Analysis of the Influence of Initial Stress on the Bandgap Characteristics of Configuration-Controllable Metamaterials
Abstract
:1. Introduction
2. Configuration-Controllable Porous Metamaterial Model and Stress Analysis
2.1. Configuration of Controllable Porous Metamaterials
2.2. Stress Distribution Analysis
3. Numerical Result of Bandgap Characteristics
3.1. Effect of Initial Stress on the Bandgap Characteristics
3.2. Effect of the Initial Compressive Stress on the Bandgap Characteristics
3.3. Effect of the Initial Tensile Stress on the Bandgap Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maldovan, M. Sound and heat revolutions in phononics. Nature 2013, 503, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Cummer, S.A.; Christensen, J.; Alu, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001. [Google Scholar] [CrossRef]
- Casadei, F.; Dozio, L.; Ruzzene, M.; Cunefare, K.A. Periodic shunted arrays for the control of noise radiation in an enclosure. J. Sound Vib. 2010, 329, 3632–3646. [Google Scholar] [CrossRef]
- Ruzzene, M.; Scarpa, F.; Soranna, F. Wave beaming effects in two-dimensional cellular structures. Smart Mater. Struct. 2003, 12, 363–372. [Google Scholar] [CrossRef]
- Cinefra, M.; D’Amico, G.; Miguel, A.G.D.; Filippi, M.; Carrera, E. Efficient numerical evaluation of transmission loss in homogenized acoustic metamaterials for aeronautical application. Appl. Acoust. 2020, 164, 107253. [Google Scholar] [CrossRef]
- Ruzzene, M.; Scarpa, F. Directional and band-gap behavior of periodic auxetic lattices. Phys. Status Solidi 2005, 242, 665–680. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Y.T.; Fung, K.H.; Zhang, Z.Q.; Chan, C.T. Acoustic metamaterials with spinning components. Phys. Rev. B 2020, 101, 054107. [Google Scholar] [CrossRef]
- Han, X.K.; Zhang, Z. Acoustic beam controlling in water by the design of phononic crystal. Extrem. Mech. Lett. 2019, 34, 100602. [Google Scholar] [CrossRef]
- Shi, H.Y.Y.; Tay, T.E.; Lee, H.P. Elastic wave propagation in perforated plates with tetrad elliptical structural hierarchy: Numerical analysis and experimental verification. J. Sound. Vib. 2019, 448, 73–82. [Google Scholar]
- Zhou, X.Z.; Wang, Y.S.; Zhang, C. Effects of material parameters on elastic band gaps of two-dimensional solid phononic crystals. J. Appl. Phys. 2009, 106, 2022. [Google Scholar] [CrossRef]
- Li, N.; Bai, C.Q.; Liu, M.B. Configuration-controllable porous metamaterial and its bandgap characteristics: Experimental and numerical analysis. J. Sound Vib. 2022, 535, 117107. [Google Scholar] [CrossRef]
- Matar, O.B.; Robillard, J.F.; Vasseur, J.O.; Hladky-Hennion, A.C.; Deymier, P.A.; Pernod, P.; Preobrazhensky, V. Band gap tunability of magneto-elastic phononic crystal. J. Appl. Phys. 2012, 111, 054901. [Google Scholar] [CrossRef]
- Yeh, J.-Y. Control analysis of the tunable phononic crystal with electrorheological material. Phys. B Condens. Matter 2007, 400, 137–144. [Google Scholar] [CrossRef]
- Zou, X.-Y.; Chen, Q.; Liang, B.; Cheng, J.-C. Control of the elastic wave bandgaps in two-dimensional piezoelectric periodic structures. Smart Mater. Struct. 2008, 17, 015008. [Google Scholar] [CrossRef]
- Casadei, F.; Delpero, T.; Bergamini, A.; Ermanni, P.; Ruzzene, M. Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials. J. Appl. Phys. 2012, 112, 064902. [Google Scholar] [CrossRef]
- Huang, Z.-G.; Wu, T.-T. Temperature effect on the bandgaps of surface and bulk acoustic waves in two-dimensional phononic crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2005, 52, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Jim, K.L.; Leung, C.W.; Lau, S.T.; Choy, S.H.; Chan, H.L.W. Thermal tuning of phononic bandstructure in ferroelectric ceramic/epoxy phononic crystal. Appl. Phys. Lett. 2009, 94, 193501. [Google Scholar] [CrossRef]
- Wang, L.; Bertoldi, K. Mechanically tunable phononic band gaps in three-dimensional periodic elastomeric structures. Int. J. Solids Struct. 2012, 49, 2881–2885. [Google Scholar] [CrossRef]
- Bertoldi, K.; Boyce, M.C. Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations. Phys. Rev. B 2008, 78, 184107. [Google Scholar] [CrossRef]
- Gao, N.; Li, J.; Bao, R.H.; Chen, W.Q. Harnessing uniaxial tension to tune Poisson’s ratio and wave propagation in soft porous phononic crystals: An experimental study. Soft Matter 2019, 15, 2921–2927. [Google Scholar] [CrossRef]
- Kumar, N.; Pal, S. Low frequency and wide band gap metamaterial with divergent shaped star units: Numerical and experimental investigations. Appl. Phys. Lett. 2019, 115, 254101. [Google Scholar] [CrossRef]
- Lu, K.; Zhou, G.J.; Gao, N.S.; Li, L.Z.; Lei, H.X.; Yu, M.R. Flexural vibration bandgaps of the multiple local resonance elastic metamaterial plates with irregular resonators. Appl. Acoust. 2020, 159, 107115. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, K.; Hu, G.K. Tunable fluid-solid metamaterials for manipulation of elastic wave propagation in broad frequency range. Appl. Phys. Lett. 2018, 112, 221906. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, Y.; Yang, H.W.; Muzamil, M.; Xu, R.; Deng, K.K.; Peng, P.; Du, Q.J. A Matryoshka-like seismic metamaterial with wide band-gap characteristics. Int. J. Solids Struct. 2020, 185, 334–341. [Google Scholar] [CrossRef]
- Casadei, F.; Bertoldi, K. Harnessing fluid-structure interactions to design self-regulating acoustic metamaterials. J. Appl. Phys. 2014, 115, 034907. [Google Scholar] [CrossRef]
- Wang, P.; Shim, J.; Bertoldi, K. Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals. Phys. Rev. B 2013, 88, 014304. [Google Scholar] [CrossRef]
- Singamaneni, S.; Bertoldi, K.; Chang, S.; Jang, J.H.; Thomas, E.L.; Boyce, M.C.; Tsukruk, V.V. Instabilities and Pattern Transformation in Periodic, Porous Elastoplastic Solid Coatings. ACS Appl. Mater. Interfaces 2009, 1, 42–47. [Google Scholar] [CrossRef]
- Babaee, S.; Wang, P.; Bertoldi, K. Three-dimensional adaptive soft phononic crystals. J. Appl. Phys. 2015, 117, 244903. [Google Scholar] [CrossRef]
- Shan, S.C.; Kang, S.H.; Wang, P.; Qu, C.Y.; Shian, S.; Chen, E.R.; Bertoldi, K. Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves. Adv. Funct. Mater. 2014, 24, 4935–4942. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, C.L.; Chen, W.Q. Tuning Band Structures of Two-Dimensional Phononic Crystals With Biasing Fields. J. Appl. Mech-T Asme 2014, 81, 091008. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, X.D.; Zhang, C.L.; Chen, W.Q. Mechanically tunable band gaps in compressible soft phononic laminated composites with finite deformation. Phys. Lett. A 2014, 378, 2285–2289. [Google Scholar] [CrossRef]
- Huang, Y.L.; Gao, N.; Chen, W.Q.; Bao, R.H. Extension/Compression-Controlled Complete Band Gaps in 2D Chiral Square-Lattice-Like Structures. Acta Mech. Solida Sin. 2018, 31, 51–65. [Google Scholar] [CrossRef]
- Wang, P.; Casadei, F.; Shan, S.C.; Weaver, J.C.; Bertoldi, K. Harnessing Buckling to Design Tunable Locally Resonant Acoustic Metamaterials. Phys. Rev. Lett. 2014, 113, 014301. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Huang, Y.L.; Bao, R.H.; Chen, W.Q. Robustly Tuning Bandgaps in Two-Dimensional Soft Phononic Crystals with Criss-Crossed Elliptical Holes. Acta Mech. Solida Sin. 2018, 31, 672. [Google Scholar] [CrossRef]
- Rogerson, G.A.; Sandiford, K.J. The effect of finite primary deformations on harmonic waves in layered elastic media. Int. J. Solids Struct. 2000, 37, 2059–2087. [Google Scholar] [CrossRef]
- Parnell, W.J. Effective wave propagation in a pre-stressed nonlinear elastic composite bar. IMA J. Appl. Math. 2007, 72, 223–244. [Google Scholar] [CrossRef]
- Barnwell, E.G.; Parnell, W.J.; Abrahams, I.D. Antiplane elastic wave propagation in pre-stressed periodic structures; tuning, band gap switching and invariance. Wave Motion 2016, 63, 98–110. [Google Scholar] [CrossRef]
- Zhou, X.L.; Chen, C.Q. Tuning the locally resonant phononic band structures of two-dimensional periodic electroactive composites. Phys. B 2013, 431, 23–31. [Google Scholar] [CrossRef]
- Xinnan, L.; Yan, L.; Yingbo, J.I. Attenuation zones of initially stressed periodic local resonant Mindlin plates. J. Vib. Shock 2019, 38, 228–232+255. [Google Scholar] [CrossRef]
Material Parameters | Geometric Parameters | ||
---|---|---|---|
Elastic modulus/(MPa) | 0.870 | R/(mm) | 17.5 |
Poisson’s ratio | 0.499 | D/(mm) | 7.462 |
Density/(kg/m3) | 1230 | θ/(deg) | 45 |
5 mm | 10 mm | 15 mm | 20 mm | 25 mm | 30 mm | ||
---|---|---|---|---|---|---|---|
Point 1 | FEM (Pa) | 8961 | 17,574 | 25,752 | 33,582 | 40,803 | 47,589 |
EXP (Pa) | 8526 | 18,531 | 24,621 | 35,844 | 44,370 | 52,287 | |
error | 4.85% | 5.45% | 4.39% | 6.74% | 8.74% | 9.87% | |
Point 2 | FEM (Pa) | 9222 | 18,009 | 26,274 | 34,191 | 41,412 | 48,198 |
EXP (Pa) | 8874 | 17,052 | 27,579 | 32,016 | 38,367 | 43,848 | |
error | 3.77% | 5.31% | 4.97% | 6.36% | 7.35% | 9.03% |
Loading Displacement | 10 mm | 20 mm | 30 mm |
---|---|---|---|
Bandgap results obtained from reference [11] | |||
Bandgap results obtained from the FEM in this study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, F.; Wang, J.; Fu, Q.; Zhang, H. Analysis of the Influence of Initial Stress on the Bandgap Characteristics of Configuration-Controllable Metamaterials. Appl. Sci. 2023, 13, 11137. https://doi.org/10.3390/app132011137
Yao F, Wang J, Fu Q, Zhang H. Analysis of the Influence of Initial Stress on the Bandgap Characteristics of Configuration-Controllable Metamaterials. Applied Sciences. 2023; 13(20):11137. https://doi.org/10.3390/app132011137
Chicago/Turabian StyleYao, Fei, Jixiao Wang, Qiang Fu, and Hongyan Zhang. 2023. "Analysis of the Influence of Initial Stress on the Bandgap Characteristics of Configuration-Controllable Metamaterials" Applied Sciences 13, no. 20: 11137. https://doi.org/10.3390/app132011137
APA StyleYao, F., Wang, J., Fu, Q., & Zhang, H. (2023). Analysis of the Influence of Initial Stress on the Bandgap Characteristics of Configuration-Controllable Metamaterials. Applied Sciences, 13(20), 11137. https://doi.org/10.3390/app132011137