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Abstract: Convolution, recurrent, and attention-based deep learning techniques have produced
the most recent state-of-the-art results in multiple sensor-based human activity recognition (HAR)
datasets. However, these techniques have high computing costs, restricting their use in low-powered
devices. Different methods have been employed to increase the efficiency of these techniques;
however, this often results in worse performance. Recently, pure multi-layer perceptron (MLP) archi-
tectures have demonstrated competitive performance in vision-based tasks with lower computation
costs than other deep-learning techniques. The MLP-Mixer is a pioneering pureMLP architecture that
produces competitive results with state-of-the-art models in computer vision tasks. This paper shows
the viability of the MLP-Mixer in sensor-based HAR. Furthermore, experiments are performed to
gain insight into the Mixer modules essential for HAR, and a visual analysis of the Mixer’s weights is
provided, validating the Mixer’s learning capabilities. As a result, the Mixer achieves F1 scores of
97%, 84.2%, 91.2%, and 90% on the PAMAP2, Daphnet Gait, Opportunity Gestures, and Opportu-
nity Locomotion datasets, respectively, outperforming state-of-the-art models in all datasets except
Opportunity Gestures.

Keywords: human activity recognition; MLP-Mixer; efficiency

1. Introduction

The last two decades have witnessed the rapid growth of wearable devices, which
are increasingly being used for ubiquitous health monitoring. Human activity recognition
(HAR) aims at detecting simple behaviours, such as walking or gestures; more complex
behaviours, like cooking or opening a door, with various use-cases that continue to grow
as the field expands; and assistive technology, such as identifying odd behaviours in the
elderly, including falls [1], skill assessment [2], helping with rehabilitation [3], sports injury
detection, and ambient assisted living [4–6]. Accurately predicting human activities from
sensor data is difficult due to the complexity of human behaviour and the noise in the
sensor data [7].

With larger datasets and more computational power, deep learning has evolved, re-
moving the need for manually created features and inductive biases from models and
increasing the reliance on automatically learning features from raw labelled data [8]. Com-
plex deep learning techniques, such as convolutions and attention-based mechanisms,
are used increasingly with growing computational capacity. These techniques perform
well with larger models, resulting in processes that are generally more expensive compu-
tationally and memory-wise than previous techniques. Although wearable devices and
smartphones have rapidly increased in computation efficiency over the past two decades,
they are still limited in power and storage; this prevents them from using state-of-the-art
deep learning techniques in HAR.

MLP-Mixers, recently created by Google Brain [8], are simplistic and less computa-
tionally expensive models, yet they produce near state-of-the-art results in computer vision
tasks. Wearable devices could produce competitive results in HAR without the significant
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computational demands that current state-of-the-art models impose if MLP-Mixers per-
formed similarly in HAR, which would help advance HAR toward low-powered devices.

The main contributions of this paper are as follows:

• We investigate the performance of the MLP-Mixer in multi-sensor HAR, achieving
competitive, and in some cases, state-of-the-art performance in HAR without con-
volution, recurrent, or attention-based mechanisms in the model. The accompanied
code can be found here https://github.com/KMC07/MLPMixerHAR (accessed on 6
October 2023).

• We analyse the impact of each layer in the Mixer for HAR.
• We analyse the effect of the sliding windows on the Mixer’s performance in HAR.
• We perform a visual analysis of the Mixer’s weights to validate that the Mixer is

successfully recognising different human activities.

2. Related Work

Four main categories of deep-learning architecutres have been used in HAR, convolution-
based architectures, recurrent networks, hybrid models, and attention-based models [9].
Evaluation is performed on benchmark HAR datasets, including Opportunity [10], Daphnet
Gait [11], PAMAP2 [12], Skoda Checkpoint [13], WISDM [14], MHEALTH [15], and UCI-
HAR [16].

With the recent success of CNNs in feature detection, Zeng et al. [17] first proposed
using CNNs in HAR, but they only used a basic CNN on a single accelerometer. Next,
Hammerla et al. [18] thoroughly investigated CNN use in HAR and established its viability.
However, good performance requires large CNN models; this increases the computational
cost, constraining their use on low-power devices. To solve this, Tang et al. [19] looked into
the performance and viability of an efficient CNN that uses a tiny Lego filter inspired by
Yang et al. [20]. The paper investigated a resource-constrained CNN model for HAR on
mobile and wearable devices, achieving an F1 score of 91.40% and 86.10% in the PAMAP2
and Opportunity datasets, respectively. However, this work had the drawback of having
slightly worse performance when compared to conventional CNNs when using small Lego
filters instead of traditional filters.

Recurrent networks are good at capturing long-term dependencies, and because of their
architecture, they can pick up temporal features in sequenced data. Hammerla et al. [18]
took advantage of these benefits and proposed three LSTM models: two uni-directional
LSTM and a bi-directional LSTM model, which trains on both historical and upcoming
data. The models were trained and evaluated on the PAMAP2, Opportunity, and Dapnet
Gait datasets. This work described how to train similar recurrent networks in HAR
and introduced a brand-new regularisation method. The bi-LSTM model outperformed
state-of-the-art models in the Opportunity Gestures dataset, achieving an F1 score of
92.7%. Murad et al. [21] showcased the performance of uni-directional, bi-directional,
and cascaded LSTM models. The bi-direction LSTM performed best on the Opportunity
dataset, with an accuracy of 92.5%. The cascaded LSTM performed the best on Daphnet,
with an accuracy of 94.1%. However, the work did not evaluate the models on extensive
and complex human activities; additionally, resource efficiency was not considered when
designing the model.

CNNs effectively extract spatial features from a local area; however, these models do
not have “memory”, making it hard to learn long-term dependencies between different
samples. RNNs, on the other hand, due to their specific structure, have memory allowing
them to learn long-term dependencies; however, they are challenging to train. Researchers
have created hybrid deep learning models to address the shortcomings of both CNN and
RNN neural networks.

Recently, attention mechanisms have been applied in models to improve performance
in HAR. Attention mechanisms allow the model to learn what to focus on in the dataset and
understand the relationship between each input element. Ma et al. [22] combined attention
mechanisms with a CNN-GRU. This architecture provides the benefits of CNNs, GRUs,
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and attention, enabling spatial and temporal understanding of the dataset. The model
had good performance on all the datasets explored. However, the model is unsuitable for
low-powered devices due to the computational complexity of combining all these models.
Gao et al. [23] combined temporal and sensor attention in residual networks using a novel
dual attention technique to enhance the capacity for feature learning in HAR datasets.
The temporal attention focuses on the target activity sequence and chooses where in the
sequence to concentrate, whereas the sensor attention is vital in selecting which sensor to
focus on, obtaining accuracy scores of 82.75% and 93.16% on Opportunity and PAMAP2,
respectively. Although this model performed well, it was constrained by the shortage
of labelled multimodal training samples. Additionally, this work did not consider this
model’s computation and memory requirements, which decreases its potential for use in
low-powered devices.

MLP Architectures

In a different area of study, with the arrival of the MLP-Mixer, pure deep MLP archi-
tectures have started appearing in computer vision tasks. The MLP variants have similar
structures to the MLP-Mixer, usually with only the internal layers being modified to im-
prove the model. These MLPs work by using a “token-mixing” or/and “channel-mixing”
layer to capture relevant information from the input, followed by stacking these layers N
times. The MLP-Mixer achieved competitive results in computer vision tasks; however,
CNNs and Transformer-based models such as Vision Transformers (ViT) [24] outperform
the Mixer. To overcome this, Liu et al. [25] proposed a new MLP model called gMLP that
introduces a spatial gating unit into MLP layers to enable cross-token interactions. The
gMLP performs spatial and channel projections similar to the MLP-Mixer; however, there
is no channel-mixing layer. The gMLP has 66% fewer parameters than the MLP-Mixer yet
has a 3% performance improvement.

Another method involves using only channel projections. Removing the token-mixing
layer prevents MLPs from gaining context from the input and stops the tokens from
interacting with one another. Instead, to regain context, the feature maps are spatially
interacted with using channel projections after being shifted to align them between the
various channels [24]. Yu et al. [26] proposed the S2-MLP. This model uses spatial shift
operations to communicate between patches. This method is computationally efficient
with low complexity. This model achieves high performance even with its simplicity,
outperforming the MLP-Mixer and remaining competitive with ViT. Finally, Wei et al. [27]
proposed ActiveMLP. This is a token-mixing mechanism that enables the model to learn
how to combine the current token with useful contextual information from other tokens
within the global context of the input. This mechanism allows the model to learn diverse
patterns successfully in vision-based tasks, achieving an accuracy of 82% in ImageNet-1K.

The token-Mixer uses static operations. This prevents the token-Mixer from adapting
to the varying content contained in the different tokens. Methods have been proposed
to add adaptability, allowing the varying information in the tokens to be mixed [24].
Tang et al. [28] try to overcome the static token-mixing layer by viewing each token as an
amplitude and phase-varying wave. The phase is a complex number that controls the
influence of how tokens and fixed weights are related in the MLP, whereas the amplitude is
a real number that represents each token’s content. The combined output of these tokens is
affected by the phase difference between them, and tokens with similar phases tend to com-
plement one another. WaveMLP limits the fully connected layers to only tokens connected
within a local window to address the issue of input resolution sensitivity; however, this
prevents the MLP from taking global context across the entire input. WaveMLP is among
the best MLP architectures, achieving 82.6% top 1-accuracy in ImageNet-1K. It achieves
competitive results with CNNs and Transformers but is still outperformed by them. To
improve on this, Wang et al. [29] proposed the DynaMixer; by considering the contents
of each set of tokens to be mixed, DynaMixer can dynamically generate mixing matrices.
The DynaMixer mixes the tokens row-wise and column-wise to improve the computation
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speed. In each iteration of the DynaMixer, feature dimensionality occurs to produce the
Mixer matrices; additionally, substantially reducing the number of dimensions has little
impact on the performance. These feature spaces are separated into various segments for
token-mixing. The DynaMixer currently produces state-of-the-art performance among
MLP vision architectures, achieving 82.7% top-1 in Imagenet-1k.

3. Methodology
3.1. MLP-Mixer

The MLP-Mixer (Mixer) does not use convolutions or self-attention mechanisms and
is instead made up entirely of MLPs. Even with a simpler architecture than CNNs and
transformers, the Mixer produces competitive results in computer vision tasks against
state-of-the-art models. The Mixer only uses basic matrix multiplication, changes to data
layout, and scalar non-linearities, resulting in a simpler and faster model. The Mixer has
a similar architecture to the ViT; however, the Mixer’s structure has benefits in terms of
speed by allowing linear computation scaling when increasing the number of input patches
instead of quadratic scaling in the case of the ViT.

Figure 1 illustrates the MLP-Mixer architecture. The input is divided into unique
patches that do not overlap. The patches are linearly projected into an embedding space.
In contrast to the transformer and ViT, the input does not need positional embeddings
as the Mixer is sensitive to the position of the inputs in the token-mixing MLPs [8]. The
Mixer consists of two types of MLP layers: the token-mixing layer and the channel-mixing
layer. The inspiration behind this is that modern vision neural architectures, according
to [8], (1) mix their features at a given spatial location across channels and (2) mix their
features between different spatial locations. CNNs implement (1) with a convolution
layer through the 1 × 1 convolution operation; and (2) using large kernels and by adding
multiple convolution layers with pooling, which decreases the input spatially. In attention-
based models, both (1) and (2) are performed within each self-attention layer. The Mixer’s
purpose is to separate per-location operations (1) and cross-location operations (2). These
features are achieved through two layers, called “token-mixing” and “channel-mixing”,
representing the per-location and the cross-location operations, respectively.

Figure 1. Annotated MLP-Mixer architecture with token-mixing annotated on the left and channel-
mixing annotated on the right. Image from [8].

Each unique patch has identical dimensions. The number of patches is calculated by
dividing the input dimensions (H, W) by the patch resolution (P, P), S = HW/P2. The
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sequence of non-overlapping patches is projected into an embedding space with dimension
C, resulting in a matrix of dimensions S × C. The layers in the Mixer are all the same size
and are made up of two MLP blocks each.

• The first block is the token-mixing MLP; the input matrix is normalised and transposed
to allow the data to mix across each patch. The MLP(MLP1) will act on each column
of the input matrix, sharing its weights across the columns. The matrix is transposed
back into its original form. The overall context of the input is obtained by feeding
each patch’s data into the MLP. This token-mixing block essentially allows different
patches in the same channel to communicate.

• The second block is the channel-mixing MLP; this receives residual connections from
its pre-normalised original input to prevent information from being lost during the
training process. The result is normalised, and a different MLP(MLP2) performs
the channel-mixing with a separate set of weights. The MLP acts on each input
matrix row, and its weights are shared across the rows. A single patch’s MLP receives
data from every channel, enabling communication between the information from
various channels.

Each MLP block contains two feed-forward layers with a GELU [30] activation function
applied to each row of the input data. The Mixer layers are calculated in Equation (1) (the
layer index is not included), and the GELU function is demonstrated in Equation (2).

U∗,i = X∗,i + W2σ(W1LayerNorm(X)∗,i), f or i = 1 . . . C, (1)

Yj,∗ = Uj,∗ + W4σ(W3LayerNorm(U)j,∗), f or j = 1 . . . S.

GELU(x) = xP(X ≤ x) = xΦ(x) (2)

It is intuitive to share the weights in each layer of the channel-mixing MLPs as this
offers positional invariance, a key characteristic of convolution layers in CNNs. However,
it is less intuitive to share the weights across channels in the token-mixing MLPs. For
instance, some CNNs use separable convolutions [31], which apply convolutions to each
channel independently of the others. However, these convolutions apply different filters
to each channel, in contrast to the token-mixing MLPs, which use the same filter for all
channels. Additionally, sharing weights in the token-mixing and channel-mixing layers
prevents the Mixer from growing in size quickly when the number of patches, S, or the
dimensions of the embedding space, C, increases, leading to substantial memory savings.
Furthermore, the empirical performance of this model is unaffected by this characteristic.

4. Datasets

To evaluate the performance of the MLP-Mixer in classifying a variety of activities,
three datasets are used for benchmarking.

4.1. Opportunity

The opportunity dataset [10] contains complex labelled data collected from multiple
body sensors. It consists of data from four subjects recorded in a daily living scenario
designed to create multiple activities in a realistic manner. Each subject had six sets of data.

The opportunity dataset consists of all three types of human activities: recurrent, static,
and spontaneous. The subjects wore a body jacket that contained five inertial measurement
units (IMU), made up of a 3D accelerometer, a gyroscope, and a magnetic sensor; two
inertial sensors for both feet; and 12 wireless accelerometers sensors, which suffered from
data loss due to their Bluetooth connection. In this dataset, only sensor data without
packet loss was used. This included data from the inertial sensors on both feet and the
accelerometer sensors on the back and upper limbs, resulting in each sample containing
77 dimensions of sensor data when combining all the sensor data together. The sensors
recorded the data at a sampling rate of 30 Hz. The Mixer is trained, validated, and tested on
are similar to that in the previous literature [18,32–34] for consistency and fair comparison.
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The Mixer was tested on ADL4 and AD5 from subjects 2 and 3, ADL2 from subject 1 was
used as the validation set, and the rest of the ADLs and all the drill sessions were used for
training the Mixer. The Opportunity dataset has multiple benchmark HAR tasks, including:

• Opportunity Gestures: This involves successfully classifying different gestures being
performed by the subjects from both arm sensors. There are 18 different gesture
classes.

• Opportunity Locomotion: This involves accurately classifying the locomotion of the
subjects using full body sensors. There are five different locomotion classes.

4.2. PAMAP2

The PAMAP2 dataset [12] contains complex labelled data collected from chest, hand,
and ankle sensors. This consisted of data recorded from nine subjects. Each subject followed
a routine of 12 different actions and optionally performed an addition of 6 activities,
resulting in 18 recorded activities each, 19 if you include the null class.

The PAMAP2, similar to the Opportunity dataset, contains all three types of human
activities. The nine subjects wore IMUs on their hands, ankles, and chest. The IMU
recorded multimodal data, which consisted of an accelerometer, gyroscope, heart rate,
temperature, and magnetic data. In total, the data contains 40 sensor recordings and
12 IMU orientation data points, resulting in each sample containing 52 dimensions of
sensor data when combined. Each sensor sampled the data at a sampling rate of 100 Hz,
and the dataset was downsampled to approximately 33.3 Hz to have a similar sampling rate
to the opportunity dataset. There were missing data present in the dataset from the packet
loss of the wireless sensors. To account for this, only the heart rate sensor was interpolated;
afterwards, samples with missing values were excluded from the dataset. The parts of the
dataset that are trained, tested, and validated are identical to the previous literature [34,35].
The Mixer was tested on subject 6 and validated on subject 5, and the rest were used for
training; however, subject 9 was dropped due to significantly less sensor data compared
to the rest of the subjects. Additionally, the orientation data points were not used as they
were unimportant for this problem, leaving the dataset with a dimension of 40 features. To
make the experiments performed on PAMAP2 comparable with the previous literature, the
optional activities and the null activities are excluded while training the Mixer, resulting in
a total of 12 classes to be classified.

4.3. Daphnet Gait

The daphnet gait dataset [11] contains labelled data collected from accelerometer
sensors. It consists of data collected from 10 subjects who are affected with Parkinson’s
disease (PD). The subjects are instructed to carry out three types of tasks, walking in a
straight line; walking while turning; and realistic ADL scenarios, which involve tasks
such as getting coffee. These tasks were designed to frequently induce gait freezing in the
subjects. Freezing is a common symptom of PD, which causes difficulty starting movements,
such as taking steps, for a short period of time [18]. The goal of the dataset is to detect
whether the subjects are freezing or doing the specified actions (walk, turn). This is a binary
classification problem since the specified action are combined into one class, “No Freeze”,
and the “Null” class is excluded from the experiment.

Accelerometers were used to capture information about the subjects. They were placed
on the chest, above the ankle, and above the knee, resulting in each sample containing nine
dimensions of sensor data when combined. Each sensor sampled the data at a sampling
rate of 64 Hz, and the dataset was downsampled to 32 Hz for temporal comparison with
the other datasets. A fair comparison was maintained by splitting the dataset into training,
validation, and testing sets identical to the early literature [18]. The Mixer was tested on
data from subject 2, validated on subject 9, and trained using the rest of the information.
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4.4. Sliding Windows

For the datasets to be trained and tested by the Mixer, a sliding window approach is
used on the dataset. This splits the dataset into multiple sequences with the dimensions
(D f × SL), where D f is the number of features in the dataset and SL is the sliding window
length. These 2D sequences, in the case of the Mixer, are treated as images. The length of
the sliding window maintains a fixed length throughout each separate training process
but varies across the different datasets and experiments. As mentioned in Section 3.1,
the Mixer takes an input image with dimensions (H, W) that is split into patches with
identical dimensions (P, P). This requires the patch resolution, P, to be fully divisible by
both dimensions of the input. This limits the length of the sliding window to either be
divisible by the number of features in the dataset or divisible by the patch resolution.

The Mixer outputs a prediction of the activity for every sliding window interval after
observing it; however, there would be multiple predictions in the sliding window instead
of a single ground truth prediction. There are multiple methods around this [35], which
involve using the prediction at the end of the sliding window, max-pooling all of the
sequence predictions over time, or returning the most frequent predictions. The Mixer
benefits from mixing its features at a given spatial location across channels and between
different spatial locations. In addition, the token-mixing MLP provides a global context of
the input to the model. Therefore, using the most frequent predictions as the ground truth
prediction is preferred to other methods since the Mixer learns context from the whole
input. The details of the sliding window for each dataset are briefly described below, and
the summary of their parameters is tabulated in Table 1.

• Opportunity: The dataset was fit into a sliding window with an interval of 2.57 s. This
duration represents 77 samples, which makes the input dimensions identical, allowing
the patch resolution to be a factor of 77. The dataset was normalised to account for the
wide range of sensors used in the dataset. After preprocessing the data, there were no
labels of “close drawer 2” activity in the test set (ADL4 and AD5 from subjects 2 and 3).

• PAMAP2: Before downsampling, the dataset was fitted into a sliding window interval
of 0.84 s, which corresponds to 84 samples. The “rope-jumping” activity in subject 6
had a very small number of samples. After preprocessing, there were no labels of this
activity present in the test set (subject 6).

• Daphnet Gait: Before downsampling, a sliding window interval of 2.1 s was used to
fit the dataset; this interval corresponds to 126 samples. Daphnet Gait contains a lot of
longer activities, so a wider sliding window interval was chosen to provide the Mixer
with more information.

Table 1. The parameters used for each dataset. Note, the parameters are chosen in order to make
them comparable to prior literature for a fair comparison.

Opportunity PAMAP2 Daphnet Gait

Parameters

Number of Activities 18 19 2
Number of Features 77 40 9
Sliding Window Length 77 84 126
Sampling Rate 30 Hz 100 Hz 64 Hz
Downsampling 1 3 2
Step Size 3 3 3
Normalisation True False False
Interpolation False True False
Includes Null activities True False False

Large sliding windows were used to give the Mixer access to more information and
enable the sequence to be divided into patches correctly and in an error-free manner.
Smaller step sizes were used because the Mixer tends to overfit, giving it more training
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points and ensuring that there were enough data points for adequate testing on the various
activities in each dataset.

4.5. Data Sampler and Generation

A class balance sampler was applied to the training dataset to give similar probability
to the classes during training, allowing the Mixer to learn from each class equally in the
imbalanced datasets. The different samples are stored based on their labelled class. During
each batch, the sampler accesses the training samples based on their weights. The samples
are weighted based on the proportion of their class in the training dataset.

4.6. Patches

The MLP-Mixer requires a sequence of input patches. This layer converts the input
sensor data into separate patches. The patch resolution has to be fully divisible by both
the input height and width dimensions. The patch resolution differed between datasets,
and the resolution for each dataset is tabulated in Table 2. This was implemented using a
strided Conv2D layer in Pytorch. A strided Conv2D layer produces the same results as the
per-patch fully-connected layer used in [8]. This layer reshapes the input from number of
samples, number of channels, input height, and input width to number of samples, number
of patches, and patch-embedding dimensionality.

Table 2. Specification of the Mixer architecture for each dataset.

Opportunity PAMAP2 Daphnet Gait

Specifications

Number of Layers 10 10 10
Patch Resolution 11 4 9
Input Sequence Length 49 210 14
Patch-Embedding Size 512 512 512
Token Dimension 256 256 256
Channel Dimension 2048 2048 512
Learnable Parameters (M) 21 21 5

5. Experimental Setup

The Mixer was trained using the Adam optimiser with the cross-entropy loss as the
criterion and hyperparameters β1 = 0.9, β2 = 0.999. The Mixer has a tendency to overfit, so
a weight decay of 1 × 10−3 was used. The gradient clipping at the global norm was set to 1,
and the batch size for the training and testing dataset was 64. A learning rate scheduler
was used, and the learning rate was set to 0.01. For the first 500 steps, the learning rate
scheduler used a linear warm-up rate. Then, until the training was finished, it used a
cosine decay.

The specifications of the Mixer architecture used to produce the main results in
Section 6 is tabulated in Table 2. The experiments were run five times with the best
specifications, and the mean of the results was taken.

5.1. Ablation Study

The Mixer is ablated to compare the importance of different design choices of the
MLP-Mixer in HAR. The different design choices involve the architecture of the Mixer
(token-mixing MLP, channel-mixing MLP) and the RGB embedding layer. The macro F1
score is used in the ablation study to assess the model. This prevents high evaluation scores
by simply choosing the majority class in imbalanced datasets and provides accurate insight
into the model’s learning capabilities across class activities.

The MLP-Mixer without RGB Embedding: The Mixer saw a slight decrease in per-
formance, which meant that this layer made some contribution to the Mixer’s learning
capabilities. This allows the sensor data to simulate the RGB channels in images. This
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produces three sets of features for the Mixer to project into its embedding space instead of
a single set of features from the single sensor channel. The results are tabulated in Table 3.

Table 3. Mixer ablation study.

Opportunity PAMAP2 Daphnet

Metric Fm Fm Fm

Base Mixer 0.68 0.971 0.85
Mixer with no RGB Embedding 0.63 0.940 0.79
Mixer with no Token-Mixing 0.05 0.165 0.12
Mixer with no Channel-Mixing 0.569 0.82 0.795

The MLP-Mixer without the Token-Mixing MLPs: The model had a significant de-
crease in performance in all the datasets without the token-mixing MLPs. The Mixer uses
token-mixing to learn global context from the input and communicate information between
patches; without this layer, the Mixer cannot effectively capture the spatial and temporal in-
formation of the activities in the datasets. The results tabulated in Table 3 indicate the Mixer
loses its capabilities to learn relevant features of the dataset; hence, it can be concluded that
the token-mixing MLP is necessary for the Mixer to perform well in HAR benchmark datasets.

The MLP-Mixer without the Channel-Mixing MLPs: The channel-mixing MLPs
allow the model to communicate between channels, essentially acting as a 1 × 1 convolution.
This enables the Mixer to detect features between channels, and without it, only spatial
information between the various patches will be learned. The results tabulated in Table 3
showcase substantial performance loss, which indicates that the channel-mixing MLP is
important for HAR. However, the performance loss is lower than the performance loss in
the absence of the token-mixing MLPs. This indicates that the channel-mixing MLP is a
supplement to the token-mixing MLP, communicating the information learned from the
token-mixing layer across channels rather than capturing core features needed for accurate
prediction in HAR.

5.2. Measuring Performance

When evaluating classification problems, accuracy can be used as a metric that de-
termines the percentage of correct predictions the model made; this works very well in
most problems, but in classification problems with imbalanced datasets, this metric is no
longer as valuable. For example, in a binary classification task, the dataset could be imbal-
anced with a ratio of 1:100 for the minority and majority classes, respectively. Accurately
predicting the majority class but failing to classify all of the minority classes would still
lead to an accuracy of approximately 99%, which does not evaluate the model’s ability to
predict different classes. Fortunately, there are other metrics that can be used on imbalanced
datasets to evaluate the model’s performance. The following possibilities arise when a
model predicts classes:

• True Positive (TP): the model accurately predicts that the class is an activity.
• True Negative (TN): the model accurately predicts that the class is not an activity.
• False Positive (FP): the model inaccurately predicts that the class is an activity.
• False Negative (FN): the model inaccurately predicts that the class is not an activity.

5.2.1. Precision

Precision is the ratio of positive classification for class i over all positive predictions. It
answers the following question: How many samples recognised and predicted as class i,
were correctly classified? The precision is calculated below:

Precision =
TP

TP + FP
(3)
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5.2.2. Recall

Recall or the true positive rate is the ratio of positive classification prediction for class
i over all predictions of class i. It answers the following question: How many times was
class i correctly classified? The recall is calculated below.

Recall =
TP

TP + FN
(4)

5.2.3. F1-Score

The F1 score combines recall and precision to create a new accuracy-like measurement.
It is the harmonic mean of precision and recall, accounting for the false positives (precision)
and the false negatives (recall) in the different classes. The F1 score is calculated below:

F1 = 2 · Precision · Recall
Precision + Recall

(5)

In a multi-classification problem, having an F1 score for each class is not preferable to
a single score that gives insight into the overall performance of the model. This single score
is obtained using average techniques over all the F1 scores [36].

5.2.4. Macro F1-Score

The macro F1 score computes the unweighted mean of all the F1 scores. It treats all
classes equally, which is very useful in imbalanced datasets since the imbalance is not taken
into account when averaging the F1 scores.

5.2.5. Weighted F1-Score

The weighted F1 score computes the weighted mean of all the F1 scores. It weighs
each class based on the number of true occurrences (true positives and false negatives) it
has, which is very useful in imbalanced datasets where you want to give classes with more
instances in the dataset a higher weightage in the F1 score.

6. Results

The Mixer is compared with the following state-of-the-art architectures:

• Ensemble LSTMs [32]: combines multiple LSTMs using ensemble techniques to
produce a single LSTM.

• CNN-BiGRU [37]: CNN connected with a biGRU.
• AttenSense [22]: a CNN and GRU are combined using an attention mechanism to

learn spatial and temporal patterns.
• Multi-Agent Attention [38]: combines multi-agent collaboration with attention-based

selection.
• DeepConvLSTM [35]: combines an LSTM to learn temporal information with a CNN

to learn spatial features.
• BLSTM-RNN [33]: a bi-LSTM, with its weights and activation functions binarized.
• Triple Attention [39]: a ResNet, using a triple-attention mechanism.
• Self-Attention [40]: a self-attention-based model without any recurrent architectures.
• CNN [18]: a CNN with three layers and max pooling.
• b-LSTM-S [18]: bidirectional LSTM that uses future training data.

Table 4 shows the performance comparison between the Mixer and existing state-
of-the-art literature. Table 4 shows that the MLP-Mixer performs better than previous
techniques in the Opportunity Locomotion, PAMAP2, and Daphnet Gait datasets. Despite
the model’s shortcomings in the Opportunity Gestures dataset, it is still competitive with
most of the previously developed methods. Sliding window techniques were used in all
the previous techniques, with only the sliding window lengths and overlaps differing.
Although the Mixer beats the previous techniques in Opportunity Locomotion, most
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previous work that used the Opportunity dataset for performance evaluation only focused
on the gesture classification task while disregarding the locomotion task.

The sliding window lengths used were similar to or larger than previous techniques,
allowing the model to capture more information from each interval. Therefore, it can be
concluded that the MLP-Mixer model can learn the spatial and temporal dynamics of the
sensor data more effectively than the previous models. The Mixer performs better than
existing attention and convolution-based models in PAMAP2. The macro-score of the
Mixer is slightly higher (0.97) than the triple-attention model [39] (0.96) and significantly
higher than the best convolution-based model [18] (0.937), and it performed better than the
state-of-the-art by 1%. In the daphnet-gait dataset, the model also performed better than
convolution and recurrent models, producing a macro-score of 0.842 compared to 0.741. It
performed better than the state-of-the-art by 10.1%. However, the existing literature using
the Daphnet Gait focuses more on future prediction [41–43] instead of recognition and uses
different evaluation metrics; therefore, it cannot be directly compared to the Mixer. In the
Opportunity Gestures, the Mixer remains competitive but does not perform better than the
b-LSTM-S. The opportunity dataset was particularly challenging for the MLP-Mixer, due
to shorter activities combined with a larger sliding window necessary for the image to be
split into patches. As a result, there were several activities in the training sliding window,
making it more difficult for the Mixer to learn and harder for it to predict activities in the
test sliding window. The b-LSTM-S performed 1.7% better than the Mixer in this dataset.

Table 4. State-of-the-art comparison for MLP-Mixer scores with bold font showing the best perform-
ing cases. Mixer results in the format mean ± std. Fw is the weighted F1 score, and Fm is the F1

macro score.

Opportunity
Locomotion

Opportunity
Gestures PAMAP2 Daphnet Gait

Metric Fw Fm Fm

Ensemble LSTMs [32] - 0.726 0.854 -
CNN-BiGRU [37] - - 0.855 -
AttenSense [22] - - 0.893 -
Multi-Agent Attention [38] - - 0.899 -
DeepConvLSTM [35] 0.895 0.917 - -
BLSTM-RNN [33] - - 0.93 -
Triple Attention [39] - - 0.932 -
Self-Attention [40] - - 0.96 -
CNN [18] - 0.894 0.937 0.684
b-LSTM-S [18] - 0.927 0.868 0.741
MLP-Mixer 0.90 ± 0.005 0.912 ± 0.002 0.97 ± 0.002 0.842 ± 0.007

7. Discussion

Convolutions capture the spatial information in a local area of the data. However, they
are not effective at learning long-term dependencies (temporal data) [24], unlike recurrent
networks, which specialise in long-term dependencies. The self-attention mechanism learns
the entire context of input patches. Additionally, it learns what to pay attention to based on
its weights [40], allowing it to learn the relationship between the sensors and the different
activities. The token-mixing MLPs can be considered a convolution layer that captures
information about the entire input, combining spatial information from a single channel
and distributing channel weights to increase efficiency, which allows the Mixer to perform
better than previous techniques when an adequate amount of data is provided and the
invariant features of the input are coherent.

The normalised confusion matrices of the PAMAP2, Opportunity, and Daphnet
datasets are illustrated in Figures 2–4, respectively. The model’s ability to distinguish
between activities in the PAMAP2 confusion matrix showed that it had learned the various
spatial and temporal characteristics of each activity. The model did have some trouble
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distinguishing between the “ironing” and “standing” activities; this is probably because
the sensor data for these actions are similar in the chest and ankle regions but only slightly
different in the hand regions. With further inspection, standing consisted of talking while
gesticulating, further validating the possibility of similarities in the hand sensors. Further-
more, the model had little trouble differentiating between “walking”, “vacuum cleaning”,
and “descending stairs” activities; this is understandable since it mistook these activities
for similar ones.

Figure 2. Normalised confusion matrix of the PAMAP2 dataset.

Figure 3. Normalised confusion matrix of the opportunity dataset.
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Figure 4. Normalised confusion matrix of the Daphnet Gait dataset.

It was more difficult for the model to distinguish between different activities in the
Opportunity dataset. Because there were significantly more samples of Null activities
than any other activity, the Opportunity confusion matrix, Figure 3, shows that the model
frequently mistook activities for being unrelated. Furthermore, because the activities were
short, the model had a more challenging time figuring out where a given activity began
and ended in the sliding window. The confusion matrix demonstrates that the model was
could pick up on some of the “open door 2” and “close fridge” activity characteristics.
However, the model did not successfully capture features of “open drawer 1” and mistook
this activity for “close drawer 1”. Further investigation revealed that the activity, which
consisted of opening and closing the drawer, took place in a single sequence, suggesting
that the model could not determine when the activity began and, therefore, could not
correctly distinguish between the two.

There was a significant imbalance between the two activities in the Daphnet Gait
dataset, much like in the opportunity dataset. As shown in Figure 4, the Mixer was trained
on an adequate sample size for the majority class”, No Freeze”, allowing it to learn when
the participants were not freezing correctly. However, in the minority case, there was
insufficient data from the Mixer to properly learn relevant features, resulting in the Mixer
incorrectly classifying the participants as not freezing 26% of the time.

7.1. Performance of Sliding Window Parameters

Each dataset contains a different range of activity lengths and repetition rates. The
sliding window length has a significant impact depending on how long the activities are in
the dataset. The sliding window’s parameters were altered to study its effect on the Mixer
performance. The model’s parameters were fixed, and the step size was constant instead
of using an overlap percentage of the window length to prevent the number of samples
from affecting the results. Small window intervals contain insufficient data for the Mixer to
learn from and make decisions. On the other hand, if the sliding window interval is large
relative to the activities in the window, it allows information from multiple activities to
be present in a single sliding window, making it harder for the Mixer to determine which
activity the sliding window represents among the multiple activities.
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Performance generally improves with increasing overlap, but as there are more sam-
ples to train and test, the computational complexity of training the Mixer also rises. In
contrast, little to no overlap significantly reduces the sample size, particularly for larger
sliding window sizes, which causes the Mixer to over-fit on the dataset.

Figures 5–7 illustrate the changes in the Mixer’s performance when the sliding win-
dow length is changed. In datasets with more extended activities, such as PAMAP2 and
Daphnet, larger sliding windows increase the model’s capability to learn by providing
more information. On the other hand, in the Opportunity dataset, which contains shorter
activities, the model’s performance decreases with larger window lengths. The sliding win-
dow figures indicate that the sliding window has a slight effect on the Mixer’s performance,
but overall the model is not sensitive to the sliding window length.

Figure 5. Evaluation of sliding window length on the Opportunity dataset

Figure 6. Evaluation of sliding window length on the Daphnet Gait dataset
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Figure 7. Performance evaluation of sliding window length on the PAMAP2 dataset

7.2. Weight Visualisation

The models’ weights are visualised to provide insight into which sensors the model
considers necessary for different activities. This experiment aims to confirm that the Mixer
is capturing relevant features and to offer some interpretation of how the Mixer categorises
the activities. The analysis is performed on the PAMAP2 dataset to showcase various
simple and complex activities. Six different activities and their associated weights are
illustrated in Figure 8.

Figure 8 shows how the Mixer associates various sensors with various activities.
The Mixer not only learns which sensors are crucial but also when they are crucial as
the emphasis of the sensors changes throughout the sliding window. For example, in
ascending stairs, the hand (X, Y), chest (X), and ankle sensors have essential features that
the Mixer emphasises, typical when climbing a staircase with handrails. Cycling focuses
on the hand (Y) sensor, most likely for steering, and the chest and ankle sensors, likely for
pedalling. The Mixer prioritises the hand’s (X, Z) sensors when ironing, as expected. While
lying down, the Mixer considers all sensors important, except for the ankle (Z) and hand
(Y), which is to be expected given that the participants had complete freedom to change
their lying positions. Finally, the Mixer values the hand (X, Z) and chest (X) sensors for
vacuum cleaning and the ankles (X, Y) and chest (X) sensors for running activities, which
is consistent with common sense. This analysis concludes that the Mixer is successfully
learning the spatial and temporal characteristics of the various activities because the weight
assignments for these activities are understandable and in tune with common sense.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. The Mixer’s weight visualisation for each accelerometer sensors in the sliding window.
Each figure represents a different activity: (a) Ascending stairs, (b) cycling, (c) ironing, (d) lying,
(e) running, and (f) vacuum cleaning.

8. Conclusions

In this paper, the MLP-Mixer performance is investigated for HAR. The Mixer does
not use convolutions or self-attention mechanisms and instead relies solely on MLPs. It
uses token-mixing and channel mixing layers to communicate between patches and chan-
nels, learning the global context of the input and enabling excellent spatial and temporal
pattern recognition in HAR. Experiments were performed on three popular HAR datasets:
Opportunity, PAMAP2 and Daphnet Gait. The Mixer was assessed using sliding windows
on the dataset. This paper demonstrates that pure-MLP architectures can compete with
convolutional and attention-based architectures in terms of HAR viability and performance.
We demonstrate that the MLP-Mixer outperforms current state-of-the-art models in the test
benchmarks for all datasets except for Opportunity Gestures. It performs 10.1% better in
the Daphnet Gait dataset, 1% better in the PAMAP2 dataset, and 0.5% in the Opportunity
Locomotion dataset. The Mixer was outperformed in the Opportunity Gestures; however,
it remained competitive with the state-of-the-art results. To the best of my knowledge,
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vision-based MLP architectures have not been applied to HAR tasks. It is interesting to
see the performance of a pure-MLP architecture outperform and remain competitive with
state-of-the-art models in HAR.
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