 0 illumination. As such, this study presents a very good starting point for
the development of a better object detection for pick-and-place robots by using the effect of
illumination. This is important because the control algorithm [4] that Raspberry Pi uses to
move the arm of the universal robot depends on high and consistent detection scores to
establish the location of the workpiece. In the future, we will extend the system to identify
angular rotations and improve real-time detection as well as address the issue of surface
reflection from external lights.

Author Contributions: Conceptualization, E.K. and J.J.C.; methodology, E.K., Z.J.C. and M.L.; soft-
ware, E.K.; validation, E.K., Z.J.C. and M.L.; formal analysis, E.K., Z.J.C. and M.L.; investigation,
E.K.; writing—original draft preparation, E.K.; writing—review and editing, E.K. and J.J.C.; supervi-
sion, Z.J.C.; funding acquisition, J.J.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data that support the findings of this study are included within
the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Leung, H.K.; Chen, X.-Z.; Yu, C.-W.; Liang, H.-Y.; Wu, J.-Y.; Chen, Y.-L. A deep-learning-based vehicle detection approach for

insufficient and nighttime illumination conditions. Appl. Sci. 2019, 9, 4769. [CrossRef]
2. Bencak, P.; Vincetič, U.; Lerher, T. Product Assembly Assistance System Based on Pick-to-Light and Computer Vision Technology.

Sensors 2022, 22, 9769. [CrossRef]
3. Yin, X.; Fan, X.; Zhu, W.; Liu, R. Synchronous AR Assembly Assistance and Monitoring System Based on Ego-Centric Vision.

Assem. Autom. 2019, 39, 1–16. [CrossRef]
4. Zhao, W.; Jiang, C.; An, Y.; Yan, X.; Dai, C. Study on a Low-Illumination Enhancement Method for Online Monitoring Images

Considering Multiple-Exposure Image Sequence Fusion. Electronics 2023, 12, 2654. [CrossRef]
5. Kee, E.; Jie, C.J.; Jie, C.Z.; Lau, M. Low-cost and sustainable Pick and Place solution by machine vision assistance. In Proceedings

of the 25th International Conference on Mechatronics Technology (ICMT), Kaohsiung, Taiwan, 18–21 November 2022.
6. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790.
7. Kim, H.; Choi, Y. Lab Scale Model Experiment of Smart Hopper System to Remove Blockages Using Machine Vision and

Collaborative Robot. Appl. Sci. 2022, 12, 579. [CrossRef]

https://doi.org/10.3390/app9224769
https://doi.org/10.3390/s22249769
https://doi.org/10.1108/AA-03-2017-032
https://doi.org/10.3390/electronics12122654
https://doi.org/10.3390/app12020579

Appl. Sci. 2023, 13, 11131 18 of 18

8. Jørgensen, T.B.; Jensen, S.H.N.; Aanæs, H.; Hansen, N.W.; Krüger, N. An adaptive robotic system for doing pick and place
operations with deformable objects. J. Intell. Robot. Syst. 2019, 94, 81–100. [CrossRef]

9. Luo, H.; Li, C.; Wu, M.; Cai, L. An Enhanced Lightweight Network for Road Damage Detection Based on Deep Learning.
Electronics 2023, 12, 2583. [CrossRef]

10. Jain, S. DeepSeaNet: Improving Underwater Object Detection using EfficientDet. arXiv 2023, arXiv:2306.06075.
11. Čirjak, D.; Aleksi, I.; Lemic, D.; Pajač Živković, I. EfficientDet-4 Deep Neural Network-Based Remote Monitoring of Codling

Moth Population for Early Damage Detection in Apple Orchard. Agriculture 2023, 13, 961. [CrossRef]
12. Wu, C.; Chen, L.; Wu, S. A Novel Metric-Learning-Based Method for Multi-Instance Textureless Objects’ 6D Pose Estimation.

Appl. Sci. 2021, 11, 10531. [CrossRef]
13. Chakole, S.; Ukani, N. Low-Cost Vision System for Pick and Place application using camera and ABB Industrial Robot. In

Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Kharagpur, India, 1–3 July 2020.

14. Konaite, M.; Owolawi, P.A.; Mapayi, T.; Malele, V.; Odeyemi, K.; Aiyetoro, G.; Ojo, J.S. Smart Hat for the blind with Real-Time
Object Detection using Raspberry Pi and TensorFlow Lite. In Proceedings of the International Conference on Artificial Intelligence
and Its Applications, Virtual, 9–10 December 2021.

15. Barayan, M.A.; Qawas, A.A.; Alghamdi, A.S.; Alkhallagi, T.S.; Al-Dabbagh, R.A.; Aldabbagh, G.A.; Linjawi, A.I. Effectiveness of
Machine Learning in Assessing the Diagnostic Quality of Bitewing Radiographs. Appl. Sci. 2022, 12, 9588. [CrossRef]

16. Benhamida, A.; Várkonyi-Kóczy, A.R.; Kozlovszky, M. Traffic Signs Recognition in a mobile-based application using TensorFlow
and Transfer Learning technics. In Proceedings of the IEEE 15th Conference of Systems of Systems of Engineering, Budapest,
Hungary, 2–4 June 2020.

17. Dua, S.; Kumar, S.S.; Albagory, Y.; Ramalingam, R.; Dumka, A.; Singh, R.; Rashid, M.; Gehlot, A.; Alshamrani, S.S.; AlGhamdi,
A.S. Developing a Speech Recognition System for Recognizing Tonal Speech Signals Using a Convolutional Neural Network.
Appl. Sci. 2022, 12, 6223. [CrossRef]

18. Kim, I.S.; Jeong, Y.; Kim, S.H.; Jang, J.S.; Jung, S.K. Deep Learning based Effective Surveillance System for Low-Illumination
Environments. In Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN),
Zagreb, Croatia, 2–5 July 2019.

19. Nagata, F.; Miki, K.; Watanabe, K.; Habib, M.K. Visual Feedback Control and Transfer Learning-Based CNN for a Pick and Place
Robot on a Sliding Rail. In Proceedings of the 2021 IEEE International Conference on Mechatronics and Automation (ICMA),
Takamatsu, Japan, 8–11 August 2021; pp. 697–702.

20. Malik, A.A.; Andersen, M.V.; Bilberg, A. Advances in machine vision for flexible feeding of assembly parts. Procedia Manuf. 2019,
38, 1228–1235. [CrossRef]

21. TensorFlow Lite Model Maker. Available online: https://www.tensorflow.org/lite/models/modify/model_maker (accessed on
5 September 2023).

22. Roboflow. Available online: https://roboflow.com (accessed on 6 September 2023).
23. Google Colab Notebook. Available online: https://colab.research.google.com (accessed on 5 September 2023).
24. JIS Z 9110:1979. Recommended Levels of Illumination. Japanese Standards Association: Tokyo, Japan, 2008.
25. Keskar, N.S.; Mudigere, D.; Nocedal, J.; Smelyanskiy, M.; Tang, P.T. On large-batch training for deep learning: Generalization gap

and sharp minima. arXiv 2016, arXiv:1609.04836.
26. Kee, E.; Chong, J.J.; Choong, Z.J.; Lau, M. A Comparative Analysis of Cross-Validation Techniques for a Smart and Lean

Pick-and-Place Solution with Deep Learning. Electronics 2023, 12, 2371. [CrossRef]
27. Kasuya, E. Mann-Whitney U test when variances are unequal. Anim. Behav. 2001, 61, 1247–1249. [CrossRef]
28. Nachar, N. The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution. Tutor.

Quant. Methods Psychol. 2008, 4, 13–20. [CrossRef]
29. Geweke, J.F.; Singleton, K.J. Interpreting the likelihood ratio statistic in factor models when sample size is small. J. Am. Stat. Assoc.

1980, 75, 133–137. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10846-018-0958-6
https://doi.org/10.3390/electronics12122583
https://doi.org/10.3390/agriculture13050961
https://doi.org/10.3390/app112210531
https://doi.org/10.3390/app12199588
https://doi.org/10.3390/app12126223
https://doi.org/10.1016/j.promfg.2020.01.214
https://www.tensorflow.org/lite/models/modify/model_maker
https://roboflow.com
https://colab.research.google.com
https://doi.org/10.3390/electronics12112371
https://doi.org/10.1006/anbe.2001.1691
https://doi.org/10.20982/tqmp.04.1.p013
https://doi.org/10.1080/01621459.1980.10477442

	Introduction
	Materials and Methods
	Materials and Measurements Setup
	Image Optimization Process to Improve Mean Average Process
	Illumination Level Setup to Improve Detection Scores
	Training Batch Size Configuration to Improve Mean Average Precision

	Results
	Results of Optimized Bright Images on Average Precision
	Results of Illumination Level on Detection Scores
	Results of Variation of Batch Size on Average Precision
	Statistical Analysis on Variation of Batch Size
	Performance Validation
	Comparison mAP with COCO2017 Validation Dataset

	Discussions
	Conclusions
	References

