
Citation: Liu, X.; Sun, M.; Wang, H.;

Li, P.; Wang, C.; Zhao, G.; Yang, Y.;

Xiong, D. A Heterogeneous Parallel

Algorithm for Euler-Lagrange

Simulations of Liquid in Supersonic

Flow. Appl. Sci. 2023, 13, 11202.

https://doi.org/10.3390/

app132011202

Academic Editor: Francesca Scargiali

Received: 22 September 2023

Revised: 8 October 2023

Accepted: 10 October 2023

Published: 12 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Heterogeneous Parallel Algorithm for Euler-Lagrange
Simulations of Liquid in Supersonic Flow
Xu Liu, Mingbo Sun *, Hongbo Wang *, Peibo Li, Chao Wang, Guoyan Zhao, Yixin Yang and Dapeng Xiong

Hypersonic Technology Laboratory, National University of Defense Technology, Changsha 410073, China;
liuxu19a@nudt.edu.cn (X.L.); lipeibo09@nudt.edu.cn (P.L.); wangchao19@nudt.edu.cn (C.W.);
zhaoguoyan09@nudt.edu.cn (G.Z.); yangyixin@nudt.edu.cn (Y.Y.); xiongdapeng18@nudt.edu.cn (D.X.)
* Correspondence: sunmingbo@nudt.edu.cn (M.S.); whbwatch@nudt.edu.cn (H.W.)

Abstract: In spite of its prevalent usage for simulating the full-field process of the two-phase flow,
the Euler–Lagrange method suffers from a heavy computing burden. Graphics processing units
(GPUs), with their massively parallel architecture and high floating-point performance, provide new
possibilities for high-efficiency simulation of liquid-jet-related systems. In this paper, a central pro-
cessing unit/graphics processing unit (CPU/GPU) parallel algorithm based on the Euler–Lagrange
scheme is established, in which both the gas and liquid phase are executed on the GPUs. To realize
parallel tracking of the Lagrange droplets, a droplet dynamic management method is proposed, and
a droplet-locating method is developed to address the cell. Liquid-jet-related simulations are per-
formed on one core of the CPU with a GPU. The numerical results are consistent with the experiment.
Compared with a setup using 32 cores of CPUs, considerable speedup is obtained, which is as high
as 32.7 though it decreases to 20.2 with increasing droplets.

Keywords: GPU acceleration; parallel computing; droplet dynamic management; CPU/GPU hy-
brid computation

1. Introduction

The scramjet engine is a hot topic in the research field of hypersonic vehicles [1–5].
Compared with gaseous fuel, liquid fuel has advantageous characteristics of high volu-
metric energy density, easy handling and pumping, convenient transportation, and a high
degree of safety [6]. Thus, the applications of liquid fuel in scramjet engines are drawing
increasing attention. Liquid fuel atomization and mixing have significant impact on the
performance of scramjet engines. Crossflow jet is one way to improve the atomization and
mixing characteristic [7–9]. However, such a process is highly complex. Under the action
of the supersonic transverse airflow, the liquid fuel will go through multiple sub-processes
such as fragmentation, atomization, mixing, etc. [10]. Therefore, a liquid jet in supersonic
flow is a temporally and spatially multi-scale problem, which requires tremendous amounts
of computational resources to solve numerically [11].

Numerous research has been conducted to investigate the spray structure [12–14],
atomization properties [15,16], and spray distribution [12–14] of the two-phase flow. Yoo
et al. [17] employed a computation domain with 2.79 × 106 grid points, divided into
132 blocks, to study the breakup and atomization of a water jet in a subsonic crossflow at
different liquid–gas momentum flux ratios and cross-flow temperatures. Dai et al. used
direct numerical simulation via the Euler–Lagrange point-source approach to investigate
the turbulent modulation of particles in compressible isotropic turbulence [18], the particle
dispersion in a three-dimensional spatially developing compressible mixing layer [19]. To
capture the small-scale structure, each case was computationally intensive. The experiments
of Lin et al. [20] and Wu et al. [21] were recreated numerically by Li et al. [13,22] using their
in-house code to investigate the gas–liquid interaction and elucidate the mixing process.

Appl. Sci. 2023, 13, 11202. https://doi.org/10.3390/app132011202 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132011202
https://doi.org/10.3390/app132011202
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4817-9911
https://doi.org/10.3390/app132011202
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132011202?type=check_update&version=1

Appl. Sci. 2023, 13, 11202 2 of 19

The number of cells in both cases was 19.4 million, while the number of computational
droplets was about 1 million and 0.55 million, respectively. Thereafter, an investigation of a
liquid jet in a cavity-based supersonic combustor was carried out both experimentally [23]
and numerically [14]. The numerical simulation with 26.46 million grids and 5 million
droplets was performed on 756 central processing unit (CPU) cores of the Tianhe-1 for
10 flow-throughs, running for approximately 31 days. Recently, Li et al. [24] added an
evaporation model to further study the spray characteristics of kerosene jet in the cavity-
based supersonic combustor. In the study, the number of cells and droplets was 18 million
and 0.115 million, respectively. The simulation was also implemented on 600 CPU cores
of the Tianhe-1 for 10 flow-throughs, running for 36 days. In conclusion, most of the
simulations of jet in a crossflow were conducted using CPU-based high-performance
computing, employing enormous numbers of cores and very long computational time.
Therefore, a fast, efficient, and accurate computational method to simulate a liquid jet in
supersonic flow is highly sought after.

With the overall hardware performance and knowledge base increasing, GPU has
become more prevalent for computational acceleration in recent years [25]. Fast computing
speed, easy maintenance, and high-power efficiency make using graphics processing units
(GPUs) for scientific computing an attractive option in many fields [26,27]. Liu et al. [28]
proposed an improved hybrid Euler–Lagrange method for solving the Navier Stokes
equation via GPU and performed a simulation of lid-driven cavity problem with 8 million
grids. Speedups of 7, 14, 21, and 27 were obtained, respectively, for one to four GPUs, with
respect to two Intel Xeon E5-2630 v2 CPUs (Intel Corporation, Palo Alto, CA, USA) with
12 cores. Salvadore et al. [29] ported and optimized a Fortran-based code and performed
an accurate simulation of turbulent flow on a NVIDIA Tesla S2070 (NVIDIA Corporation,
Santa Clara, CA, USA). The acceleration is about 22 times faster than one AMD Opteron
2352 Barcelona chip (AMD, Sunnyvale, CA, USA) and about 11 times faster than one
Intel Xeon X5650 Westmere core (Intel Corporation, Palo Alto, CA, USA). Schalkwijk
et al. [30] ported existing code to multiple GPUs and achieved massive acceleration for
the large eddy simulation (LES) of the planetary boundary layer. Lai et al. [31] proposed
a heterogeneous parallel computational fluid dynamics (CFD) solver and conducted a
multi-parallel computation.

The application of GPU acceleration in the numerical simulation of multiphase flow
has also been studied. Sweet et al. [32] used four NVIDIA GPU devices to accelerate an
existing particle-filled turbulence simulation code based on message passing interface
(MPI). For 107 particles, calculation using GPU can achieve about 14 speedups compared
to the original CPU execution. However, the method is one-way coupled, and the gas
phase information needs to be transmitted to the devices for each iterative step, rendering
the method impractical for large-scale simulations. Ge et al. [33] developed a CPU/GPU
portable software library Grit and combined it with a direct numerical simulation solver
to simulate the particle-laden turbulent flow and the dilute turbulent jet evaporation.
Xu et al. [34] used more than 200 GPUs to achieve a quasi-real-time simulation of an
industrial scale rotating drum. Xu et al. [35] developed a CPU-GPU mixed computing
mode, in which the gas phase was solved by CPUs and the particle was calculated by
GPUs, and they applied this method to three cases with 2500, 5000, 1000 cells, and 32,000,
64,000, 128,000 parcels. Compared with the CPU method, respective speedups of 1.05,
1.44, and 2.37 were achieved. Ikebata et al. [36] developed a GPU-accelerated model
to accomplish the actual simulation of the entire toilet bowl system. At present, GPU
acceleration technology has been widely used in multiphase flow, but mostly for certain
expensive and parallelizable sections. To the authors’ knowledge, the GPU technology is
not applied to accelerate both the gas and liquid phase simultaneously.

The current work is executed as a portion of the establishment of a universal CFD
code for fast simulation of the full-field process of liquid in supersonic flow. To achieve it, a
CPU/GPU heterogeneous parallel algorithm is built, in which a novel method for droplet
dynamic management is proposed to solve the droplets’ fluctuation in the flow field, and a

Appl. Sci. 2023, 13, 11202 3 of 19

droplet-locating approach is developed to conform with the weakened three-dimensional
relationships of the cells. The purpose of this paper is to evaluate the internal two-phase
CFD code, demonstrate the successful design of a GPU-based computing system, and
compare the acceleration ratios compared to the CPUs. Although the two-phase CPU/GPU
heterogeneous parallel computation mode based on the Euler–Lagrange approach proposed
in this paper is used for liquid in supersonic flow, it is also applicable to other Euler–
Lagrange simulations.

This paper is organized as follows. The relevant physical models for the gas phase,
liquid phase, phase-to-phase exchange terms, and code structure are introduced in Section 2.
The computational condition, physical parameters, and performance of the algorithm are
presented in Section 3, where we also present the key findings of this study. Conclusions
are drawn in Section 4.

2. Algorithm and Code Structures

In this paper, a CPU/GPU heterogeneous parallel algorithm for liquid in supersonic
flow is established. The Euler–Lagrange scheme, which is widely used in two-phase full-
field flow, is adopted in this algorithm, wherein the gas phase and the liquid phase are
solved by the Euler approach and the Lagrange approach, respectively. The interaction
between the gas phase and the liquid phase is computed by a two-way coupling method.

2.1. Gas-Phase Governing Equations

The governing equations based on the integral form for the gas-phase can be written
as follows [31,37,38]:

∂

∂t

∫
Ω

WdΩ +
∮

∂Ω

(Fc − Fv)dS =
∫
Ω

QdΩ, (1)

W =

ρ

ρu
ρv
ρw
ρE

, Fc =

ρV

ρuV + nx p
ρvV + ny p
ρwV + nz p
V(ρE + p)

, Fv =

0

nxτxx + nyτxy + nzτxz
nxτyx + nyτyy + nzτyz
nxτzx + nyτzy + nzτzz
nxΘx + nyΘy + nzΘz

, Q =

.
Qm.
Qp,x.
Qp,y.
Qp,z.
QE

, (2)

where
V = nxu + nyv + nzw, (3)

Θx = uτxx + vτxy + wτxz + k ∂T
∂x ,

Θy = uτyx + vτyy + wτyz + k ∂T
∂y ,

Θz = uτzx + vτzy + wτzz + k ∂T
∂z .

(4)

Here W, Fc, Fv are the vector of conservative variables, convective fluxes, and viscous
fluxes, respectively, Ω is a control volume, and V is defined as the scalar product of the
velocity vector and the unit normal vector.

.
Qm is the mass flow rate,

.
Qp,x,

.
Qp,y,

.
Qp,z are

the momentum in the x, y, and z directions, respectively, and
.

QE is the energy source terms
of the droplet donation, and the functions will be introduced in Section 2.2.

For the vector of viscous fluxes, the components of viscous stress τij are as follows [37]:

τij = µ(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
∂uk
∂xk

δij). (5)

The spatial discretization of Equation (1) is based on the cell-centered finite volume
method. The upwind Advection upstream splitting method + UP (AUSM + UP) and
central scheme are used to solve the convective fluxes and the viscous fluxes, respectively.

Appl. Sci. 2023, 13, 11202 4 of 19

A Monotone upstream-centered scheme for conservation laws (MUSCL) reconstruction
scheme is used, and the van Leer limiter is employed to make the scheme monotone. The
k−ω shear stress transport (SST) turbulence model is adopted for the turbulent model.

A liquid in supersonic flow is a typical unsteady compressible flow problem. A dual
time-scheme based on Data Parallel Lower-Upper Relaxation Method (DP-LUR) is used as
follows.

Equation (1) is discretized spatially in the ith cell to yield.

Ωi
∂Wi
∂t

+
N

∑
j=1

(F̃c,ij − F̃v,ij)Sij = Qi, (6)

where N is the total number of neighboring cells that share a face with cell i, Sij is the area
of the face shared by cell i and cell j. F̃c and F̃v are the second-order-accurate numerical
inviscid and viscous flux vectors at the face, respectively. The time derivative is discretized
with a 3-point backward-difference dispersion in Equation (6), and a pseudo time derivative
term is added to the left, resulting in

(
3Ωi
2∆t

+
Ωi
∆τ

)∆Wm
i + Ωi

3Wm
i − 4Wn

i + Wn−1
i

2∆t
+

N

∑
j=1

(∆F̃c,ij
m − ∆F̃

m
v,ij)Sij = Resm

i , (7)

where the superscript m represents the mth pseudo time. ∆ is the forward difference in
time, and the right-hand side residual can be written as

Resm
i = −

N

∑
j=1

(F̃
m
c,ij − F̃

m
v,ij) + Qm

i
. (8)

Note that

∆F̃
m
c,ij − ∆F̃

m
v,ij = [F̃c(Wm+1

i , Wm+1
j)− F̃c(Wm

i , Wm+1
j)]

+[F̃c(Wm
i , Wm+1

j)− F̃c(Wm
i , Wm

j)]− [F̃v(Wm+1
i , Wm+1

j)− Fv(Wm
i , Wm+1

j)]

−[F̃v(Wm
i , Wm+1

j)− F̃v(Wm
i , Wm

j)].
(9)

Taylor’s expansion is performed on the first and the third terms on the right-hand side
of Equation (9).

F̃c(Wm+1
i , Wm+1

j)− F̃c(Wm
i , Wm+1

j) ≈
∂F̃c,ij

∂Wi
∆Wm

i , (10)

F̃v(Wm+1
i , Wm+1

j)− F̃v(Wm
i , Wm+1

j) ≈
∂F̃v,ij

∂Wi
∆Wm

i . (11)

Substituting Equations (9)–(11) back to Equation (7), gives

(3Ωi
2∆t +

Ωi
∆τ)∆Wm

i + Ωi
3Wm

i −4Wn
i +Wn−1

i
2∆t +

N
∑

j=1
(

∂F̃c,ij
∂Wi
− ∂F̃v,ij

∂Wi
)Sij

+
N
∑

j=1
[F̃c(Wm

i , Wm
j + ∆Wm

j)− F̃c(Wm
i , Wm

j)]Sij

−
N
∑

j=1
[F̃v(Wm

i , Wm
j + ∆Wm

j)− F̃v(Wm
i , Wm

j)]Sij = Resm
i .

(12)

The numerical flux vectors are discretized as

F̃c,ij − F̃v,ij ≈
1
2
[Fc,i + Fc,j − λij(Wj −Wi)], (13)

Appl. Sci. 2023, 13, 11202 5 of 19

where λij is the spectral radius of the flux Jacobian matrix, written as follows:

λij =
∣∣V · nij

∣∣+ a + (
µij

pr
+

µt,ij

prt
)

rij

ρij
∥∥nij · (rj − ri)

∥∥ , (14)

nij is the normal vector of the shared face, ri, rj represent the position vectors of cell i and
cell j, a is the speed of sound, µij, µt,ij are the average of kinematic and turbulent viscosities
of the cell i and cell j. For closed-cell i

N

∑
j=1

∂Fi(nij)

∂Wi
Sij = 0. (15)

Therefore,

(3Ωi
2∆t +

Ωi
∆τ + 1

2

N
∑

j=1
λijSij)∆Wm

i = Resm
i −Ωi

3Wm
i −4Wn

i +Wn−1
i

2∆t

− 1
2

N
∑

j=1
[F(Wm

j + ∆Wm
j)− F(Wm

j)− λij∆Wm
j]Sij.

(16)

The Lower–upper symmetric Gauss–Seidel (LU-SGS) algorithm employs a series
of corner-to-corner sweeps through the flow field using the latest available data for the
off-diagonal terms to solve Equation (16). However, this method is data-dependent and
challenging to implement in parallel computing. To make the method parallelize effectively,
we use the DP-LUR approach instead, whose main feature is replacing the Gauss–Seidel
sweeps with a series of point-wise relaxation steps.

First, by ignoring the second and third terms, we obtain

∆Wi
0 = (

3Ωi
2∆t

+
Ωi
∆τ

+
1
2

N

∑
j=1

λijSij)
−1Resm

i . (17)

Then, a series of kmax relaxation steps are made with k = 1,. . ., kmax

∆Wi
kmax = (3Ωi

2∆t +
Ωi
∆τ + 1

2

N
∑

j=1
λijSij)

−1{Resm
i −Ωi

3Wm
i −4Wn

i +Wn−1
i

2∆t

− 1
2

N
∑

j=1
[F(Wm

j + ∆Wm
j)− F(Wm

j)− λij∆Wm
j]Sij}.

(18)

Then
∆Wi = ∆Wi

kmax . (19)

Here, kmax = 4 was used [39].

2.2. Liquid-Phase Equations

The Lagrange approach, which is an efficient method that supports parallel computing
for full-field simulation is used to model the spray dynamics. In addition, the computa-
tional droplet is used in this paper. One computational droplet represents a collection of
real droplets with the same properties (diameter, velocity, temperature, etc.) and in the
same location [40]. The number of real droplets carried by each computational droplet
is represented by a parameter ωk. Since the density of the liquid phase is much larger
than that of the gas phase, it is possible to ignore the unsteady drag forces in the Basset–
Boussinesq–Oseen equation (BBO equation), and only the Stokes drag force is included in
the liquid momentum equation. Because of the small liquid volume fraction, the gas–liquid
flow can be treated as dilute two-phase flow. As a result, the collision and coalescence
among droplets are also ignored [13].

Appl. Sci. 2023, 13, 11202 6 of 19

Newton’s second law determines the motion of each computational droplet as follows:

dxk,i

dt
= uk,i, (20)

duk,i

dt
=

Fk,i

mk
, (21)

where xk,i, mk , uk,i are the position vector, mass, and velocity of the droplet, respectively,
i = x, y, z. The surface drag Fk,i, which is a force acting on the droplet body, can be modeled
by:

Fk,i

mk
=

3
4

ρgCk

ρddk

∣∣ug,i − uk,i
∣∣(ug,i − uk,i), (22)

where dk, ρd, uk represent the droplet diameter, density, and velocity, the ρg, ug are the
gas-phase density and velocity, which are calculated by weighting the inverse distance
between the control volume containing the droplet and its adjacent control volumes. Ck
is the drag coefficient, which can be calculated by Cks = fk f Ck(Mk, Rek). Mk and fk f are
the relative Mach number and the droplet deformation correction factor, respectively. The
calculation of the modified drag coefficient Cks is detailed in reference [22].

The effects of the droplet on the gas phase can be calculated as follows:

.
Qm = −ωk

Ω ∑
k

dmk
dt

, (23)

.
Qp,x = −ωk

Ω ∑
k

dmkuk
dt

, (24)

.
Qp,y = −ωk

Ω ∑
k

dmkvk
dt

, (25)

.
Qp,z = −

ωk
Ω ∑

k

dmkwk
dt

, (26)

.
QE = −ωk

Ω ∑
k

d(mkCplTk + mkU2
k,i)

dt
, (27)

where, mk, Tk, are the mass and temperature of the kth droplet respectively, uk, vk, wk are
the velocities in x, y, and z directions of the kth droplet, Cpl is the specific heat of the liquid
phase. Ω is the volume of the cell containing the droplet. In this paper, evaporation is not
considered, therefore, .

Qm = 0, (28)

.
QE = −ωk

Ω ∑
k

d(mkU2
k,i)

dt
. (29)

In the present study, the droplet stripping process is modeled by Kelvin–Helmholtz
model (KH model). Then, the droplet deformation and oscillation are modeled by the Taylor
Analogy Breakup model (TAB model), and the TAB model and Rayleigh–Taylor model
(RT model) compete to simulate the droplet secondary breakup process. It is worth noting
that both the TAB and RT models are explosion-type breakup modes, where the original
droplets are treated as if they disappeared while smaller droplets are newly produced.
More information can be found in reference [22]. The three-step Runge–Kutta method with
third-order accuracy is used for the temporal discretization of droplet iteration.

Appl. Sci. 2023, 13, 11202 7 of 19

2.3. CPU/GPU Heterogeneous Parallel Algorithm
2.3.1. CPU/GPU Heterogeneous Parallel Architecture

The CPU is suitable for logical and data-dependent operations, while the GPU excels at
implementing data-intensive and highly parallel tasks. The workload assignment process
for this study is illustrated in Figure 1. The computational operations are divided into
branch instruction tasks, single instruction tasks, and data exchange tasks. By taking
into consideration their relative efficiency and total computational cost, the three types of
tasks are suitably executed on the CPU, GPU, and CPU, respectively. In other words, the
pre-processing, data exchange, and post-processing are performed on the CPU, whereas
both the gas phase iteration and the droplet phase iteration are executed on the GPU.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 21

The CPU is suitable for logical and data-dependent operations, while the GPU excels

at implementing data-intensive and highly parallel tasks. The workload assignment

process for this study is illustrated in Figure 1. The computational operations are divided

into branch instruction tasks, single instruction tasks, and data exchange tasks. By taking

into consideration their relative efficiency and total computational cost, the three types of

tasks are suitably executed on the CPU, GPU, and CPU, respectively. In other words, the

pre-processing, data exchange, and post-processing are performed on the CPU, whereas

both the gas phase iteration and the droplet phase iteration are executed on the GPU.

T
as

k
s

d
ec

o
m

p
o

si
ti

o
n

 Branch instruction

tasks

Data exchange tasks

Singe instruction tasks

Read parameters

Set device and

allocate memory

Post processing

Gas phase Iteration

Droplet phase

Iteration

Peer-to-peer data

exchange

CPU

GPU

CPU

Figure 1. Scheme of tasks decomposition.

The schematic diagram of the CPU/GPU two-phase computing mode is

demonstrated in Figure 2. At the macro-scale, the CPU is responsible for general control,

while the GPU takes charge of the computation of the gas and droplet iteration. At the

micro level, the cells and droplets are stored one-dimensionally, and every cell and droplet

is treated as an individual unit that is computed with a thread. Working in tandem, they

constitute the CPU/GPU heterogeneous two-phase computation mode.

……cells droplets

Fluid computation on GPU Droplet computation on GPU

x/m

y/
m

Thread Th0 Th1 Th2 Th3 ... Th0 Th1 Th2 ...

Memory
address

0000 0000 0000 0001 0000 0010 0000 0011 ... 0000 0001 00020000 0000 0000 0001 0000 0010

Figure 2. Scheme diagram of the CPU/GPU computation mode.

Compared with the CPU mode, the major distinction of the proposed method is that

the sequential tasks and operations in the gas and droplet iteration are performed using

Figure 1. Scheme of tasks decomposition.

The schematic diagram of the CPU/GPU two-phase computing mode is demonstrated
in Figure 2. At the macro-scale, the CPU is responsible for general control, while the GPU
takes charge of the computation of the gas and droplet iteration. At the micro level, the
cells and droplets are stored one-dimensionally, and every cell and droplet is treated as an
individual unit that is computed with a thread. Working in tandem, they constitute the
CPU/GPU heterogeneous two-phase computation mode.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 21

The CPU is suitable for logical and data-dependent operations, while the GPU excels

at implementing data-intensive and highly parallel tasks. The workload assignment

process for this study is illustrated in Figure 1. The computational operations are divided

into branch instruction tasks, single instruction tasks, and data exchange tasks. By taking

into consideration their relative efficiency and total computational cost, the three types of

tasks are suitably executed on the CPU, GPU, and CPU, respectively. In other words, the

pre-processing, data exchange, and post-processing are performed on the CPU, whereas

both the gas phase iteration and the droplet phase iteration are executed on the GPU.

T
as

k
s

d
ec

o
m

p
o

si
ti

o
n

 Branch instruction

tasks

Data exchange tasks

Singe instruction tasks

Read parameters

Set device and

allocate memory

Post processing

Gas phase Iteration

Droplet phase

Iteration

Peer-to-peer data

exchange

CPU

GPU

CPU

Figure 1. Scheme of tasks decomposition.

The schematic diagram of the CPU/GPU two-phase computing mode is

demonstrated in Figure 2. At the macro-scale, the CPU is responsible for general control,

while the GPU takes charge of the computation of the gas and droplet iteration. At the

micro level, the cells and droplets are stored one-dimensionally, and every cell and droplet

is treated as an individual unit that is computed with a thread. Working in tandem, they

constitute the CPU/GPU heterogeneous two-phase computation mode.

……cells droplets

Fluid computation on GPU Droplet computation on GPU

x/m

y/
m

Thread Th0 Th1 Th2 Th3 ... Th0 Th1 Th2 ...

Memory
address

0000 0000 0000 0001 0000 0010 0000 0011 ... 0000 0001 00020000 0000 0000 0001 0000 0010

Figure 2. Scheme diagram of the CPU/GPU computation mode.

Compared with the CPU mode, the major distinction of the proposed method is that

the sequential tasks and operations in the gas and droplet iteration are performed using

Figure 2. Scheme diagram of the CPU/GPU computation mode.

Appl. Sci. 2023, 13, 11202 8 of 19

Compared with the CPU mode, the major distinction of the proposed method is that
the sequential tasks and operations in the gas and droplet iteration are performed using
the parallel architecture of the GPU cores. Figure 3 illustrates a brief flow diagram of the
CPU/GPU mode and the CPU mode.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 21

the parallel architecture of the GPU cores. Figure 3 illustrates a brief flow diagram of the

CPU/GPU mode and the CPU mode.

Figure 3. Simplified flow diagram of the CPU/GPU computation mode and only CPU mode.

The parallel computing using C++ language is based on the Compute Unified Device

Architecture (CUDA) model, which contains a massive library of custom functions and

structures related to the simulation of multiphase flows. In order to achieve high-speed

and large-scale simulation of the gas–liquid supersonic flow, the code is established in

several aspects, which we shall detail below.

2.3.2. A Novel Method for Dynamic Management of Droplets

The liquid spray is a multi-scale and multi-physics process. During the injection,

atomization, and evaporation processes, the number of droplets fluctuates. Thus, an

efficient method to dynamically manage the droplets is required. In this paper, we

propose a novel scheme to manage the droplets, illustrated in Figure 4. Firstly, a struct is

defined that includes different types of droplet information, such as position, velocity, cell

number, etc. Secondly, a global struct type array on GPU and CPU is created whose

memory is redundantly allocated, and its value can be estimated by the following formula:

d

3

Drop d

Max ,
4

(/ 2)
3

k

L
Q

U
memory

D

=

 (30)

where L is the length from the droplet injection position to the exit of the computational

domain, U
 is the velocity of the incoming flow,

dQ is the mass flow rate of the droplet,

dD is the flux average diameter of the droplet, which is 10 μm in this paper, in accordance

to the reference [16,20].

When a droplet enters the flow, it is first stored in the array on the GPU and is then

involved in the droplet kernel computation. If it undergoes the processes of droplet

stripping, droplet breakup due to deformation and oscillation, as well as droplet

secondary breakup, the new small droplets will be produced and recorded in a temporary

array on GPU and then transferred to the CPU. After the screening, they will be

transferred to a temporary array on GPU and then added to the unassigned global array

on the GPU. If a droplet undergoes the processes of droplet breakup due to deformation

and oscillation, the droplet secondary breakup, or leaving the computational domain at

the outflow resulting in the disappearance of the droplet, it will be marked to be deleted

Figure 3. Simplified flow diagram of the CPU/GPU computation mode and only CPU mode.

The parallel computing using C++ language is based on the Compute Unified Device
Architecture (CUDA) model, which contains a massive library of custom functions and
structures related to the simulation of multiphase flows. In order to achieve high-speed and
large-scale simulation of the gas–liquid supersonic flow, the code is established in several
aspects, which we shall detail below.

2.3.2. A Novel Method for Dynamic Management of Droplets

The liquid spray is a multi-scale and multi-physics process. During the injection,
atomization, and evaporation processes, the number of droplets fluctuates. Thus, an
efficient method to dynamically manage the droplets is required. In this paper, we propose
a novel scheme to manage the droplets, illustrated in Figure 4. Firstly, a struct is defined
that includes different types of droplet information, such as position, velocity, cell number,
etc. Secondly, a global struct type array on GPU and CPU is created whose memory is
redundantly allocated, and its value can be estimated by the following formula:

Max memory =
L

U∞
·Qd

4
3 π(DDrop/2)3 · ρd ·ωk

, (30)

where L is the length from the droplet injection position to the exit of the computational
domain, U∞ is the velocity of the incoming flow, Qd is the mass flow rate of the droplet, Dd
is the flux average diameter of the droplet, which is 10 µm in this paper, in accordance to
the reference [16,20].

When a droplet enters the flow, it is first stored in the array on the GPU and is
then involved in the droplet kernel computation. If it undergoes the processes of droplet
stripping, droplet breakup due to deformation and oscillation, as well as droplet secondary
breakup, the new small droplets will be produced and recorded in a temporary array on
GPU and then transferred to the CPU. After the screening, they will be transferred to a
temporary array on GPU and then added to the unassigned global array on the GPU. If a
droplet undergoes the processes of droplet breakup due to deformation and oscillation, the
droplet secondary breakup, or leaving the computational domain at the outflow resulting
in the disappearance of the droplet, it will be marked to be deleted later. When the max
capacity of the array is reached, the global array on the GPU will be transferred to the

Appl. Sci. 2023, 13, 11202 9 of 19

CPU global array to subtract elements by a method based on two pointer method, which is
demonstrated in Figure 5. For example, there are seven droplets in the illustrated array,
in which the gray elements are the one marked for deletion. Two indices named src and
dst are created and both point to the beginning of the array. The scr is responsible for
traversing through the elements in the array and checking whether they are marked. If
the element points by src is marked, the src will point to the next one. If not, the element
will be stored where the dst points, and then both the src and dst point to the next. After
seven steps, the element in the end of the array will be stored where the dst points, and the
removal process is finished.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 21

later. When the max capacity of the array is reached, the global array on the GPU will be

transferred to the CPU global array to subtract elements by a method based on two pointer

method, which is demonstrated in Figure 5. For example, there are seven droplets in the

illustrated array, in which the gray elements are the one marked for deletion. Two indices

named src and dst are created and both point to the beginning of the array. The scr is

responsible for traversing through the elements in the array and checking whether they

are marked. If the element points by src is marked, the src will point to the next one. If

not, the element will be stored where the dst points, and then both the src and dst point

to the next. After seven steps, the element in the end of the array will be stored where the

dst points, and the removal process is finished.

New droplets

Store in the array on
GPU

Kernel of droplets
phase

>Max memory
Data transfer from

GPU to CPU

Delete gone
droplets

No

Data transfer from
CPU to GPU

>Max iteration step

Yes

End

No

Yes

Figure 4. Dynamic management of droplets. Figure 4. Dynamic management of droplets.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 21

src

dst

Step 1:

Step 3:

a b c d e f g

Step 2:
a b c d e f g

a b c d e f g

Step 5:
a b d d e f g

Step 6:
a b d d e f g

Step 7:
a b d g e f g

Step 4:
a b c d e f g

src

src

src

src

src

src

dst

dst

dst

dst

dst

dst

Droplets to delete

Droplets in flow

src Pointer for traversing

Pointer for storingdst

Figure 5. Droplets removal process (the circles are different elements in the array, the gray circle is

marked to delete).

2.3.3. A Method for Droplet Location

Of particular note is that, in our CPU/GPU hybrid computation mode, the three-

dimensional relationships of the cells are weakened, making it hard to directly locate

droplets and find their neighbors. Therefore, the information about which two cells share

the ith face and which faces enclose the cell are stored to enhance the adjacent

relationships of the cells. Then, combine the particle-locating algorithm of Chorda [41] to

address the droplets. The process is illustrated in Figure 6. As mentioned above, the cell

a has the information of its enclosed faces, while the face has the information of which

two cells share it. Figure 6a shows the criterion for determining whether the droplet is

within the given cell. The determination criterion can be described as:

F Fd,i i iScalar = (31)

0, 0

1, 0,

i

i

i

Scalar
Inoroutface

Scalar

=

 (32)

.
FN

i

i

Inoroutcell Inoroutface= (33)

where the Fi is the vector of the cell-center pointing to the face-center, Fdi is the

vector of the face-center pointing to the droplet. Inoroutfacei > 0 indicates the droplet is out

of the ith face, while Inoroutfacei = 0 indicates the droplet is in the face. NF is the total

Figure 5. Droplets removal process (the circles are different elements in the array, the gray circle is
marked to delete).

Appl. Sci. 2023, 13, 11202 10 of 19

2.3.3. A Method for Droplet Location

Of particular note is that, in our CPU/GPU hybrid computation mode, the three-
dimensional relationships of the cells are weakened, making it hard to directly locate
droplets and find their neighbors. Therefore, the information about which two cells share
the ith face and which faces enclose the cell are stored to enhance the adjacent relationships
of the cells. Then, combine the particle-locating algorithm of Chorda [41] to address the
droplets. The process is illustrated in Figure 6. As mentioned above, the cell Ωa has the
information of its enclosed faces, while the face has the information of which two cells
share it. Figure 6a shows the criterion for determining whether the droplet is within the
given cell. The determination criterion can be described as:

Scalari =
→

ΩFi ·
→

Fid, (31)

Inorout f acei =

{
0, Scalari ≤ 0
1, Scalari > 0,

(32)

Inoroutcell =
NF

∑
i

Inorout f acei. (33)

where the
→

ΩFi is the vector of the cell-center pointing to the face-center,
→

Fid is the vector of
the face-center pointing to the droplet. Inoroutfacei > 0 indicates the droplet is out of the ith
face, while Inoroutfacei = 0 indicates the droplet is in the face. NF is the total number of cell
faces. Thus, when Inoroutcell = 0, the droplet is in the given cell. The initial cell containing
the droplet is calculated by traversing the entire cells.

Limited by the weakened three-dimensional relationships, a search method for the
droplet is developed by traveling through the cells by droplet trajectory, which joins the
initial and final droplet position. Figure 6b gives an example of one path. The key point
is to choose which face of the current cell the droplet exits from and then use the face to
locate the neighboring cell. The search process is repeated until the cell is addressed.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 21

number of cell faces. Thus, when Inoroutcell = 0, the droplet is in the given cell. The initial

cell containing the droplet is calculated by traversing the entire cells.

Limited by the weakened three-dimensional relationships, a search method for the

droplet is developed by traveling through the cells by droplet trajectory, which joins the

initial and final droplet position. Figure 6b gives an example of one path. The key point is

to choose which face of the current cell the droplet exits from and then use the face to

locate the neighboring cell. The search process is repeated until the cell is addressed.

Figure 6. Droplets locating process ((a) Judgement criterion; (b) Example of a typical path; (c) Flow

diagram of droplet locating).

Figure 7 summarizes the general two-phase computational procedure, the solid

boxes summarize the overall processes on the CPU and GPU, and the dashed box

represents the specific solution processes of the two-phase governing equations, which

are implemented on the GPU. Of particular note is that, in the event of droplet breakup, a

temporary array on GPU and CPU is used to store and transfer the newly produced

droplets to the global array on GPU to lessen data transfer. This is also the reason why the

droplet breakup takes the most proportion of the time cost.

Figure 6. Droplets locating process ((a) Judgement criterion; (b) Example of a typical path; (c) Flow
diagram of droplet locating).

Figure 7 summarizes the general two-phase computational procedure, the solid boxes
summarize the overall processes on the CPU and GPU, and the dashed box represents the
specific solution processes of the two-phase governing equations, which are implemented

Appl. Sci. 2023, 13, 11202 11 of 19

on the GPU. Of particular note is that, in the event of droplet breakup, a temporary array
on GPU and CPU is used to store and transfer the newly produced droplets to the global
array on GPU to lessen data transfer. This is also the reason why the droplet breakup takes
the most proportion of the time cost.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 21

Start

Allocate gas and
droplet CPU memory

Read parameters &
Grid information

Initial of the gas
phase

Gas phase iteration

Droplet phase
iteration

Receive droplet data
from GPU

Call device &
Allocate gas and

droplet GPU
memory

Initialization

Calculation timestep

Boundary condition

Calculate gradient of
primitive variables

Calculate
fluxes(convective,vis

cous)

Time integration and
Update primitive

variables

No

Send gas and droplet
information from GPU

To CPU

Receive data from
GPU

Post processing

Free CPU memory Free GPU memory

Reset Device end

Update gas
information around

droplets

Track Droplets

Calculation the
droplets’

contributions to the
gas phase

Droplets boundary
condition

Droplets positioning

GPUCPU GPU

Droplets breakup

Max memory?>inner iteration step?

Send droplet
information from GPU

To CPU

Yes

No

Yes

Delete disappeared
droplets

Send droplet
information from CPU

To GPU

Update droplet data
from CPU

Injection?

Add new droplets

No

Yes

Figure 7. Code structure of the CPU/GPU two-phase computational mode.

3. Results and Discussion

3.1. Code Validation

Simulations of a liquid jet in supersonic flow are performed to numerically replicate

the experiments of Lin et al. [20]. Figure 8 shows a schematic diagram of the computational

domain and experimental conditions. The Cartesian coordinate system employed is also

demonstrated in Figure 8; x, y, and z denote the streamwise, transverse, and spanwise

directions, respectively. The width of the computational domain is 40 mm, while the

dimensions of the streamwise and transverse directions are 200 mm and 40 mm,

respectively. The nozzle with a diameter of 0.5 mm is installed in the center of the bottom

floor and 50 mm downstream of the leading edge. The number of the grid points is 401 ×

21 × 41 in x, y, and z directions, respectively, and the grid near the nozzle and the wall are

refined. The effect of the grid has been investigated in our previous work, and the grid

used in this paper fulfills the requirement of independence [42–44]. Water is used as the

test substance, whose physical properties are illustrated in Table 1, the initial droplet

diameter is 100 μm. The freestream crossflow air has a Mach number of 1.94, a static

pressure of 29 kPa, and a static temperature of 304.1 K. Details of the simulation are listed

in Table 2.

Figure 7. Code structure of the CPU/GPU two-phase computational mode.

3. Results and Discussion
3.1. Code Validation

Simulations of a liquid jet in supersonic flow are performed to numerically replicate
the experiments of Lin et al. [20]. Figure 8 shows a schematic diagram of the computational
domain and experimental conditions. The Cartesian coordinate system employed is also
demonstrated in Figure 8; x, y, and z denote the streamwise, transverse, and spanwise
directions, respectively. The width of the computational domain is 40 mm, while the
dimensions of the streamwise and transverse directions are 200 mm and 40 mm, respectively.
The nozzle with a diameter of 0.5 mm is installed in the center of the bottom floor and
50 mm downstream of the leading edge. The number of the grid points is 401 × 21 × 41 in
x, y, and z directions, respectively, and the grid near the nozzle and the wall are refined.
The effect of the grid has been investigated in our previous work, and the grid used in this

Appl. Sci. 2023, 13, 11202 12 of 19

paper fulfills the requirement of independence [42–44]. Water is used as the test substance,
whose physical properties are illustrated in Table 1, the initial droplet diameter is 100 µm.
The freestream crossflow air has a Mach number of 1.94, a static pressure of 29 kPa, and a
static temperature of 304.1 K. Details of the simulation are listed in Table 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 21

For the gas phase, a supersonic inflow condition is used at the inlet, and the 1/7th

power-law velocity profile is adopted. The extrapolation method is used at the outlet.

Symmetry boundaries are employed at the spanwise boundaries. All walls are in non-slip,

non-penetration, and adiabatic condition. For the droplet–wall collision, the particle

rebound correlation proposed by Grant [45] is adopted.

Air inflow

Ma=1.94

Side view

Outflow
4
0
m

m

50mm 150mm

Upper bounary
Solid

Air inflow

Ma=1.94

Top view

Outflow

4
0
m

m

Spanwise boundaries

y
x

z

x

Figure 8. Schematic of the computation domains and conditions.

Table 1. Physical properties of water.

Density Viscosity Surface Tension

988 kg/m3 2.67 × 10−3 kg/(m·s) 0.075 N/m

Table 2. Simulation conditions and parameters.

Supersonic Crossflow (Air) Jet-Exit Flow (Water)

Mach number 1.94 Gas-liquid momentum ratio 7

Static temperature 304.1 K Injector nozzle diameter 0.5 mm

Static pressure 29 KPa Water temperature 298 K

Velocity 678.13 m/s Injection velocity 32.73 m/s

Figure 9 demonstrates the pressure contour at the bottom wall and center plane

perpendicular to the z-axis, the streamwise velocity contour at the plane of x = 0.08 m, and

the simulated droplets, whose color represents their streamwise velocity. When injected

into the supersonic crossflow, the water jet acts as an obstruction to the supersonic flow.

As a result, a bow shock is formed in front of the jet, where the pressure changes sharply,

manifesting as a high-pressure zone upstream of the jet. Near the boundary layer, the

reverse pressure gradient transports air upstream and forms a separation zone. The

droplets are rapidly broken down into finer sizes by interacting with the crossflow. As the

droplets are swept down in the direction of the crossflow, the span of their distribution

increases in width. The droplet streamwise velocity in the periphery of the atomization

zone is relatively high, while in the core and the near-wall region, the velocity is lower.

Moreover, due to the spray, the streamwise velocity of air of the core region is lowered

even down to subsonic levels. These qualitative phenomena are consistent with the

experimental and numerical results given in reference [13].

Figure 8. Schematic of the computation domains and conditions.

Table 1. Physical properties of water.

Density Viscosity Surface Tension

988 kg/m3 2.67 × 10−3 kg/(m·s) 0.075 N/m

Table 2. Simulation conditions and parameters.

Supersonic Crossflow (Air) Jet-Exit Flow (Water)

Mach number 1.94 Gas-liquid momentum ratio 7
Static temperature 304.1 K Injector nozzle diameter 0.5 mm

Static pressure 29 KPa Water temperature 298 K
Velocity 678.13 m/s Injection velocity 32.73 m/s

For the gas phase, a supersonic inflow condition is used at the inlet, and the 1/7th
power-law velocity profile is adopted. The extrapolation method is used at the outlet.
Symmetry boundaries are employed at the spanwise boundaries. All walls are in non-
slip, non-penetration, and adiabatic condition. For the droplet–wall collision, the particle
rebound correlation proposed by Grant [45] is adopted.

Figure 9 demonstrates the pressure contour at the bottom wall and center plane
perpendicular to the z-axis, the streamwise velocity contour at the plane of x = 0.08 m, and
the simulated droplets, whose color represents their streamwise velocity. When injected
into the supersonic crossflow, the water jet acts as an obstruction to the supersonic flow.
As a result, a bow shock is formed in front of the jet, where the pressure changes sharply,
manifesting as a high-pressure zone upstream of the jet. Near the boundary layer, the
reverse pressure gradient transports air upstream and forms a separation zone. The droplets
are rapidly broken down into finer sizes by interacting with the crossflow. As the droplets
are swept down in the direction of the crossflow, the span of their distribution increases
in width. The droplet streamwise velocity in the periphery of the atomization zone is
relatively high, while in the core and the near-wall region, the velocity is lower. Moreover,
due to the spray, the streamwise velocity of air of the core region is lowered even down to
subsonic levels. These qualitative phenomena are consistent with the experimental and
numerical results given in reference [13].

Appl. Sci. 2023, 13, 11202 13 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21

Figure 9. Superimposition of the contours of pressure, streamwise velocity, and droplets.

Figure 10 compares the penetration height of our model with that observed in the

experiment of Lin et al. [20]. The black dots represent the instantaneous water droplets.

The solid and dashed lines represent the average jet boundary of numerical results based

on the CPU/GPU model and that of the experiment, respectively. It can be seen that the

droplet distribution obtained is in good agreement with that of the experiment [20]. In

addition, the penetration height obtained by Im et al. [46] using conservation-element and

solution-element (CE/SR) is also shown in Figure 10. These results prove that our model

can simulate a liquid jet in supersonic crossflow well.

Figure 10. Comparison of simulated spray penetration with experiments [12] in central plane.

3.2. Performance Analysis

To test the proposed CPU/GPU mode, five simulations of the jet spray based on the

experiments of Lin et al. [20] are performed using two devices. The first device consists of

two Intel Xeon Gold 5218 CPUs (Intel Corporation, Palo Alto, CA, USA) and runs CPU-

based code. The other device consists of a Tesla V100 GPU (NVIDIA Corporation, Santa

Clara, CA, USA) and uses the numerical scheme described in this paper. The specifications

of CPU and GPU computing environments are listed in Table 3. For the CPU/GPU mode,

a single CPU core coupled with one GPU is used, whereas for the CPU mode, 32 cores of

the CPUs are used. The five simulations are prescribed with different numbers of

computational droplets, namely, about 0.06 million, 0.12 million, 0.24 million, 0.48 million,

and 0.96 million, resulting in the droplet-to-grid ratios of 0.09375, 0.1875, 0.375, 0.75, and

1.5, respectively. Details are shown in Table 4.

Table 3. Specifications of CPU and GPU computing environments.

Indices Intel Xeon Gold 5218 Tesla V100

No. of cores/shading units 16 5120

DP theoretical performance 1.18 TFlop/s 14 TFlop/s

Figure 9. Superimposition of the contours of pressure, streamwise velocity, and droplets.

Figure 10 compares the penetration height of our model with that observed in the
experiment of Lin et al. [20]. The black dots represent the instantaneous water droplets.
The solid and dashed lines represent the average jet boundary of numerical results based
on the CPU/GPU model and that of the experiment, respectively. It can be seen that the
droplet distribution obtained is in good agreement with that of the experiment [20]. In
addition, the penetration height obtained by Im et al. [46] using conservation-element and
solution-element (CE/SR) is also shown in Figure 10. These results prove that our model
can simulate a liquid jet in supersonic crossflow well.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21

Figure 9. Superimposition of the contours of pressure, streamwise velocity, and droplets.

Figure 10 compares the penetration height of our model with that observed in the

experiment of Lin et al. [20]. The black dots represent the instantaneous water droplets.

The solid and dashed lines represent the average jet boundary of numerical results based

on the CPU/GPU model and that of the experiment, respectively. It can be seen that the

droplet distribution obtained is in good agreement with that of the experiment [20]. In

addition, the penetration height obtained by Im et al. [46] using conservation-element and

solution-element (CE/SR) is also shown in Figure 10. These results prove that our model

can simulate a liquid jet in supersonic crossflow well.

Figure 10. Comparison of simulated spray penetration with experiments [12] in central plane.

3.2. Performance Analysis

To test the proposed CPU/GPU mode, five simulations of the jet spray based on the

experiments of Lin et al. [20] are performed using two devices. The first device consists of

two Intel Xeon Gold 5218 CPUs (Intel Corporation, Palo Alto, CA, USA) and runs CPU-

based code. The other device consists of a Tesla V100 GPU (NVIDIA Corporation, Santa

Clara, CA, USA) and uses the numerical scheme described in this paper. The specifications

of CPU and GPU computing environments are listed in Table 3. For the CPU/GPU mode,

a single CPU core coupled with one GPU is used, whereas for the CPU mode, 32 cores of

the CPUs are used. The five simulations are prescribed with different numbers of

computational droplets, namely, about 0.06 million, 0.12 million, 0.24 million, 0.48 million,

and 0.96 million, resulting in the droplet-to-grid ratios of 0.09375, 0.1875, 0.375, 0.75, and

1.5, respectively. Details are shown in Table 4.

Table 3. Specifications of CPU and GPU computing environments.

Indices Intel Xeon Gold 5218 Tesla V100

No. of cores/shading units 16 5120

DP theoretical performance 1.18 TFlop/s 14 TFlop/s

Figure 10. Comparison of simulated spray penetration with experiments [12] in central plane.

3.2. Performance Analysis

To test the proposed CPU/GPU mode, five simulations of the jet spray based on the
experiments of Lin et al. [20] are performed using two devices. The first device consists of
two Intel Xeon Gold 5218 CPUs (Intel Corporation, Palo Alto, CA, USA) and runs CPU-
based code. The other device consists of a Tesla V100 GPU (NVIDIA Corporation, Santa
Clara, CA, USA) and uses the numerical scheme described in this paper. The specifications
of CPU and GPU computing environments are listed in Table 3. For the CPU/GPU mode,
a single CPU core coupled with one GPU is used, whereas for the CPU mode, 32 cores
of the CPUs are used. The five simulations are prescribed with different numbers of
computational droplets, namely, about 0.06 million, 0.12 million, 0.24 million, 0.48 million,
and 0.96 million, resulting in the droplet-to-grid ratios of 0.09375, 0.1875, 0.375, 0.75, and
1.5, respectively. Details are shown in Table 4.

Appl. Sci. 2023, 13, 11202 14 of 19

Table 3. Specifications of CPU and GPU computing environments.

Indices Intel Xeon Gold 5218 Tesla V100

No. of cores/shading units 16 5120
DP theoretical performance 1.18 TFlop/s 14 TFlop/s

Base/boost frequency 2300/3900 MHz 1230/1380 MHz

Cache
L1 1 MB 128 KB (per SM)
L2 16 MB 6 MB
L3 22 MB -

Max Memory Bandwidth 897 GB/s 900 GB/s
TDP 250 W 125 W

Table 4. Number of grids and droplets for five simulations.

Case Number of Grids
(Million)

Number of Droplets
(Million)

Droplet-to-Grid
Ratio

Case1 0.64 0.06 0.09375
Case2 0.64 0.12 0.1875
Case3 0.64 0.24 0.375
Case4 0.64 0.48 0.75
Case5 0.64 0.96 1.50

Speedup (SP), an important parameter that can be used to assess the performance of a
hybrid algorithm, is defined as:

SP =
tcpu

tgpu
(34)

where tcpu and tgpu are the runtimes of one iteration for the CPU mode and that for the
GPU/CPU mode, respectively. In this paper, the runtime of one iteration step is achieved
by averaging the execution time of 1000 time steps.

Figure 11 shows the time cost and composition for the two models. The green bar
is the time cost for the gas phase, and the orange bar is that for the droplet phase. In
the five simulations, the grid remains unchanged. Thus, the time cost for the gas phase
remains the same. However, the CPU model has a higher time cost, while the droplet time
consumption for the two models grows with increasing droplet numbers. However, the
increase of the CPU model is not obvious, which is related to the management method of
droplets on the CPU program. The CPU program associates each droplet with a control
cell and establishes a linked list structure for the control cell to manage them dynamically.
This droplet management method can provide great convenience in updating the gas
phase information around the droplet and calculating the droplets’ contribution to the gas
phase. In addition, this droplet management method keeps the linked list structure from
being too long. However, the inconvenience of this method is that all control cells need
to be traversed when solving the liquid phase kernel function. In other words, even if
there is no droplet in the computational domain, the calculation using the CPU code still
costs time. Figure 12 illustrates the gas, droplet, and total computation speedups of the
CPU/GPU mode for the different numbers of droplets simulated. It can be seen that, as the
droplet-to-grid ratio varies from 0.09375 to 1.5, the gas phase speedup remains around 40,
whereas the acceleration rate of the droplet phase slows down as the number of droplets
increases. The latter trend can be attributed to the time required for data transfer between
the array on GPU and CPU in the droplet’s breakup and subtraction.

Appl. Sci. 2023, 13, 11202 15 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 21

Time consumption(s)

CPU

CPU/GPU

0.09375

CPU

CPU/GPU

0.1875

CPU

CPU/GPU

0.375

CPU

CPU/GPU

0.75

CPU

CPU/GPU

1.5

T
h
e

ra
ti

o
 o

f
d
ro

p
le

ts
 t

o
 g

ri
d
s

2.97

17.7

0.46

0.56
2.5

18.28

0.45
0.45

2.44

17.69

0.45
0.29

2.39

18.02

0.45
0.22

2.27

18.14

0.16
0.46

Figure 11. Time consumption and composition for simulating various ratios of droplets to grids,

using the CPU/GPU and CPU model.

Figure 12. Speedup of one core of CPU with one GPU for different ratios of droplets to grids.

Figure 13 shows the partition of time taken for the main steps of droplet phase

calculation, and the time consumption percentage of the sub-process in the droplet’s

breakup is also displayed in Figure 13. It can be seen that the droplets’ breakup and

subtraction account for the most share of the time cost due to the data transfer. In addition,

in the droplet’s breakup, the processes of random number generation for the distribution

of the new small droplets and the droplets screening also occupy a certain proportion. The

next bottleneck is the droplet’s positioning. This is because the method we use to address

the droplet is a loop, it starts from the cell containing the droplet at the last moment, and

its purpose is to locate the neighboring cell one at a time until the cell containing the

droplet is found in the present moment. This method will show its strengths in a refined

and large-scale grid. Overall, the total speedup is considerable. When the ratio of droplets

to grids is 1.5, the speedup is as high as 20.2. However, the lag caused by data transfer

between entities should be the main issue to be addressed in the future.

Figure 11. Time consumption and composition for simulating various ratios of droplets to grids,
using the CPU/GPU and CPU model.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 21

Time consumption(s)

CPU

CPU/GPU

0.09375

CPU

CPU/GPU

0.1875

CPU

CPU/GPU

0.375

CPU

CPU/GPU

0.75

CPU

CPU/GPU

1.5

T
h
e

ra
ti

o
 o

f
d
ro

p
le

ts
 t

o
 g

ri
d
s

2.97

17.7

0.46

0.56
2.5

18.28

0.45
0.45

2.44

17.69

0.45
0.29

2.39

18.02

0.45
0.22

2.27

18.14

0.16
0.46

Figure 11. Time consumption and composition for simulating various ratios of droplets to grids,

using the CPU/GPU and CPU model.

Figure 12. Speedup of one core of CPU with one GPU for different ratios of droplets to grids.

Figure 13 shows the partition of time taken for the main steps of droplet phase

calculation, and the time consumption percentage of the sub-process in the droplet’s

breakup is also displayed in Figure 13. It can be seen that the droplets’ breakup and

subtraction account for the most share of the time cost due to the data transfer. In addition,

in the droplet’s breakup, the processes of random number generation for the distribution

of the new small droplets and the droplets screening also occupy a certain proportion. The

next bottleneck is the droplet’s positioning. This is because the method we use to address

the droplet is a loop, it starts from the cell containing the droplet at the last moment, and

its purpose is to locate the neighboring cell one at a time until the cell containing the

droplet is found in the present moment. This method will show its strengths in a refined

and large-scale grid. Overall, the total speedup is considerable. When the ratio of droplets

to grids is 1.5, the speedup is as high as 20.2. However, the lag caused by data transfer

between entities should be the main issue to be addressed in the future.

Figure 12. Speedup of one core of CPU with one GPU for different ratios of droplets to grids.

Figure 13 shows the partition of time taken for the main steps of droplet phase
calculation, and the time consumption percentage of the sub-process in the droplet’s
breakup is also displayed in Figure 13. It can be seen that the droplets’ breakup and
subtraction account for the most share of the time cost due to the data transfer. In addition,
in the droplet’s breakup, the processes of random number generation for the distribution
of the new small droplets and the droplets screening also occupy a certain proportion. The
next bottleneck is the droplet’s positioning. This is because the method we use to address
the droplet is a loop, it starts from the cell containing the droplet at the last moment, and its
purpose is to locate the neighboring cell one at a time until the cell containing the droplet
is found in the present moment. This method will show its strengths in a refined and
large-scale grid. Overall, the total speedup is considerable. When the ratio of droplets
to grids is 1.5, the speedup is as high as 20.2. However, the lag caused by data transfer
between entities should be the main issue to be addressed in the future.

Appl. Sci. 2023, 13, 11202 16 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 21

Figure 13. The partition of time cost for the main calculation steps of the droplet phase calculation.

In addition, the issue of the CPUs’ load imbalance is caused by the fact that the

number of simulated droplets in each core of the CPU partition varies greatly. However,

for the CPU/GPU mode, each simulated droplet is treated as a computing unit. Therefore,

the computational load is evenly distributed across the GPU cores for fine-grained parallel

computing.

4. Conclusions

In the present work, a two-phase CPU/GPU heterogeneous parallel computation

mode based on the Euler–Lagrange approach is established to simulate gas–liquid

supersonic flows. The main conclusions are as follows.

1. Taking full advantage of CPU and GPU, an efficient parallel model for simulation of

a liquid jet in supersonic flow is developed, in which the data-intensive and highly

parallel tasks such as the kernel computation of gas phase and liquid phase are

implemented on GPU, whereas the logical and data dependent tasks like the data

transfer and general control are executed on CPU.

2. An effective method for droplet dynamic management and efficient calculation on

the CPU/GPU model is proposed, in which a redundantly allocated array on the GPU

Update gas information
around droplets

Track droplets
Calculation the droplets’
contribution to the gas phase

Droplets breakup

Droplets boundary condition
Droplets positioning
Droplets disappear droplets
Random numbers generation

Model calculation

Data transfer

Droplets screening
Memory release

Figure 13. The partition of time cost for the main calculation steps of the droplet phase calculation.

In addition, the issue of the CPUs’ load imbalance is caused by the fact that the number
of simulated droplets in each core of the CPU partition varies greatly. However, for the
CPU/GPU mode, each simulated droplet is treated as a computing unit. Therefore, the
computational load is evenly distributed across the GPU cores for fine-grained parallel
computing.

4. Conclusions

In the present work, a two-phase CPU/GPU heterogeneous parallel computation mode
based on the Euler–Lagrange approach is established to simulate gas–liquid supersonic
flows. The main conclusions are as follows.

1. Taking full advantage of CPU and GPU, an efficient parallel model for simulation of
a liquid jet in supersonic flow is developed, in which the data-intensive and highly
parallel tasks such as the kernel computation of gas phase and liquid phase are
implemented on GPU, whereas the logical and data dependent tasks like the data
transfer and general control are executed on CPU.

2. An effective method for droplet dynamic management and efficient calculation on the
CPU/GPU model is proposed, in which a redundantly allocated array on the GPU

Appl. Sci. 2023, 13, 11202 17 of 19

and the CPU is used to manage and calculate the simulated droplets, and a method
based on the two-pointer method is applied to subtract the disappeared droplets.

3. A droplet-locating algorithm is developed, in which a determination criterion based
on scalar product and a search approach by traveling through the neighboring cell is
applied to address the cell.

4. Simulation of a liquid jet in supersonic crossflow is implemented to verify the reliabil-
ity of the CPU/GPU mode. The result agrees well with the experiment.

5. A simulation of a jet spray in supersonic flow is executed using CPU mode and
CPU/GPU mode, respectively, to analyze the method’s efficiency and limitations.
Although the speedup diminishes with increasing droplet number, the benefit is
still very substantial even for the worst-case scenario studied, i.e., when the ratio of
droplets to grids is 1.5, the overall speedup is 20.2.

Although the two-phase CPU/GPU heterogeneous parallel computation mode based
on the Euler–Lagrange approach proposed in this paper is used for liquid in supersonic
flow, it is also applicable to other Euler–Lagrange simulations.

Author Contributions: Conceptualization, X.L., M.S. and H.W.; methodology, X.L. and P.L.; software,
X.L., M.S., H.W., C.W., D.X. and P.L.; validation, X.L., C.W., G.Z. and Y.Y.; formal analysis, X.L., H.W.
and P.L.; investigation, X.L., H.W. and P.L.; resources, H.W., P.L., M.S. and Y.Y.; data curation, X.L.
and H.W.; writing—original draft preparation, X.L.; writing—review and editing, H.W., P.L., D.X.
and G.Z.; visualization, X.L.; supervision, M.S., H.W. and P.L.; project administration, M.S. and H.W.;
funding acquisition, H.W. and P.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant number T2221002, 11925207, 12102472.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The authors report there are no competing interest to declare.

References
1. Chang, J.; Zhang, J.; Bao, W.; Yu, D. Research progress on strut-equipped supersonic combustors for scramjet application.

Prog. Aerosp. Sci. 2018, 103, 1–30. [CrossRef]
2. Duan, Y.; Yang, P.; Xia, Z.; Feng, Y.; Li, C.; Zhao, L.; Ma, L. Experimental Study of the Formation and Evolution of Gas Jets in

Supersonic Combustion Chambers. Appl. Sci. 2023, 13, 2202. [CrossRef]
3. Zhang, J.; Yang, D.; Wang, Y.; Zhang, D. A Mixing Process Influenced by Wall Jet-Induced Shock Waves in Supersonic Flow.

Appl. Sci. 2022, 12, 8384. [CrossRef]
4. Tian, Y.; Yang, S.; Le, J.; Su, T.; Yue, M.; Zhong, F.; Tian, X. Investigation of combustion and flame stabilization modes in a

hydrogen fueled scramjet combustor. Int. J. Hydrog. Energy 2016, 41, 19218–19230. [CrossRef]
5. Tian, Y.; Shi, W.; Zhong, F.; Le, J. Pilot hydrogen enhanced combustion in an ethylene-fueled scramjet combustor at Mach 4.

Phys. Fluids 2021, 33, 015105. [CrossRef]
6. Waltrup, P.J. Upper bounds on the flight speed of hydrocarbon-fueled scramjet-powered vehicles. J. Propuls. Power 2001, 17,

1199–1204. [CrossRef]
7. Liu, C.Y.; Wang, Z.G.; Wang, H.B.; Sun, M.B. Mixing characteristics of a transverse jet injection into supersonic crossflows through

an expansion wall. Acta Astronaut. 2016, 129, 161–173. [CrossRef]
8. Tian, Y.; Yang, S.; Le, J.; Zhong, F.; Tian, X. Investigation of combustion process of a kerosene fueled combustor with air throttling.

Combust. Flame 2017, 179, 74–85. [CrossRef]
9. Tian, Y.; Xiao, B.G.; Zhang, S.P.; Xing, J.W. Experimental and computational study on combustion performance of a kerosene

fueled dual-mode scramjet engine. Aerosp. Sci. Technol. 2015, 46, 451–458. [CrossRef]
10. Liu, X.; Li, P.; Li, F.; Wang, H.; Sun, M.; Wang, C.; Yang, Y.; Xiong, D.; Wang, Y. Effect of kerosene injection states on mixing and

combustion characteristics in a cavity-based supersonic combustor. Chin. J. Aeronaut. 2023. [CrossRef]
11. Tian, Y.; Le, J.; Yang, S.; Zhong, F. Investigation of Combustion Characteristics in a Kerosene-Fueled Supersonic Combustor with

Air Throttling. AIAA J. 2020, 58, 5379–5388. [CrossRef]
12. Li, F.; Wang, Z.G.; Li, P.B.; Sun, M.B.; Wang, H.B. The spray distribution of a liquid jet in supersonic crossflow in the near-wall

region. Phys. Fluids 2022, 34, 063301. [CrossRef]

https://doi.org/10.1016/j.paerosci.2018.10.002
https://doi.org/10.3390/app13042202
https://doi.org/10.3390/app12168384
https://doi.org/10.1016/j.ijhydene.2016.07.219
https://doi.org/10.1063/5.0036592
https://doi.org/10.2514/2.5895
https://doi.org/10.1016/j.actaastro.2016.09.003
https://doi.org/10.1016/j.combustflame.2017.01.021
https://doi.org/10.1016/j.ast.2015.09.002
https://doi.org/10.1016/j.cja.2023.09.013
https://doi.org/10.2514/1.J059653
https://doi.org/10.1063/5.0091985

Appl. Sci. 2023, 13, 11202 18 of 19

13. Li, P.; Wang, Z.; Bai, X.-S.; Wang, H.; Sun, M.; Wu, L.; Liu, C. Three-dimensional flow structures and droplet-gas mixing process of
a liquid jet in supersonic crossflow. Aerosp. Sci. Technol. 2019, 90, 140–156. [CrossRef]

14. Li, P.; Li, C.; Wang, H.; Sun, M.; Liu, C.; Wang, Z.; Huang, Y. Distribution characteristics and mixing mechanism of a liquid jet
injected into a cavity-based supersonic combustor. Aerosp. Sci. Technol. 2019, 94, 105401. [CrossRef]

15. Li, C.; Li, C.; Xiao, F.; Li, Q.; Zhu, Y. Experimental study of spray characteristics of liquid jets in supersonic crossflow. Aerosp. Sci.
Technol. 2019, 95, 105426. [CrossRef]

16. Li, C.Y.; Li, P.B.; Li, C.; Li, Q.L.; Zhou, Y.Z. Experimental and numerical investigation of cross-sectional structures of liquid jets in
supersonic crossflow. Aerosp. Sci. Technol. 2020, 103, 105926. [CrossRef]

17. Yoo, Y.-L.; Han, D.-H.; Hong, J.-S.; Sung, H.-G. A large eddy simulation of the breakup and atomization of a liquid jet into a cross
turbulent flow at various spray conditions. Int. J. Heat Mass Transf. 2017, 112, 97–112. [CrossRef]

18. Dai, Q.; Luo, K.; Jin, T.; Fan, J. Direct numerical simulation of turbulence modulation by particles in compressible isotropic
turbulence. J. Fluid Mech. 2017, 832, 438–482. [CrossRef]

19. Dai, Q.; Jin, T.; Luo, K.; Fan, J. Direct numerical simulation of particle dispersion in a three-dimensional spatially developing
compressible mixing layer. Phys. Fluids 2018, 30, 113301. [CrossRef]

20. Lin, K.-C.; Kennedy, P.J.; Jackson, T.A. Structures of water jets in a Mach 1.94 supersonic crossflow. In Proceedings of the 42nd
AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 5–8 January 2004; pp. AIAA 2004-971.

21. Wu, L.Y.; Chang, Y.; Zhang, K.L.; Li, Q.L.; Li, C.Y. Model for three-dimensional distribution of liquid fuel in supersonic crossflows.
In Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, 6–9 March
2017; pp. AIAA 2017-2419.

22. Li, P.; Wang, Z.; Sun, M.; Wang, H. Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow.
Acta Astronaut. 2017, 134, 333–344. [CrossRef]

23. Li, X.; Liu, W.; Pan, Y.; Yang, L.; An, B.; Zhu, J. Characterization of kerosene distribution around the ignition cavity in a scramjet
combustor. Acta Astronaut. 2017, 134, 11–16. [CrossRef]

24. Li, P.B.; Wang, H.B.; Sun, M.B.; Liu, C.Y.; Li, F. Numerical study on the mixing and evaporation process of a liquid kerosene jet in
a scramjet combustor. Aerosp. Sci. Technol. 2021, 119, 107095. [CrossRef]

25. Song, J.; Jeong, H.; Jeong, J. Performance Optimization of Object Tracking Algorithms in OpenCV on GPUs. Appl. Sci. 2022,
12, 7801. [CrossRef]

26. Mo, T.; Li, G. Parallel Accelerated Fifth-Order WENO Scheme-Based Pipeline Transient Flow Solution Model. Appl. Sci. 2022,
12, 7350. [CrossRef]

27. Guo, M.; Dong, Z.; Keutzer, K. SANA: Sensitivity-Aware Neural Architecture Adaptation for Uniform Quantization. Appl. Sci.
2023, 13, 10329. [CrossRef]

28. Liu, R.K.-S.; Wu, C.-T.; Kao, N.S.-C.; Sheu, T.W.-H. An improved mixed Lagrangian–Eulerian (IMLE) method for modelling
incompressible Navier–Stokes flows with CUDA programming on multi-GPUs. Comput. Fluids 2019, 184, 99–106. [CrossRef]

29. Salvadore, F.; Bernardini, M.; Botti, M. GPU accelerated flow solver for direct numerical simulation of turbulent flows. J. Comput.
Phys. 2013, 235, 129–142. [CrossRef]

30. Jonker, H.J.J.; Schalkwijk, J.; Siebesma, A.P.; Van Meijgaard, E. Weather Forecasting Using GPU-Based Large-Eddy Simulations.
Bull. Am. Meteorol. Soc. 2015, 96, 715–723. [CrossRef]

31. Lai, J.; Li, H.; Tian, Z. CPU/GPU Heterogeneous Parallel CFD Solver and Optimizations. In Proceedings of the 2018 International
Conference on Service Robotics Technologies-ICSRT ‘18—ICSRT ‘18, Chengdu China, 16–19 March 2018; pp. 88–92.

32. Sweet, J.; Richter, D.H.; Thain, D. GPU acceleration of Eulerian–Lagrangian particle-laden turbulent flow simulations. Int. J.
Multiph. Flow 2018, 99, 437–445. [CrossRef]

33. Ge, W.; Sankaran, R.; Chen, J.H. Development of a CPU/GPU portable software library for Lagrangian–Eulerian simulations of
liquid sprays. Int. J. Multiph. Flow 2020, 128, 103293. [CrossRef]

34. Xua, J.; Qi, H.B.; Fang, X.J.; Lu, L.Q.; Ge, W.; Wang, X.W.; Xu, M.; Chen, F.G.; He, X.F.; Li, J.H. Quasi-real-time simulation of
rotating drum using discrete element method with parallel GPU computing. Particuology 2011, 9, 446–450. [CrossRef]

35. Xu, M.; Chen, F.; Liu, X.; Ge, W.; Li, J. Discrete particle simulation of gas–solid two-phase flows with multi-scale CPU–GPU
hybrid computation. Chem. Eng. J. 2012, 207–208, 746–757. [CrossRef]

36. Ikebata, A.; Xiao, F. GPU-accelerated large-scale simulations of interfacial multiphase fluids for real-case applications. Comput.
Fluids 2016, 141, 235–249. [CrossRef]

37. Lai, J.; Tian, Z.; Yu, H.; Li, H. Numerical investigation of supersonic transverse jet interaction on CPU/GPU system. J. Braz. Soc.
Mech. Sci. Eng. 2020, 42, 81. [CrossRef]

38. Lai, J.; Yu, H.; Tian, Z.; Li, H. Hybrid MPI and CUDA Parallelization for CFD Applications on Multi-GPU HPC Clusters.
Sci. Program. 2020, 2020, 8862123. [CrossRef]

39. Wright, M.J.; Candler, G.V.; Prampolini, M. Data-parallel lower-upper relaxation method for the Navier-Stokes equations. AIAA J.
1996, 34, 1371–1377. [CrossRef]

40. Tofighian, H.; Amani, E.; Saffar-Avval, M. Parcel-number-density control algorithms for the efficient simulation of particle-laden
two-phase flows. J. Comput. Phys. 2019, 387, 569–588. [CrossRef]

41. Chorda, R.; Blasco, J.A.; Fueyo, N. An efficient particle-locating algorithm for application in arbitrary 2D and 3D grids. Int. J.
Multiph. Flow 2002, 28, 1565–1580. [CrossRef]

https://doi.org/10.1016/j.ast.2019.04.024
https://doi.org/10.1016/j.ast.2019.105401
https://doi.org/10.1016/j.ast.2019.105426
https://doi.org/10.1016/j.ast.2020.105926
https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.064
https://doi.org/10.1017/jfm.2017.672
https://doi.org/10.1063/1.5054744
https://doi.org/10.1016/j.actaastro.2016.12.025
https://doi.org/10.1016/j.actaastro.2017.01.037
https://doi.org/10.1016/j.ast.2021.107095
https://doi.org/10.3390/app12157801
https://doi.org/10.3390/app12147350
https://doi.org/10.3390/app131810329
https://doi.org/10.1016/j.compfluid.2019.03.024
https://doi.org/10.1016/j.jcp.2012.10.012
https://doi.org/10.1175/bams-d-14-00114.1
https://doi.org/10.1016/j.ijmultiphaseflow.2017.11.010
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103293
https://doi.org/10.1016/j.partic.2011.01.003
https://doi.org/10.1016/j.cej.2012.07.049
https://doi.org/10.1016/j.compfluid.2016.03.018
https://doi.org/10.1007/s40430-019-2160-6
https://doi.org/10.1155/2020/8862123
https://doi.org/10.2514/3.13242
https://doi.org/10.1016/j.jcp.2019.02.052
https://doi.org/10.1016/S0301-9322(02)00045-9

Appl. Sci. 2023, 13, 11202 19 of 19

42. Liu, M.J.; Sun, M.B.; Zhao, G.Y.; Meng, Y.; Huang, Y.H.; Ma, G.W.; Wang, H.B. Effect of combustion mode on thrust performance
in a symmetrical tandem-cavity scramjet combustor. Aerosp. Sci. Technol. 2022, 130, 107904. [CrossRef]

43. Xiong, D.P.; Sun, M.B.; Yu, J.F.; Hu, Z.W.; Yang, Y.X.; Wang, H.B.; Wang, Z.G. Effects of confinement and curvature on a jet in a
supersonic cross-flow. Proc. Inst. Mech. Eng. Part G 2022, 236, 3518–3530. [CrossRef]

44. Ma, G.W.; Sun, M.B.; Zhao, G.Y.; Liang, C.H.; Wang, H.B.; Yu, J.F. Effect of injection scheme on asymmetric phenomenon in
rectangular and circular scramjets. Chin. J. Aeronaut. 2023, 36, 216–230. [CrossRef]

45. Grant, G.; Tabakoff, W. Erosion Prediction in Turbomachinery Resulting from Environmental Solid Particles. J. Aircr. 1975, 12,
471–478. [CrossRef]

46. Im, K.-S.; Zhang, Z.-C.; Cook, G., Jr.; Lai, M.-C.; Chon, M.S. Simulation of Liquid and Gas Phase Characteristics of Aerated-Liquid
Jets in Quiescent and Cross Flow Conditions. Int. J. Automot. Technol. 2019, 20, 207–213. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ast.2022.107904
https://doi.org/10.1177/09544100221089067
https://doi.org/10.1016/j.cja.2022.06.014
https://doi.org/10.2514/3.59826
https://doi.org/10.1007/s12239-019-0020-0

	Introduction
	Algorithm and Code Structures
	Gas-Phase Governing Equations
	Liquid-Phase Equations
	CPU/GPU Heterogeneous Parallel Algorithm
	CPU/GPU Heterogeneous Parallel Architecture
	A Novel Method for Dynamic Management of Droplets
	A Method for Droplet Location

	Results and Discussion
	Code Validation
	Performance Analysis

	Conclusions
	References

