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Abstract: Due to the physical strain experienced during intense workouts, athletes are at a heightened
risk of developing osteopenia and osteoporosis. These conditions not only impact their overall health
but also their athletic performance. The current clinical screening methods for osteoporosis are
limited by their high radiation dose, complex post-processing requirements, and the significant
time and resources needed for implementation. This makes it challenging to incorporate them into
athletes’ daily training routines. Consequently, our objective was to develop an innovative automated
screening approach for detecting osteopenia and osteoporosis using X-ray image data. Although
several automated screening methods based on deep learning have achieved notable results, they
often suffer from overfitting and inadequate datasets. To address these limitations, we proposed
a novel model called the GLCM-based fuzzy broad learning system (GLCM-based FBLS). Initially,
texture features of X-ray images were extracted using the gray-level co-occurrence matrix (GLCM).
Subsequently, these features were combined with the fuzzy broad learning system to extract crucial
information and enhance the accuracy of predicting osteoporotic conditions. Finally, we applied the
proposed method to the field of osteopenia and osteoporosis screening. By comparing this model
with three advanced deep learning models, we have verified the effectiveness of GLCM-based FBLS
in the automatic screening of osteoporosis for athletes.

Keywords: sports medicine; knee osteopenia and osteoporosis screening; deep learning; broad
learning system; Takagi–Sugeno (TS) fuzzy system

1. Introduction

Osteoporosis is a medical condition characterized by increased bone fragility and a
higher risk of fractures [1]. Athletes who engage in intense and prolonged physical training
are particularly susceptible to developing osteoporosis [2]. However, the current diagnostic
methods for osteopenia and osteoporosis are time-consuming, making it difficult to incor-
porate regular screening into athletes’ training regimens. Therefore, the development of an
automated screening method is crucial. X-ray imaging, widely used in various medical
applications, has been found to be suitable for screening purposes [3]. Consequently, re-
searchers are showing increasing interest in developing automated diagnostic techniques
utilizing X-ray images.

Machine learning, a subset of artificial intelligence (AI), is concerned with the devel-
opment of algorithms and models that enable computers to learn and make predictions or
decisions without explicit programming. In recent years, there has been growing interest
in the use of machine learning-based methods for osteoporosis screening, as they offer
convenient and efficient diagnosis for patients. Researchers have applied various machine
learning models, such as support vector machine, random trees, and XGBoost, to achieve
automatic analysis, prediction, and diagnosis of osteoporosis and osteopenia [4–6]. While
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these methods are effective and interpretable, their learning ability is not robust enough for
large-scale datasets, raising questions about their performance on multi-center, large-scale
datasets. Deep learning, a popular machine learning technology, has emerged as a promis-
ing approach for osteopenia and osteoporosis screening [7]. By leveraging deep learning
techniques, researchers have proposed methods that can automatically extract features
from imaging data and perform screening for osteopenia and osteoporosis [8–10]. These
deep learning methods demonstrate excellent classification performance and have made
significant advancements in detecting osteoporosis based on radiographs in various regions,
such as the chest and lumbar spine. However, these methods often require a substantial
amount of data, and overfitting can occur when the sample size is small. Additionally,
the complex parameter settings and network structures of deep learning systems pose
challenges in model training [11].

The broad learning system (BLS) is a flat network that has a simpler structure and
fewer parameters compared to deep learning [12]. It can quickly extract important features
from raw data using sparse auto-encoders and random matrices. This makes it a potential
alternative for deep learning in automated osteoporosis screening. However, when trained
on X-ray image datasets, the BLS may struggle to obtain effective information and achieve
satisfactory results due to the complexity of the information contained within the images.
The fuzzy broad learning system (FBLS) that combines fuzzy logic with the BLS is capable
for mining critical information from input data that may contain uncertainty or imprecision.
This makes the FBLS suitable for real-world problems where the data may be vague or
uncertain. Inspired by the robust learning ability of the FBLS, we propose using the FBLS
for osteopenia and osteoporosis screening to improve performance. However, directly
applying the FBLS to process X-ray images may still limit the screening performance due
to the presence of redundant information and noise in the images.

Feature extraction is a process in which pertinent information or features are obtained
from raw data. A proficient feature extractor has the ability to acquire critical features while
eliminating redundant information from the original data [13]. In [14], Zulpe and Pawar
explored the application of the gray-level co-occurrence matrix (GLCM) for extracting
texture features from medical images. The experimental findings demonstrated that the
GLCM texture feature extraction method outperformed traditional image feature extraction
methods in terms of obtaining more distinguishable features. Motivated by the efficiency
of the GLCM texture features and the fuzzy system, we developed a novel GLCM-based
fuzzy broad learning system. Our objective is to propose an effective method that offers
athletes accurate and convenient screening for osteopenia and osteoporosis based on X-ray
images. Initially, the texture characteristics of X-ray images were extracted using the GLCM.
Subsequently, these extracted features were integrated with the fuzzy broad learning
system to effectively mine crucial information and enhance the accuracy of predicting
osteoporotic conditions.

Our critical contributions are summarized and listed as follows:

(1) To the best of our knowledge, it is for the first time that the FBLS is utilized for the
screening of osteopenia and osteoporosis for athletes based on X-ray images. With
significant advantages in uncertain and non-linear modeling and rapid calculation
ability, the FBLS is a potentially alternative approach for regular testing of osteopenia
and osteoporosis for athletes.

(2) A novel GLCM-based fuzzy broad learning system (GLCM-based FBLS) is first pro-
posed for superior classification performance. Effective features are extracted through
the use of gray-level co-occurrence matrix and then combined with the fuzzy sys-
tems. The feature extraction method with the GLCM can provide the fuzzy systems
with detailed texture information. The fuzzy systems in the proposed model can
handle uncertain or incomplete features in the learning process, contributing to higher
screening accuracy.

(3) We compare the proposed GLCM-based FBLS with three State-of-the-Art CNN models
to analyze the advantages of using the proposed model in athletes’ osteoporosis
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screening application. Based on deep learning, the CNN models have achieved
significant progress in the field of osteopenia and osteoporosis automatic screening
for athletes. This paper offers a new way to achieve better screening performance
without numerous parameters and deep architecture.

The following parts in the paper are organized as follows: In Section 2, we briefly
introduce the related works and the proposed method including feature representation and
we mainly describe the GLCM-based BLS. Experiment results and analysis are shown in
Section 3. Lastly, the discussion is outlined in Section 4.

2. Materials and Methods
2.1. Existing Screening Methods for Osteoporosis in Athletes

Various techniques can be utilized for the detection of osteoporosis in athletes, such as
bone density tests, transmission ultrasound, X-rays, magnetic resonance imaging (MRI),
and body mass index (BMI). Among these methods, bone density testing is the most com-
monly employed approach, which evaluates the calcium content of bones to determine
the severity of osteoporosis. BMI is also a simple method for assessing body composi-
tion. However, it may not be suitable for athletes with significant muscle mass. Athletes
with a mesomorphic physique or those who engage in muscle-building training may sur-
pass the thresholds for being classified as overweight (BMI 25+) and obese (BMI 30+).
Another method for assessing bone quality is the use of transmission ultrasound or re-
flected ultrasound beams to measure the extent to which bone attenuates the sound beam.
Additionally, the measurement of collagen degradation products, such as βCTX, can be
utilized to evaluate osteoclast activity during bone resorption [15]. Bone metabolism tests
can also be employed to detect the activity and metabolism of bone cells, aiding in the
identification of the underlying cause of osteoporosis. Dual-energy X-ray absorptiometry
(DXA) is considered the most effective imaging tool for diagnosing osteoporosis; however,
its availability is notably limited, particularly in developing countries [16,17]. According
to the 2013 International Osteoporosis Foundation Asia-Pacific Regional Audit report,
seven countries have less than one DXA scanner per million people [18]. Therefore, it is
crucial to develop an automated detection method based on computers and algorithms to
address these challenges. Currently, several advanced deep learning models, including
RESNET [19], EfficientNet [20], and Densenet [21], have been applied to the detection stage
of osteoporosis.

2.2. Proposed Methods

Figure 1 illustrates the study pipeline, including data source, pre-processing, gray-level
co-occurrence matrix (GLCM) feature extraction, and GLCM-based FBLS model training,
and comparison of the FBLS model with the pre-trained CNN models.

2.2.1. Data Pre-Processing

This dataset consists of 239 images, which include 36 images with no findings,
154 images with osteopenia, and 49 images with osteoporosis. To address the issue of
an imbalanced sample distribution in the dataset, we employed the synthetic minority
oversampling technique (SMOTE) [22]. SMOTE involves analyzing the minority samples,
artificially generating additional samples based on them, and adding them to the dataset.
This technique helps to prevent the model from becoming overly specialized and lacking
generalizability. After applying SMOTE, the dataset was expanded to include 154 images
with no findings, 154 images with osteopenia, and 154 images with osteoporosis [23]. The
regions of interest (ROIs) in this study were the patella, femoral condyle, and tibia regions
of the patient’s legs. The patella is a triangular bone structure located at front of the thigh,
in front of the knee, and is attached to the condyle of the femur. The condyles of the
femur are two enlarged parts of the lower end of the femur that connect with the tibia
to form the knee joint. The tibia is a long bone in the front of the lower leg, just below
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the knee. Since the data provider has already manually segmented these areas, we can
directly utilize these images for further processing.
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Figure 1. Schematic of the analysis plan.

To normalize the images, they were converted to grayscale and resized to 1024× 1024 pixels
using nearest neighbor interpolation [24], which calculates the value of the target pixel with linear
interpolation between the four nearest neighbor pixels in the original image. Subsequently,
the max/min normalization method was applied to each image, and partial results of the
normalization process are depicted in Figure 2. This normalization ensures that the medical
images have a consistent grayscale representation, facilitating the detection of features within the
images. Furthermore, the images were enhanced using the contrast-limited adaptive histogram
equalization (CLAHE) algorithm to improve contrast and provide a clearer visualization of
the feature details [25]. This approach avoids the potential problem of noise enhancement
associated with the adaptive histogram equalization (AHE) method by constraining the range
of contrast enhancement. The advantage of using CLAHE is that it achieves effective contrast
enhancement without introducing excessive noise.

2.2.2. GLCM Feature Extraction

Accumulated evidence has provided substantial support for the effectiveness of the
gray-level co-occurrence matrix (GLCM) in capturing bone architecture properties. This ap-
proach has been successfully applied in various domains, including the assessment of bone
quality [26], the diagnosis of osteosarcoma [27–30], and the prediction of fractures [31]. In
this study, the GLCM was computed for each sample, and significant texture features were
extracted from each GLCM. These features were subsequently concatenated into a vector
to represent the information within a specific ROI. The resulting ROI feature vectors were
then generated and utilized as input for the FBLS model.
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Figure 2. Part of results of normalization.

The GLCM is a mathematical representation that offers significant information about
the intricate characteristics of an image. As shown in Figure 3, each element within the
matrix corresponds to the statistical probabilities of changes between various gray levels
at specific displacement distances and angles, commonly 0◦, 45◦, 90◦, and 135◦. For the
classification task in this study, the following uncorrelated features were selected: contrast,
angular second moment, inverse different moment, and correlation. The subsequent content
will provide detailed explanations of these selected features.

Version October 10, 2023 submitted to Journal Not Specified 4 of 7

Figure 3. The network architecture of GLCM-based BLS.

Contrast

The contrast reflects the image clarity and depth of the grooves in the texture. The
greater the contrast, the deeper the grooves. Conversely, if the contrast is small, the grooves
are shallow. The contrast is obtained using the following equation:

Contrast =
N−1

∑
i,j=0

(i− j)× P(i, j) (1)
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where N − 1 is the number of gray levels; P(i,j) is the gray-level co-occurrence matrix; i and
j are the spatial coordinates of the function.

Angular Second Moment (Energy)

The ASM describes the uniformity of an image’s gray distribution. If all the element
values of the GLCM are very close, the ASM value will be small. However, if the values
differ greatly, the ASM will be large. The ASM is obtained using the following equation:

Energy =
N−1

∑
(i,j=0)

P(i, j)2 (2)

Inverse Different Moment

The IDM reflects the change in an image’s local texture. If the textures of different
regions of the image are uniform and change slowly, the inverse variance will be large;
otherwise, it will be small. The IDM is obtained using the following equation:

IDM =
N−1

∑
i,j=0

(
1/
(

1 + (i− j)2
)
× P(i, j)

)
(3)

Correlation

The correlation reflects the consistency of the image texture, and it measures the degree
of similarity of the spatial gray-level co-occurrence matrix elements in the direction of a
row or column. When the matrix element values are uniform and tend to be equal, the
correlation value will be large. Conversely, if the matrix element values differ greatly, the
correlation value will be small. The correlation is obtained using the following equation:

Correlation =
N−1

∑
i,j=0

(i− µ)(j− µ)× P(i, j)
σ2 (4)

where

µ =
N−1

∑
i,j=0

i× P(i, j) (5)

σ2 =
N01

∑
i,j=0

(i− µ)2 × P(i, j) (6)

The selected features can distinguish osteoporosis from non-osteoporosis (Tables 1 and 2).
The details of using the GLCM method to obtain these features are as follows:

Table 1. Comparison of the features at displacement distance d = 1 calculated from GLCMs.

d = 1 Non-Osteoporosis Osteoporosis

Angle 0◦ 45◦ 90◦ 135◦ Avg. 0◦ 45◦ 90◦ 135◦ Avg.

Contrast 2.432 3.666 2.635 3.748 3.120 3.180 5.412 4.270 5.340 4.551
ASM 0.0180 0.0150 0.0172 0.0148 0.0163 0.0155 0.0125 0.0138 0.0125 0.0136
IDM 0.5378 0.4719 0.5220 0.4647 0.4991 0.4831 0.3981 0.4367 0.4007 0.4297

Correlation 0.8607 0.7892 0.8499 0.7848 0.8212 0.8106 0.6770 0.7451 0.6815 0.7286

Table 2. Comparison of the features at displacement distance d = 2 calculated from GLCMs.

d = 2 Non-Osteoporosis Osteoporosis

Angle 0◦ 45◦ 90◦ 135◦ Avg. 0◦ 45◦ 90◦ 135◦ Avg.

Contrast 4.701 3.666 5.156 3.748 4.318 5.615 5.412 7.963 5.340 6.082
ASM 0.0138 0.0150 0.0131 0.0148 0.0142 0.0122 0.0125 0.0109 0.0125 0.0120
IDM 0.4416 0.4719 0.4286 0.4647 0.4517 0.3982 0.3981 0.3468 0.4007 0.0386

Correlation 0.7290 0.7892 0.7060 0.7848 0.7523 0.6672 0.6770 0.5248 0.6815 0.6377
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Suppose that there is a medical image dataset. First, for the input data X, we select
a suitable neighborhood size N × N to calculate the spatial relationship of pixel pairs in
the image. Second, through Equation (7), the frequency of gray value pairs of neighboring
pixels is calculated within a defined neighborhood for each pixel in one image.

GLCM(i, j) = ∑[X(p, g) = i, X(p + d, q + θ) = j] (7)

where i, j belong to [0, N − 1]; d and θ are predefined parameters which represent distance
and direction, respectively.

Second, we normalized the gray-level co-occurrence matrix through Equation (8).
Divide each element in the matrix GLCM by the sum of GLCM to eliminate the effect of
image size and gray-level range on features.

P(i, j) =
GLCM(i, j, d, θ)

∑ ∑ GLCM(k, l, d, θ)
(8)

Finally, we use Equations (1)–(4) to calculate the following four features mentioned
above: contrast, energy, IDM, and correlation.

Fea = Merge(Contrast, Energy, IDM, Correlation) (9)

Then, through Equation (9), these features are merged into a vector describing a
single image.

2.2.3. Fuzzy Broad Learning System Architecture

The fuzzy broad learning system (FBLS) [32] is architecture based on the random
vector functional link neural network and pseudo-inverse theory. This design enables the
system to learn quickly and incrementally, as well as to remodel the system without the
need for retraining. The FBLS model, depicted in Figure 3, consists of an input layer, a
fuzzy subsystem layer, an enhancement node composite layer, and an output layer. In the
composite layer, multiple groups of fuzzy subsystems are generated from the input data
using fuzzy rules. These fuzzy subsystems are then enhanced as enhancement nodes, each
with different random weights. The output is computed by connecting all the features and
enhancement nodes to the output layer.

The main concept behind the fuzzy BLS is to map the input data into a set of fuzzy
rules and then utilize the BLS algorithm to learn and optimize the weights and parameters
of these rules. These fuzzy rules are composed of fuzzy sets and their corresponding
membership functions, which describe the fuzzy relationship between the inputs and
outputs. By employing fuzzy logic’s inference, the system can make predictions and
classifications based on the fuzzy representation of the input data.

The FBLS is a neural network model that incorporates the random vector functional
link neural network and pseudo-inverse theory. This design allows the system to learn and
adapt quickly, without the need for retraining. As shown in Figure 3, it consists of an input
layer, a fuzzy subsystem layer, an enhancement layer, and an output layer. In the fuzzy
subsystem layer, multiple groups of fuzzy subsystems are generated from the input data
using fuzzy rules. These fuzzy subsystems are then transformed as enhancement nodes
using random weights. The output is computed by connecting all the fuzzy subsystems
and enhancement nodes to the output layer.

The fuzzy rules consist of fuzzy sets and their corresponding membership functions,
which describe the fuzzy relationship between the inputs and outputs. By employing fuzzy
logic’s inference, the system can make predictions and classifications based on the fuzzy
representation of the input data.

The specific implementation steps are as follows:
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In a fuzzy BLS, suppose there are n fuzzy systems and m groups of enhancement nodes.
The input features are denoted by X ∈ RN×M, where M is the dimension of each feature vector.
Assume that the i th fuzzy subsystem has Ki fuzzy rules of the following form.

if x1is Ak1, x2is Ak2, ..., and xMis AkMthenzi
sk = fi

k(xs1, xs2, ..., xsM), k = 1, 2, . . . , Ki (10)

where Akj is a fuzzy set, xj is the system input (j = 1, 2, . . ., M), and K is the number of rules.
Then, we adopt the first-order Takagi–Sugeno (TS) fuzzy system and we let

zi
sk = fi

k(xs1, xs2, ..., xsM) =
M

∑
t=1
αi

ktxst (11)

where αi
kt is the coefficient. The fire strength of the k th fuzzy rule in the i th fuzzy

subsystem is

τi
sk =

M

∏
t=1
µi

kt(xst) (12)

Then, we denote the weighted fire strength for each fuzzy rule as

ωi
sk

τi
sk

∑Ki
k=1 τ

i
sk

(13)

The Gaussian membership function is chosen for µi
kt(x) that corresponds to fuzzy set

Ai
kt, which is defined as follows:

µi
kt(x) = e

−(
x−ci

kt
σi

kt
)

2

(14)

where ci
kt and σi

kt are width and center, respectively.
In the FBLS, fuzzy subsystems deliver the intermediate vectors to the enhancement

layer, which performs a further non-linear modification while retraining the input features.
The intermediate vector xs, without aggregation in the i th fuzzy subsystem, is

Zsi =
(
ωi

s1zi
s1,ωi

s2zi
s2, ...,ωi

sKi
zi

sKi

)
(15)

For all training samples X, the i th fuzzy subsystem’s output matrix is

Zi = (Z1, Z2, ..., Zn)εRN×Ki , i = 1, 2, . . . , n (16)

Then, we designate an intermediate output matrix for n fuzzy subsystems by

Zn = (Z1, Z2, ..., Zn)εRN×(K1+K1+...+Kn) (17)

Then, Zn is passed to the enhancement layer for further non-linear processing. Con-
sider the j th enhancement node group to be made up of Lj neurons represented by

Hj = δj

(
ZnWhj + bhj

)
εRN×Lj (18)

where Whj and bhj are the j th enhancement node group’s random weights and bias terms,
respectively. The enhancement layer’s output matrix is

Hj = (H1, H2, ..., Hm) (19)

We now consider the output of each fuzzy subsystem, a process known as defuzzifi-
cation. The defuzzification output Fn and the enhancement layer output matrix Hm will
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then be combined and sent to the top layer. First, consider the j th fuzzy subsystem’s
output vector.

Fsi =

(
Ki
∑

k=1
ωi

sk

(
M
∑

t=1
ϕi

k1α
i
ktxst

)
, ...,

Ki
∑

k=1
ωi

sk

(
M
∑

t=1
ϕi

kCα
i
ktxst

))

=
M
∑

t=1
αi

ktxst

(
ωi

s1, ...,ωi
sKi

)ϕ
i
11 · · · ϕi

1C
...

. . .
...

ϕi
Ki1

· · · ϕi
KiC

 (20)

whereϕi
kC is a new parameter in the FBLS. To reduce the number of parameters, we convert

αi
kt to ϕi

kCα
i
kt and calculate the pseudo-inverse. For all fuzzy subsystems, we set

D = diag

{
M

∑
t=1
αi

ktx1t, ...,
M

∑
t=1
αi

ktxNt

}
(21)

πi =

ω
i
11 · · · ωi

1Ki
...

. . .
...

ωi
N1 · · · ωi

NKi

 (22)

ϕi =

ϕ
i
11 · · · ϕi

1C
...

. . .
...

ϕi
Ki1

· · · ϕi
KiC

 (23)

The three terms are then combined and rewritten as F. The output of i th fuzzy
subsystem for the input data X is

Fi = (F1i, F2i, ..., FNi)
T , DπiϕiεRN×C (24)

The top layer’s aggregate output of n fuzzy subsystems can then be obtained
as follows:

Fn =
n

∑
i=1

Fi =
n

∑
i=1

Dπiϕi (25)

Now consider the top layer. We send the value of defuzzification Fn, which is related
to the output of the enhancement layer Hm and is connected to the weight matrix of the
enhancement layer, denoted as We ∈ R(L1+L2+Lm)×C, to the top layer of the FBLS. As a result,
the FBLS final output is equal to 2.

Ŷ = Fn + HmWe = Dπϕ+ HmWe = (Dπ, Hm)W (26)

W denotes the parameter matrix of a fuzzy BLS. W can be quickly calculated via the
pseudo-inverse given training targets Y.

W = (Dπ, Hm)+Y =
(
(Dπ, Hm)T((Dπ, Hm))−1

)
(Dπ, Hm)T (27)

A certain number of features and enhancement nodes are selected in advance to train
the BLS model. The parameters’ range for selectionis 10–20 for the number of enhancement
node groups and 10–50 for the number of feature node groups. Suitable parameters are
selected from these ranges to enhance the robustness of the model.
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3. Results
3.1. State-of-the-Art CNN Models for Automatic Screening of Athletes Osteopenia
and Osteoporosis

Deep learning (DL) models have made significant advancements in the field of osteo-
porosis screening [33–36]. ResNet, DenseNet, and EfficientNet are among the most widely
utilized State-of-the-Art DL models for osteoporosis screening and have demonstrated
impressive performance in screening tasks. EfficientNet is particularly renowned for its
ability to achieve excellent classification results while also being computationally efficient.
This is achieved through the combination of depthwise separable convolution and residual
connection techniques, which effectively reduce computational costs. Consequently, several
studies have proposed the use of EfficientNet for osteoporosis screening [37–39]. On the
other hand, ResNet focuses on learning the residual between the input and the desired
output. By formulating the problem as learning residuals, the network can learn the incre-
mental changes necessary to improve the representation. Due to its robust representation
capability, ResNet and its variants have been widely adopted for osteoporosis screen-
ing using various types of datasets, such as knee X-rays, musculoskeletal radiographs,
and panoramic radiographs [40–42]. DenseNet, on the other hand, introduces dense con-
nectivity, where each layer is directly connected to every other layer in a feed-forward
manner. This dense connectivity allows for maximum information flow between layers,
enabling feature reuse and facilitating gradient propagation throughout the network. As
a result, DenseNet has demonstrated great performance in osteopenia and osteoporosis
screening [43,44].

These three DL models are widely applied in the screening of osteopenia and osteo-
porosis. Consequently, when compared to these models, our proposed GLCM-based FBLS
can be validated as a viable alternative to DL-based methods for screening osteoporosis
and osteopenia.

3.1.1. ResNet

ResNet (Residual Network) is a deep neural network architecture that has gained
significant popularity in the field of computer vision. It is designed based on the concept of
residual learning, which enables the network to learn residual mappings instead of directly
learning the underlying mapping. This approach has proven to be effective in mitigating
the vanishing gradient problem commonly encountered in deep neural networks, thereby
enabling the training of much deeper networks. In this study, we have specifically chosen
ResNet-101, which consists of five convolutional groups. As shown in Figure 4, the first
group comprises a single basic convolutional operation, with each operation consisting
of a convolutional layer with a kernel size of 7 × 7, a batch normalization layer, and a
ReLU layer. ReLU, short for Rectified Linear Unit, is a widely used activation function
in deep learning. It is defined as f(x) = max(0, x), where x represents the input value
and f(x) represents the resulting output. The primary purpose of the ReLU layer is to
introduce non-linearity, enabling the model to learn intricate patterns and relationships
within the data. By utilizing ReLU as an activation function, deep learning models can
effectively capture complex features and enhance their representation capabilities. The
second to fifth convolutional groups consist of 3, 4, 23, and 3 residual units, respectively,
with each unit containing three convolutional layers (with kernel sizes of 1 × 1, 3 × 3,
and 1 × 1, respectively). Each convolutional group performs a downsampling operation
at the end, reducing the size of the feature map by half. Subsequently, through average
downsampling, a fully connected layer, and a softmax function layer, the classification
results can be obtained.

Several studies have utilized ResNet for the automatic screening of osteoporosis using
radiographs. For instance, Melek Tassoker et al. evaluated the performance of ResNet on
panoramic radiographs and achieved a sensitivity of 76.52%, specificity of 87.37%, and
accuracy of 75.08% in detecting osteoporosis and osteopenia [40]. I. M. Wani et al. em-
ployed ResNet with transfer learning techniques to diagnose osteoporosis based on knee
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X-ray images, achieving an accuracy of 74.3% after 10 training epochs [41]. Additionally,
Bhan A et al. applied ResNet to detect osteoporosis in musculoskeletal radiographs, achiev-
ing an area under the curve (AUC) of 89.23% and an accuracy of 86.49% [42]. The residual
module in ResNet enables it to learn residual mappings, thereby capturing complex pat-
terns and representations within the image. However, the deeper architecture and residual
connections of ResNet increase the computational complexity and memory requirements
during both training processes.

Figure 4. The backbone of ResNet101.

3.1.2. DenseNet

DenseNet (Densely Connected Convolutional Network) is a deep neural network
architecture, which is designed based on the concept of densely connecting each layer to
every other layer in a feedforward manner. This connectivity pattern allows for efficient
information flow and feature reuse throughout the network. The architecture of DenseNet-
169 is depicted in Figure 5. DenseNet-169 consists of a conventional layer with a kernel
size of 7 × 7, a pooling layer with a size of 3 × 3 for maximum pooling, four dense blocks
with a transition layer between each pair of blocks, and a classification layer. Each dense
block contains multiple conventional groups, which are composed of two conventional
layers with kernel sizes of 1 × 1 and 3 × 3. The four dense blocks have different numbers
of conventional groups, specifically 6, 12, 32, and 32. The transition layer is responsible
for reducing computational complexity and consists of a conventional layer with a kernel
size of 1 × 1 and a pooling layer with a size of 2 × 2 for average pooling. Finally, the
classification layer includes a pooling layer with a size of 7 × 7 for global average pooling,
a fully connected layer, and a softmax function layer to obtain the final result.

DenseNet has been applied in various studies for the automatic screening of osteo-
porosis using radiographs. For instance, researchers proposed a 3D DenseNet model for
the detection of osteoporotic vertebral compression fractures. The model achieved high
sensitivity (95.7%) and specificity (92.6%), as well as positive predictive value (PPV) of
91.7% and negative predictive value (NPV) of 96.2% [43]. Another study conducted by
Tang et al. utilized a novel convolutional neural network (CNN) model based on DenseNet
to qualitatively detect bone mineral density for osteoporosis screening [44]. The classifi-
cation precision for normal bone mass, low bone mass, and osteoporosis was reported as
80.57%, 66.21%, and 82.55%, respectively. The AUC exhibited a similar distribution pattern
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as the precision. The dense connectivity in DenseNet enables direct access to feature maps
from all preceding layers, facilitating feature reuse and enhancing the network’s ability
to learn and utilize feature information, thereby improving classification performance.
However, the dense connection mechanism of DenseNet leads to increased computational
complexity as each layer needs to connect with all previous layers. Moreover, DenseNet
requires a significant amount of memory to store numerous feature maps, which can pose
memory limitations when working with large medical datasets.

Figure 5. The backbone of DenseNet-169.

3.1.3. EfficientNet

EfficientNet is a family of deep neural network architectures. These architectures are
constructed using a compound scaling method that simultaneously scales up the depth,
width, and resolution of the network. Among the variants of EfficientNet, EfficientNet-B0 is
the smallest, possessing fewer parameters and lower computational complexity compared
to its larger counterparts. Figure 6 illustrates the division of EfficientNet-B0 into nine
stages. The initial stage consists of a standard convolutional layer with a kernel size of
3 × 3, including batch normalization (BN) and the Swish activation function. Stages 2 to 8
involve the repetition of MBConv structures, while stage 9 comprises an ordinary 1 × 1
convolutional layer (including BN and Swish), an average pooling layer, a fully connected
layer, and a softmax function layer. The MBConv structure itself consists of a 1× 1 ordinary
convolutional operation (which raises the dimensionality, including BN and Swish), a k× k
(3 × 3 or 5 × 5) depthwise convolution (including BN and Swish), an SE module, a 1 × 1
ordinary convolution (which reduces dimensionality, including BN), and a dropout layer.

EfficientNet has been utilized in various studies for the automatic screening of osteo-
porosis using radiographs. For instance, Norio Yamamoto et al. evaluated the predictive
ability of EfficientNet on hip radiographs and achieved a sensitivity of 82.26%, specificity
of 92.16%, and an AUC of 92.19% [37]. Usman Bello Abubakar et al. employed Efficient-
Net with fine-tuning techniques to classify osteoporosis in knee radiographs, achieving a
sensitivity and specificity of 86% [39]. EfficientNet effectively manages model complexity
and computational costs through composite scaling factors, while still maintaining high
performance. It can achieve performance comparable to larger models with smaller model
sizes. However, it is important to note that EfficientNet’s high performance often relies on
the availability of large training datasets and ample computing resources. In the context of
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osteoporosis classification, if the training dataset is limited or computational resources are
constrained, it may have an impact on the training and performance of the model.

Figure 6. The backbone of EfficientNet-B0.

3.2. Experimental Settings

We compared the BLS model with ResNet-101, DenseNet-169, and EfficientNet-B0.
For these three CNN models, we used Adaptive Moment Estimation as our optimizer and
set the learning rate of ResNet-101, DenseNet-169, and EfficientNet-B0 to 0.1, 0.01, and
0.001 with a batch size of 32.

The BLS and CNN models were implemented using MATLAB R2021b (The MathWorks
Inc., Natick, MA, USA) and Pycharm CE (JetBrains, PyCharm 2020.1.2). All analyses were
performed under Google Collaboratory on a machine with a graphics processing unit (GPU)
with a Driver Version 460.32.03 and CUDA Version 11.2.

3.3. Results Analysis

Table 3 and Figure 7 present the diagnostic performances of the GLCM-based FBLS and
CNN models in distinguishing osteoporosis, osteopenia, and non-findings in each cohort.
Additionally, we indicated the experimental results on the trained cohort to demonstrate
that every model has successfully avoided overfitting. From Table 3, we can see that GLCM-
based FBLS achieved a 2.90% increase in AUC, 6.55% increase in accuracy, 11.31% increase
in specificity, and 7.38% increase in NPV. The performance results demonstrate that the
proposed GLCM-based FBLS can provide athletes with accurate screening of osteopenia
and osteoporosis, especially in classifying those with no findings.

Table 3. Performance comparison of the GLCM-based FBLS and CNN models.

Dataset Model AUC (%) Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Test
cohort 1

ResNet-101 90.45
(86.22–94.69)

82.16
(76.65–87.68)

98.41
(96.61–100)

84.43
(79.20–89.65)

99.04
(97.63–100)

76.54
(70.44–82.65)

DenseNet-169 89.67
(85.29–94.06)

80.54
(74.84–86.25)

96.83
(94.30–99.35)

78.69
(72.79–84.59)

97.96
(95.92–100)

70.12
(63.52–76.71)

EfficientNet-B0 92.33
(89.20–95.47)

82.7
(78.25–87.16)

87.3
(83.38–91.22)

86.89
(82.91–90.86)

92.98
(89.97–95.99)

77.46
(72.54–82.39)

GLCM+FBLS 95.23
(92.16–98.30)

87.09
(82.26–91.92)

77.78
(71.79–83.77)

90
(85.68–94.32)

81.81
(76.25–87.37)

87.5
(82.73–92.27)
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Table 3. Cont.

Dataset Model AUC (%) Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Train
cohort

ResNet-101 94.83
(92.23–97.44)

83.75
(79.41–88.10)

93.4
(90.48–96.33)

83.87
(79.54–88.20)

96.3
(94.07–98.52)

73.91
(68.74–79.08)

DenseNet-169 93.06
(89.39–96.72)

78.34
(73.49–83.19)

97.8
(96.08–99.53)

78.5
(73.66–83.33)

98.65
(97.29–100)

68.99
(63.55–74.44)

EfficientNet-B0 93.26
(90.31–96.21)

84.84
(80.61–89.06)

82.42
(77.94–86.90)

88.71
(84.98–92.44)

91.16
(87.82–94.50)

78.12
(73.26–82.99)

GLCM+FBLS 98.2
(96.63–99.77)

94.31
(91.58–97.04)

90.55
(87.11–93.99)

94.35
(91.63–97.07)

90.7
(87.28–94.12)

94.26
(91.52–97.00)

Figure 7. Performance comparison of GLCM-based FBLS and three CNN models for testing set and
training set.
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However, the proposed model does not perform well in terms of sensitivity and
PPV. After careful study, we believe that there is a large overlap between the samples
of osteoporosis and osteopenia, which are different stages of the disease. It limits the
model’s performance when classifying the different stages of osteoporosis. Nevertheless,
our model has shown considerable advantages in terms of AUC, accuracy, specificity, and
NPV, demonstrating its potential in accurately determining whether athletes are suffering
from osteoporosis. In our future work, we will further focus on improving the ability of the
proposed model to screen for different conditions of osteoporosis, hoping to completely
improve this problem in the future.

4. Discussion

We have developed and validated a novel artificial intelligence method called the
GLCM-based FBLS, which combines gray-level co-occurrence matrix with fuzzy BLS. This
method considers the texture information of X-ray images and utilizes fuzzy systems to
enhance the robustness of the BLS model. Our experimental results demonstrate that this
method is effective and efficient in detecting osteoporosis and osteopenia.

Osteoporosis is a significant concern for athletes as it can have a detrimental impact on
their health and athletic performance. It can lead to weakened bones and increased suscep-
tibility to fractures, which can hinder an athlete’s ability to train and compete. Currently,
conventional screening strategies for osteoporosis, such as calcaneal quantitative ultra-
sonography (QUS), quantitative computed tomography (QCT), and magnetic resonance
imaging (MRI) [45], are not widely used due to limitations such as high radiation doses
and complex post-processing. This makes it challenging to incorporate these strategies
into regular screening for athletes. Opportunistic osteoporosis screening using machine
learning models based on X-ray images may be a more efficient approach, as X-ray images
are widely available for training the model. Previous studies have applied various machine
learning models to analyze, predict, and diagnose osteoporosis and osteopenia. Deep
learning algorithms have also been utilized, achieving significant progress in the detection
of osteoporosis. However, these deep learning methods are computationally intensive and
lack interpretability.

In contrast, our proposed GLCM-based FBLS method offers advantages in terms
of its lightweight nature and ease of training compared to deep learning models. By
utilizing the GLCM-based feature extraction method, complex information in images can
be transformed into texture information, resulting in reduced noise. The incorporation
of fuzzy systems in the FBLS allows for handling uncertainty and imprecision in data,
resulting in robust and reliable results. Our experimental results demonstrate that our
method outperforms traditional CNN models on various indices. Therefore, our proposed
model shows promise in achieving more accurate and reliable results in osteoporosis
screening for athletes, particularly in determining the presence of the disease. Additionally,
the lightweight nature of our model enhances its portability and eliminates the need for
storing a large number of parameters and features. Moreover, our model enables fast and
accurate predictions directly from X-ray images, offering potential for integration with the
daily examination of athletes.

However, our study has several limitations that should be acknowledged. Firstly, it
was a retrospective study with a relatively small sample size. Future prospective studies
are needed to validate the generalization ability of the BLS model. Secondly, our study
focused on a classification task rather than a regression task, aiming to predict BMD T-scores
categories rather than exact values. This decision was made due to the complex non-linear
relationship between knee bones and BMD T-scores, which poses challenges for regression
modeling. Thirdly, to apply the proposed method to real-world scenarios, adjustments
may be necessary in the fuzzy rules used in the FBLS algorithm to enhance its performance.
Lastly, we did not evaluate the potential contribution of clinical factors, such as age and
body mass index, to the AI models. Although a recent study found that demographic
characteristics did not significantly improve the sensitivity of osteoporosis identification,
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another study suggested that biochemical indicators could enhance the accuracy of an
image-based model.

5. Conclusions

We have developed and validated a novel FBLS for the purpose of screening osteo-
porosis in athletes. This model utilizes GLCM features extracted from knee X-ray images
as input data, which significantly reduces redundant information and noises. The GLCM
features are then combined with the fuzzy broad learning system, which is advantageous in
handling uncertainty and imprecision in the extracted features. Our findings demonstrate
that the proposed model is an effective and efficient method for diagnosing osteoporosis,
surpassing the performance of traditional CNN models. Additionally, the GLCM-based
FBLS model produces diagnosis results that are more easily interpretable compared to the
CNN-based models.

The fuzzy rules in the FBLS, which consist of fuzzy sets and their corresponding
membership functions, enable our model to extract critical information from the fuzzy
relationship among the extracted features. Furthermore, the proposed model has a sim-
ple flat structure and does not require retraining processes, which also facilitates feature
representation learning and data classification. Moreover, the FBLS weights are deter-
mined using analytical computation, reducing the risk of model overfitting and enhancing
generalization ability compared to the CNN models.
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