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Abstract: It is generally accepted that air quality is closely related to human health. In this study, to
investigate the dynamic characteristics of air quality and explore the driving factors of air pollution,
the Air Quality Index (AQI) and concentration data of six air pollutants (CO, NO2, O3, PM2.5, PM10,
and SO2) were fitted to functional curves using the B-spline basis function. Compared with discrete
data, functional data can better express the dynamic characteristics of data and reduce information
loss. Additionally, functional clustering based on the principal component coefficient was established
to analyze the spatiotemporal dynamic characteristics of air quality, and a functional linear model
was established to analyze the relationship between pollutants and anthropogenic factors. The
results showed that air pollutants in Fujian Province were found to have certain temporal and spatial
heterogeneity, among which the seasonal characteristics of NO2 and O3 (high in summer, low in
winter) were opposite to those of the other pollutants considered. The spatial distribution of air
pollution was low (high) pollution in inland (coastal) areas, and the primary air pollutants in Fujian
Province were PM10 and PM2.5. The functional linear model indicated that anthropogenic factors (e.g.,
vehicle numbers and emissions of industrial NOX emissions) were found to have a notable impact on
air pollutants. The findings of this study could act as a reference in support of air pollution control.

Keywords: air quality; functional data; functional clustering; functional linear model; B-spline
basis function

1. Introduction

In recent decades, air pollution has become one of the most serious challenges to public
health globally [1]. According to the 2022 World Air Quality Report [2], only six countries
met the World Health Organization’s annual PM2.5 guideline value of≤5 µg/m3: Australia,
Estonia, Finland, Grenada, Iceland, and New Zealand. Additionally, the harm caused
by air pollution has been growing rapidly, causing a range of related diseases and even
deaths. According to the World Health Organization [3], 3.2 million people die prematurely
each year due to illnesses caused by air pollution. Among these, 32% are attributed to
ischemic heart disease, 23% to stroke, 21% to lower respiratory infections, 19% to chronic
obstructive pulmonary disease, and 6% to lung cancer. Air pollution is mainly caused by
natural sources and human activities, and air pollution caused by human activities usually
lasts for a long time and is widespread. Industrialization and urbanization pose the major
threats to the quality of the air we breathe [4]. Fortunately, air pollution is a preventable
risk, and reducing pollution at its source can yield rapid and substantial improvements.
Therefore, an analysis of both air pollution and its influence factors is crucial for controlling
air pollution and promoting the sustainable development of the ecological environment.

The Air Quality Index (AQI) and its six pollutant indicators have long been the focus
of research into air pollution. Analyzing the spatiotemporal distribution characteristics
of air pollution is a prerequisite for the formulation of reasonable plans for pollution
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control action [5,6]. Clarifying the correlations between different air pollutants can also
effectively identify the main air pollutants in specific regions [7–9]. Previous evaluations of
air quality based on discrete data were mainly focused on the establishment of multiple
regression models [10,11], the use of the Moran’s Index [12], and other methods suitable
for statistical analysis and comprehensive evaluation. Machine learning tools can also
be used to systematically monitor multiple air pollutants [13–17]. It can extract relevant
information by artificial intelligence in order to predict air pollution concentration and
assess air pollution. Moreover, the rebound effects of economic development, technological
advancement, or other factors are evident causes of air pollution [18], and several studies
have examined the impact of anthropogenic factors on air pollution and the distribution of
specific pollutants using spatial analysis methods [19,20], the random forest method [21],
econometric tools [22,23], and the Environmental Kuznets Curve [24,25]. However, the
concentration of air pollutants was a continuous state on a time scale, and the above
analysis was performed using discrete air quality data, so it cannot accurately express
the continuous variation of data. In contrast, functional data can capture the continuous
curve or functions of such data and rely on fewer assumptions [26,27]. This flexibility
enables the modeling and analysis of complex relationships and patterns in functional
data, which may not be easily captured by traditional methods. Studying the spatial and
temporal heterogeneity of air pollutants using functional data to achieve low information
loss can reflect the dynamic continuous features of the data in greater depth [28]. By
treating data as functions, functional data can capture the full shape and dynamics of data,
providing more accurate representations of underlying patterns and trends. The emergence
of functional data has greatly enriched statistical analysis methods and provided more
powerful tools for a better analysis and solution of practical problems. A functional data
analysis, which was proposed by Ramsey [29] and then further refined by other statisticians,
can represent data in a functional form. On this basis, a functional cluster analysis has
gradually developed from the basic cluster analysis approach. A cluster analysis is an
important data analysis technique used in data mining, the purpose of which is to categorize
data according to their intrinsic attributes [30]. The functional cluster analysis involves
clustering methods based on direct distance and functional clustering methods based on the
dimensionality reduction [31]. Given the unique inherent structure of the data, the selection
of the appropriate analysis method can produce explanatory clustering results. Moreover, a
functional linear model was developed to analyze the relationship between the independent
variables and the dependent variables. In comparison with the traditional linear model, the
functional linear model can determine dynamic characteristics and analyze the direction of
influence and intensity of factors [32,33].

Fujian Province, an important province in eastern China, has had the fastest growing
economy in China over the past decade. In the process of its economic and social develop-
ment, the concentrations of air pollutants in Fujian Province, especially O3, have also shown
a slow upward trend [34]. Given the limitations of previous research and the urgency of air
pollution control in Fujian Province, the primary objectives of this study were as follows:
(1) to clarify the air quality characteristics in Fujian Province using functional data, (2) to
explore the driving factors of air pollution, and (3) to present practical suggestions for air
pollution prevention. To fulfill those objectives, appropriate B-spline basis functions were
chosen to fit the AQI and six pollutants data. The roughness penalty method was used to
prevent over-fitting and to ensure the smoothness of the function. A functional clustering
method based on principal component coefficients was also applied to analyze the spatial
differences of pollutants, and the driving factors of air pollution were determined using
the functional linear model.

2. Materials and Methods
2.1. Study Area

Fujian Province lies on the southeast coast of China (23◦31′–28◦18′ N, 115◦50′–120◦43′ E)
and covers an area of 1.24 × 105 km2 (Figure 1). Fujian Province has nine prefecture-
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level cities: Fuzhou, Longyan, Ningde, Putian, Quanzhou, Sanming, Xiamen, Zhangzhou,
and Nanping. The selection of nine cities in Fujian Province for this study can provide a
comprehensive perspective on an air quality analysis. The selected cities cover a wide range
of geographical locations within Fujian Province, including coastal areas, mountainous
regions, and urban centers. The nine cities have varying population densities, and diverse
economic activities, such as Quanzhou’s manufacturing industry or Xiamen’s tourism.
Areas of mountains and hills account for more than 80% of the total area of Fujian Province.
The region has a subtropical maritime monsoon climate. Because the region is at the
intersection of land and sea, its atmospheric pollution mechanism is complicated. The
convergence of land and sea introduces various pollution sources into the atmosphere,
and the interaction of pollutants emitted from land and sea can lead to chemical reactions
in the atmosphere. Additionally, the interaction between land and sea creates complex
atmospheric circulation patterns. This circulation can carry pollutants from inland sources
to the coast, and vice versa, leading to the accumulation of pollutants and increased
complexity in their dispersion. In 2022, the region’s GDP was 5.310985 trillion billion yuan
(RMB), ranking first in eastern China, with an average annual growth rate of 6.4% [35].
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Figure 1. Location of the study area (FZ: Fuzhou city, LY: Longyan city, ND: Ningde city, PT: Putian
city, QZ: Quanzhou city, SM: Sanming city, XM: Xiamen city, ZZ: Zhangzhou city, NP: Nanping city).

2.2. Data Sources and Preprocessing

The data used in this study included daily AQI values and concentration values of
six pollutant indicators from the nine cities in Fujian Province obtained from 1 January
2015 to 31 December 2021. The air pollutants included CO, NO2, O3, PM2.5, PM10, and SO2.
Additionally, data of vehicle ownership and industrial NOX emissions were selected to
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analyze the drivers of air pollution. The data were collected from the Weather Aftermath
website of China (http://www.tianqihoubao.com, accessed on 1 January 2022) and the
Statistical Yearbooks of China (http://www.stats.gov.cn/, accessed on 1 May 2022).

The AQI quantitatively describes a dimensionless index of air quality conditions,
which is regulated by national regulations and applies only in China. The AQI describes
the combined urban air quality conditions using categories (Table 1) based on the maximum
Individual Air Quality Index (IAQI) as follows [36]:

IAQIi =
IAQIU − IAQIL

PU − PL
(Ni − PL) + IAQIL (1)

where IAQIi is the IAQI of pollutant i, Ni is the concentration value of pollutant i, PU (PL) is
the high-value (or low-value) limit for the pollutant whose individual concentration value
is comparable with that of pollutant i, IAQIU is the IAQI corresponding to PU, IAQIL is the
IAQI corresponding to PL, and AQI is the maximum of the IAQI corresponding to the six
air pollutants.

Table 1. Air quality classification standards.

Air Quality Index 0–50 51–100 101–150 151–200 201–300 >300

Categories Excellent I Good II Light pollution III Moderate
pollution IV Heavy pollution V Severe pollution VI

2.3. Framework of Methodology

This study was conducted in three steps. Firstly, the basis function of the data was
determined by observing the errors and periodicity of the data, and the smoothing pa-
rameters were further established by the generalized cross-validation (GCV) method to
realize the functionalization of the air quality data. Secondly, functional clustering based
on principal component coefficients was used to analyze the spatiotemporal dynamic
characteristics of air pollutants. Through the principal component weight function, the
principal component score was calculated and clustered on this basis. Finally, a functional
linear model was established for analyzing the response relationship between air pollutants
and anthropogenic activities. The method framework of this study is shown in Figure 2.
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2.4. Functionalized Processing of Data

With the continuous upgrading of data observation equipment, an increasing number
of data types are being collected, and the data format is becoming more complex. At
this time, the conclusions drawn by traditional statistical analysis methods often deviate
greatly from the actual situation, and functional data are introduced to solve this problem.
Functional data are used to convert the observed discrete data into a continuous curve
through the basis function and apply it to the statistical analysis model to obtain results
that are closer to the actual conclusion. Compared to traditional methods, it is able to
take advantage of additional information such as dynamic changes, smoothness, etc. To
functionalize the data, the process is as follows.

Step 1: Observe the error of the data.
Generally, observations with errors were smoothed and observations without errors

were interpolated [37]. The air quality monitoring stations recorded the data with errors;
therefore, the smoothing method was more appropriate to fit the data.

Step 2: Selection of the basis function.
The Fourier basis function is suitable for fitting data with periodicity, and the B-spline

basis function for fitting non-periodic data [38]. Given that the periodicity of the air quality
data obtained in Fujian Province was not obvious (Figure S1), the B-spline basis function
was used to functionalize the data in this study. If a set of basis functions is defined as
φm,k(t), the estimate can be calculated as follows [39]:

x̂(t) =
K

∑
k=1

ckφm,k(t) (2)

φm,k(t) =
{

1, tm ≤ t ≤ tm+1
0, otherwise

(3)

φm,k(t) =
t− tm

tm+k−1 − tm
φm,k−1(t) +

tm+k − t
tm+k − tm+1

φm+1,k−1(t) (4)

where ck is the coefficient matrix, tm is the time point of the observed data, k is the order
of the B-spline basis function, and K is the number of basis functions. In this study,
fourth-order B-spline basis functions were set to fit the air quality data, so the value of k
was four.

Step 3: Determine the smoothing parameters.
To balance the relationship between goodness-of-fit and smoothness, the roughness

penalty method was used. If x(t) is assumed to be derivable, then the mean square error
with a penalty term can be defined as follows [39]:

PENSSEλ(x|y) =
N

∑
i=1
{yi − x(ti)}2 + λ · PEN2(x) (5)

where N is the number of raw data, λ is the smoothing parameter, yi is the observed data,
and the penalty term function PEN2(x) is

∫
T
{

D2x(t)
}2dt. This is calculated in terms of the

curvature of the function, where D2(·) is the second-order derivative of the function. The
higher the PEN2(x), the greater the volatility of the function.

Considering the m-order derivative function Dmx(t) of function x(t), a more general for-
mula for characterizing the degree of roughness (fluctuation) of the function was calculated
as follows [39]:

PENm(x) =
∫

T
{Dmx(s)}2ds = c′Rc (6)

ĉ = (Φ′WΦ)
−1Φ′Wy (7)

ŷ = Φĉ = Φ(Φ′WΦ)
−1Φ′Wy (8)
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Thus, the sum of the squares of the more general residuals with penalties correspond-
ing to Equation (5) was calculated as follows:

PENSSEm(y
∣∣c) = (y−Φc)′W(y−Φc) + λc′Rc (9)

ĉ = (Φ′WΦ + λR)−1Φ′Wy (10)

ŷ = Φ(Φ′WΦ + λR)−1Φ′Wy (11)

where R =
∫

T Dmφ(s)Dmφ′(s)ds, φ(s) is a column vector formed by φk(t)(k = 1, · · · , K);
c is the optimal solution where the weighted least squares method (y− Φc)′W(y− Φc)
reaches the minimum value, i.e., ĉ; y is the vector of the data columns that can be tuned;
column vector ŷ is formed from the fitted value of y; and W is the weight matrix. When
λ = 0, Equation (10) is equal to Equation (11). By changing the value of λ, the degree of
data smoothing was adjusted.

To determine the optimal value of the smoothing parameter λ, the GCV approach
was used. GCV, with the effect of the degrees of freedom on the cross-validation values
considered, was calculated as follows [40]:

GCV(λ) =
1
N

N

∑
i=1

GCVi(λ) = (
N

N − d f (λ)
)(

SSE
N − d f (λ)

) (12)

where d f (λ) is the fitted degree of the freedom of λ, d f (λ) = trace[H(λ)]; H(λ) is a
function of λ and x̂ = H(λ)y, H = φ(φ′φ + λR)−1

φ′, and R =
∫

φ(t)φ′(t)dt; and SSE are
the sum of the squared errors. When the value of the GCV taken is the smallest, the optimal
smoothing parameter is obtained.

2.5. Clustering Analysis Based on Functional Principal Component

To observe the spatial similarity in the air pollutants, a functional cluster analysis was
performed with the air quality data. In this study, a cluster analysis based on the principal
component coefficient was used. By converting the high-dimensional space problems into
low-dimensional space problems, clustering algorithms were able to overcome the curse
of dimensionality and improve the efficiency and effectiveness of the clustering process.
This allows for better understanding and interpretation of the data, making it easier to
identify similarities and differences among data points. Functional principal components
are similar to the idea of solving principal components in a general multivariate statistical
analysis. The solution of the principal component weight vector was transformed into the
solution of the principal component weight function. The principal component score can
be calculated using Equation (13), and the k-th principal component score of the i-th fitted
curve can be denoted as follows [39]:

fik =
∫

ξk(t)xi(t)dt (13)

where ξ(t) is the combined weight, i = 1, 2, 3, · · · , N. In the functional principal component
analysis, the combined weights ξk in a multivariate statistical analysis become the function
values ξk(t), and xi(t) represents the functional data. The constraint satisfied by the weight
function ξ j(t) of the principal component of the j-th function of the i-th fitted curve was
calculated as follows:

max 1
8

9
∑

i=1
f 2
ij = max 1

8

9
∑

i=1
(
∫

ξ j(t)xi(t)dt)2∫
T(ξ j(t))

2dt = 1∫
Tξ j(t)ξ1(t)dt = · · · =

∫
Tξ j(t)ξ j−1(t)dt = 0

(14)
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The weight functions can be expanded by basis functions, and the covariance functions
of variables x(t) and x(s) are v(s, t). The characteristic equation satisfied by the weight
function ξ(t) of the principal component of each function was calculated as follows:∫

Tξ(t)v(s, t)dt = λξ(s) (15)

where λ is the eigenvalue and ξ(s) is the characteristic function corresponding to λ. The
integral transformation of the weight function ξ(s) into V can be defined as follows:

Vξ(s) =
∫

v(s, t)β(t)dt (16)

where V is the covariance operator. Therefore, the problem of finding the largest character-
istic function can be transformed into solving the characteristic equation as follows:

Vξ = λξ (17)

where ξ is no longer an eigenvector, but a characteristic function.
In this study, a cluster analysis was conducted using the Euclidean distance. The

Euclidean distance between the fitted function curves xi(t) and xj(t) in the functional data
analysis was calculated as follows [31]:

D2(xi(t), xj(t)) =
∫ b

a
(xi(t)− xj(t))

2dt = (b− a)[(ci0 − cj0)
2 + (ci1 − cj1)

2 + · · ·+ (ciK − cjK)
2] (18)

where ciK and cjK are vectors of the expansion coefficients for xi(t) and xj(t), respectively. The
distance between the function curves depends on the coefficients of the function expansion.

2.6. Functional Linear Model

This study used the functional linear model to analyze the driving factors of air
pollution. The functional linear model is an extension of the multiple regression model.
It transforms the regression coefficients in the traditional model into a function of time t,
which is the slope function. This approach was adopted in this study because the functional
linear model has a stronger forecasting capability and can analyze the direction of influence
and intensity of the factors.

The types of the functional linear model were mainly as follows: (1) the response
variable was scalar and the independent variable was functional; (2) the response variable
was functional and the independent variable was scalar; and (3) both the response variable
and the independent variable were functional variables. The first type of functional linear
model used in this study was calculated as follows [41]:

Yi = β0(t) +
∫

β(t)Xi(t)dt + εi (19)

β(t) =
P

∑
k=1

βkφk(t) (20)

Using the basis function coefficient expansion, the roughness penalty was used to
estimate β(t), where Yi is the scalar response variable, β0(t) is the intercept term, β(t) is
the slope function to be estimated, Xi(t) is the functional independent variable, εi is the
random perturbation term, i = 1, 2, ..., n, βk is the coefficient matrix, and φk(t) represents a
set of basis functions.

3. Results
3.1. Proportion of Days with the Primary Pollutants

Figure 3 shows the proportion of days with primary pollutants in the nine cities of
Fujian Province from 2015 to 2021, in which primary pollutants were not counted when the
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AQI level reached the excellent category (that is, less than or equal to 50). Other categories
included days when there was more than one primary pollutant (e.g., PM10 and PM2.5 were
the primary pollutants on a day), and days when the primary pollutant was SO2 or CO. It
is evident that except for Putian and Nanping, other cities had the largest proportion of
days with the PM10 pollutant as the primary pollutant, and the second largest proportion
of days with the PM2.5 pollutant as the primary pollutant. Conversely, Putian and Nanping
had the largest proportion of days with the PM2.5 pollutant as the primary pollutant, and
the second largest proportion of days with the PM10 pollutant as the primary pollutant.
Therefore, they indicated that the primary air pollutants in Fujian Province were mainly
PM10 and PM2.5. It is worth noting that the proportion of days in Putian with the O3
pollutant as the primary pollutant exceeded 20%, and the pollution situation was more
serious than in other cities.
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3.2. Spatiotemporal Characteristics of Air Pollution

By the GCV approach, the optimal smoothing parameter of AQI was obtained (Figure 4).
At this time, log10(λ) was taken as −0.5, that is, the optimal smoothing parameter of AQI
was 10−0.5. Similarly, the GCV method was used to determine the optimal smoothing
parameter for each of the six pollutants (Table 2). Through comparison with Figure S1, it
is evident that the functionalized curves retained the information of the original data and
had a certain smoothness (Figure 5). Thus, they were considered to accurately capture the
features of the changes in air quality in Fujian Province.

Table 2. Optimal parameters of the six pollutants were determined using the generalized cross-
validation approach.

Pollutant Optimal Smoothing Parameters

CO 100.1

NO2 100.2

O3 10−0.8

PM2.5 10−0.2

PM10 10−0.5

SO2 10−1.7
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Figure 4. Optimal parameters of the Air Quality Index were determined using the generalized
cross-validation approach.

Table 3 illustrates the principal component variance contribution results of the AQI
and the six pollutants. The cumulative contribution rate exceeded 85%, indicating that the
principal component analysis results were excellent and most of the information contained
within the original data was extracted. The dynamic change of the first three principal
components of the extracted AQI and six pollutants is displayed in Figure 6. It was
indicated that the CO, O3, PM2.5, PM10, and SO2 pollutants were mainly affected by the
first principal component, and the AQI and NO2 pollutants were mainly affected by the
third principal component. The weight functions of the first principal component of the
O3, PM2.5, and PM10 fluctuated greatly but remained above zero. It was indicated that the
concentration of these pollutants was greater than the mean, and the greater the positive
fluctuation, the higher the pollutant concentration and the worse the air quality. For the first
principal component, the weight function of both PM2.5 and PM10 showed a trend of slow
increase and then slow decline. The weight function of O3 displayed a slow and continuous
upward trend, and the weight functions of the remaining pollutants showed a trend of
year-by-year reduction. It is evident that both PM2.5 and PM10 pollution were generally
more serious in the spring and winter. Conversely, O3 pollution showed a clear upward
trend in summer, reaching its highest concentration in autumn. The weight functions of CO
and SO2 fluctuated little, and they have remained at a relatively stable concentration since
2017, with less obvious pollution. For the third principal component, the weight function of
NO2 showed a trend opposite to the weight function of its first principal component, with
higher concentrations in the summer. In detail, from 2015 to 2019, most of the principal
component scores of NO2 were negative, and the principal component scores of NO2 after
2020 were greater than zero. The negative value here indicated that the concentration of the
NO2 pollutant was less than the mean, and the greater the negative fluctuation, the lower
the pollutant concentration, and the better the air quality.

Table 3. Proportion of the principal component variance contribution of the Air Quality Index and
the six pollutants (FPC 1: first functional principal component; FPC 2: second functional principal
component; FPC 3: third functional principal component).

Pollutant FPC 1 FPC 2 FPC 3 Accumulation

Air Quality Index 34.7% 13.7% 40.6% 89%
CO 52.1% 27.3% 16.9% 96.3%

NO2 30.6% 28.9% 31.9% 91.4%
O3 45.5% 12.4% 33.6% 91.5%

PM2.5 54.9% 22.9% 10.3% 88.1%
PM10 61.3% 19.3% 10% 90.6%
SO2 42.4% 26.6% 18.2% 87.2%



Appl. Sci. 2023, 13, 11206 10 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 19 
 

PM2.5 54.9% 22.9% 10.3% 88.1% 
PM10 61.3% 19.3% 10% 90.6% 
SO2 42.4% 26.6% 18.2% 87.2% 

 
Figure 5. Curves of the smoothed Air Quality Index and six air pollutants in Fujian Province (unit: 
mg/m3, except for CO: ug/m3). 

 

20

30

40

50

60

70

Time

A
ir 

Q
ua

lit
y 

In
de

x

15-Jun 16-Jun 17-Jun 18-Jun 19-Jun 20-Jun 21-Jun

FZ
LY
NP

ND
PT
QZ

SM
XM
ZZ

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Time

C
O

15-Jun 16-Jun 17-Jun 18-Jun 19-Jun 20-Jun 21-Jun

10

15

20

25

30

35

40

Time

N
O

2

15-Jun 16-Jun 17-Jun 18-Jun 19-Jun 20-Jun 21-Jun

20

40

60

80

100

Time

O
3

15-Jun 16-Jun 17-Jun 18-Jun 19-Jun 20-Jun 21-Jun
10

20

30

40

50

Time

PM
2.

5

15-Jun 16-Jun 17-Jun 18-Jun 19-Jun 20-Jun 21-Jun

20

30

40

50

60

70

80

Time

PM
10

15-Jun 16-Jun 17-Jun 18-Jun 19-Jun 20-Jun 21-Jun

10

20

30

40

Time

SO
2

15-Jun 16-Jun 17-Jun 18-Jun 19-Jun 20-Jun 21-Jun

Figure 5. Curves of the smoothed Air Quality Index and six air pollutants in Fujian Province (unit:
mg/m3, except for CO: ug/m3).

Figure 7 displays the functional clustering results of the AQI and the six pollutants.
In this paper, the air pollution levels of the contaminated area were divided into four
categories according to the cluster spacing of the principal component scores, including
low, slight, medium, and serious air pollution. Air pollution had notable spatial differences,
with the air quality in coastal areas being worse than that in inland areas. Overall, the
pollution levels of PM2.5, PM10, and O3 pollutants were lower in inland areas than in coastal
areas. The pollution levels of CO and SO2 pollutants had opposite results. Furthermore, the
pollution levels of NO2 pollutants showed a stepped distribution from the north toward
the south. According to the division of air pollution levels in various cities, it can be
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concluded that the pollution levels of the NO2, PM2.5, and PM10 pollutants in Nanping
(northern Fujian Province) were all in low air pollution, only CO and SO2 pollutants caused
the medium air pollution level, and its AQI was at a low air pollution level. In contrast,
Zhangzhou (southern Fujian Province) had three pollutants (NO2, PM2.5, and PM10) that
caused severe air pollution, and its AQI was at a serious air pollution level. Therefore, the
level of air pollution was most serious in Zhangzhou and low in Nanping.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 19 
 

 
Figure 6. Dynamic change of principal component weight function of the Air Quality Index and the 
six pollutants in Fujian Province (unit: mg/m3, except for CO: ug/m3). 

Figure 7 displays the functional clustering results of the AQI and the six pollutants. 
In this paper, the air pollution levels of the contaminated area were divided into four cat-
egories according to the cluster spacing of the principal component scores, including low, 
slight, medium, and serious air pollution. Air pollution had notable spatial differences, 
with the air quality in coastal areas being worse than that in inland areas. Overall, the 
pollution levels of PM2.5, PM10, and O3 pollutants were lower in inland areas than in coastal 
areas. The pollution levels of CO and SO2 pollutants had opposite results. Furthermore, 
the pollution levels of NO2 pollutants showed a stepped distribution from the north to-
ward the south. According to the division of air pollution levels in various cities, it can be 
concluded that the pollution levels of the NO2, PM2.5, and PM10 pollutants in Nanping 
(northern Fujian Province) were all in low air pollution, only CO and SO2 pollutants 
caused the medium air pollution level, and its AQI was at a low air pollution level. In 
contrast, Zhangzhou (southern Fujian Province) had three pollutants (NO2, PM2.5, and 
PM10) that caused severe air pollution, and its AQI was at a serious air pollution level. 
Therefore, the level of air pollution was most serious in Zhangzhou and low in Nanping. 

Time

A
ir

 Q
ua

lit
y 

In
de

x

FPC1 FPC2 FPC3

15-Jun 16-Jun 17-Jun 18-Jun 19-Jun 20-Jun 21-Jun

−0.2

−0.1

0

0.1

0.2

Time

C
O

15-Jun 17-Jun 19-Jun 21-Jun

−0.4

−0.2

0

0.2

Time

N
O

2 

15-Jun 17-Jun 19-Jun 21-Jun

−0.2

−0.1

0

0.1

0.2

Time

O
3 

15-Jun 17-Jun 19-Jun 21-Jun

−0.2

−0.1

0

0.1

0.2

Time

PM
2.

5 

15-Jun 17-Jun 19-Jun 21-Jun

−0.2

−0.1

0

0.1

0.2

Time

PM
10

 

15-Jun 17-Jun 19-Jun 21-Jun

−0.3

−0.2

−0.1

0

0.1

0.2

Time

SO
2 

15-Jun 17-Jun 19-Jun 21-Jun

−0.2

0

0.2

0.4

Figure 6. Dynamic change of principal component weight function of the Air Quality Index and the
six pollutants in Fujian Province (unit: mg/m3, except for CO: ug/m3).
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3.3. Response Relationship between Anthropogenic Activities and Air Quality

Based on the functional linear model, the driving factors of air pollution in Fujian
Province were analyzed. Man-made air pollution sources are pollution sources formed
by human production and living activities, of which vehicle exhaust and industrial emis-
sions are the main direct driving factors of air pollution [42], and vehicle ownership and
industrial NOx emissions were selected as the scalar response variables. According to
earlier research [43,44], the impact of PM10 on air quality is associated with industry, and
the impact of NO2 on air quality is associated with vehicle exhaust emissions. Therefore,
PM10 and NO2 in heavily polluted areas were selected as the covariates. The functional
linear model of NO2 and vehicle ownership was established, and the model fit was good
(goodness-of-fit: 0.93). Similarly, the functional linear model of PM10 and industrial NOx
emissions was established, and the model fit was also good (goodness-of-fit: 0.99). The
coefficient estimation curves of the driving factors causing levels of air pollution are shown
in Figures 8 and 9.
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Figure 8. Dynamic changes of the influence degree of vehicle ownership on NO2 based on the
functional linear model.
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Figure 9. Dynamic changes of the influence degree of industrial NOX emissions on PM10 based on
the functional linear model.

Concretely, vehicle emissions had the most serious impact on NO2 pollution in Jan-
uary, July, August, and December, and the impact of vehicle exhaust emissions on NO2
pollution had certain seasonal characteristics. The impact magnitude increased rapidly
in February–March and October–November, showing that the impact degree was more
obvious in autumn and winter. Specifically, the impact of vehicle ownership on NO2
pollution increased rapidly from February to March, which is possibly due to the factor
of commuting patterns. The impact of vehicle ownership on NO2 pollution increased
rapidly from October to November, which is possibly related to the fact that vehicles tend
to consume more fuel due to an increased use of heating systems and longer warm-up
times in colder months. The impact of vehicle emissions on NO2 pollutants decreased
significantly from April to June, indicating that vehicle emissions had less impact on NO2
pollutant concentrations in spring and summer. In the same way, industrial NOX emissions
had the most serious impact on PM10 pollution in January and December, and the impact
of industrial NOX emissions on PM10 pollution had certain seasonal characteristics. The im-
pact magnitude increased rapidly in February–April and October–November, showing that
the degree of influence was more obvious in winter. Specifically, the impact of industrial
emissions on PM10 pollution increased rapidly from February to April, which is possibly
related to factories restarting production following the Spring Festival.

4. Discussion
4.1. Dynamic Changes in Air Quality Associated with Natural Factors and
Anthropogenic Activities

It is essential to investigate the effects of natural factors and anthropogenic activities
on the dynamic variations in air quality. During the study period, the spatial and temporal
dynamics of AQI and six pollutants indicated that air quality was related to seasonal
changes. Concretely, air quality in the summer was substantially better than that in the
winter, mainly because the climatic conditions in winter were harsh, particulate matter
was not easily diffused, and energy consumption increased. In general, the climate in
winter is relatively dry, the sunshine time short, and the atmospheric convection not active,
which is not conducive to the diffusion of pollutants in the air [45]. In addition, winter
jet stream can cause dust storms by picking up dry soil particles and carrying them over
long distances and creating a temperature inversion [46]. A temperature inversion can lead
to poor air quality as pollutants become trapped close to the surface, unable to disperse.
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In contrast, in the summer, with the more active atmospheric convective activity, and
the arrival of the summer monsoon bringing widespread rainfall, the pollution is more
obviously removed [47]. Heavy rain can carry particles from smog to the ground, or
it can dissolve some harmful gases in the rain to reduce air pollution. However, O3 is
derived from the secondary conversion of NOX and volatile organic compounds at high
temperatures and dry air [48]. Therefore, the hot weather in the summer might promote
such a transformation. In addition, volatile organic compounds can undergo a series
of reactions with NOX under the condition of ultraviolet light irradiation, improve the
oxidation of the atmosphere, and cause an increase in the concentration of O3.

Industrial and vehicle emissions were found to be correlated with air pollution. Over
the past decade, the economy of Fujian Province has been expanding, and its air pollution
has also shown a fluctuating upward trend. With the development of the economy, the
number of vehicles has increased, industrial zones have also sprung up in coastal areas,
and a series of industrial clusters have formed. Industrial pollution sources and automobile
exhaust pollution sources are the most serious sources of air pollution generated by human
activities. The recent economic development of Fujian Province has been concentrated in the
coastal areas. There are many large petrochemical parks, steel plants, nearly 20 large thermal
power plants, over 30 waste incineration power plants, and other facilities distributed along
the coastal areas. These emit a significant amount of pollutants. In addition, emissions from
coastal ports, ships, and the logistics industry also contribute to pollution [49]. Against the
backdrop of rapid urbanization and industrialization, the continuous expansion of cities has
led to shorter distances between them, and urban expansion is positively correlated with air
pollution [50]. As a result, pollutants are easily transported between coastal areas in Fujian
Province, and their concentration declines slowly, leading to more severe pollution levels
among cities in these coastal regions. However, from the end of 2019 to 2021, due to the
impact of COVID-19 quarantine measures, factories shut down, transportation significantly
reduced, and shipping halted, resulting in a noticeable improvement in overall air quality,
which was consistent with the studies of Albayati et al. [51].

4.2. Advantages and Limitations of the Study

Air quality data have the characteristics of a function, and the use of discrete data for
an analysis cannot well describe the dynamic characteristics and individual differences of
air quality data. The functional data approach used in this study treated the observed data
functions as an entity, not just as the order of individual observations. Through the unique
method of functional data, more potential change laws can be elicited from a continuous
perspective. The advantages of functional data are that it requires fewer assumptions,
reduces the requirement for data acquisition frequency, and it can elicit more information.
Moreover, in this study, the rough penalty method was also used to prevent overfitting and
to ensure the smoothness of the function.

To analyze the differences in air pollution in different regions, this study used func-
tional clustering based on the principal component coefficient to classify areas of air
pollution. The functional cluster analysis approach broadens the application scope of a
traditional cluster analysis by resolving the problem that traditional clustering techniques
are only used to address static issues. The difficulty of functional data is that the data
belong to an infinite dimensional space, and a principal component analysis is an effective
dimensionality reduction method, which can use a few synthetic variables to summarize
the original variables. Combining a principal component analysis with a cluster analysis
overcomes the problem of collinearity among indicators. Additionally, it can also address
issues with greater data dimensionality and larger data volumes that traditional methods
cannot handle.

The functional linear model could be used to clarify the driving factors of air pollution.
The functional linear model converted the regression coefficients in the traditional model
into coefficient functions, thereby enriching the results of the model. The characteristics
of the coefficient function could be used not only to explain the impact of the driving
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factors on air pollution, but also to obtain the trend of the degree of influence over time.
However, the formation of air pollution is too complex to be addressed completely, and
our limited data availability also prevented us from taking more environmental factors
and anthropogenic activities into consideration. Therefore, such topics remain worthwhile
items for further research.

5. Recommendations

Although the prevention and control of air pollution have been strengthened in recent
years, regional and structural pollution problems are still prominent, and the emission of
major pollutants is still at a high level, particularly PM10 and PM2.5 (Figure 3). Some air
pollutants have shown a fluctuating upward trend in recent years, particularly NO2 and
O3 (Figure 6). Moreover, the quality of the atmospheric environment is greatly affected
by changes in the natural environment and anthropogenic activities, and air pollution
dynamically varies from region to region. Fujian Province wants to continuously improve
its air quality, and especially to strengthen the coordinated control of PM2.5, PM10, NO2,
and O3. It is necessary to strengthen the coordinated control of multiple pollutants and
regional collaborative management. Therefore, the recommendations for guiding air
pollution control and sustainable ecological environment development are as follows. First,
regions should propose feasible and precise measures to control air pollution. Due to the
complexity of air pollution, different meteorological conditions, pollution sources, and
pollutant concentrations in different regions, scientific and precise treatment measures can
be proposed according to the actual situation to effectively promote the improvement of
air pollution. Second, the industrial layout should be adjusted as soon as possible and
treatments for the purification of pollutant discharges should be strengthened. A reasonable
industrial structure should be based on the principle of sustainable development, and it is
necessary to prevent the excessive exploitation of resources and excessive damage to the
environment. Finally, the population should be encouraged to use new energy vehicles or
public transport to reduce exhaust emissions. Automobile exhaust emission sources have
become the main source of NOX emissions in many cities. Therefore, it is necessary not
only to increase the ratio of pure electric vehicles for manned vehicles, but also to accelerate
the ratio of pure electric vehicles from exhaust emission sources such as trucks, and to
prohibit the use of motor vehicles that exceed the standard.

6. Conclusions

Understanding the dynamic changes of air pollutants and identifying the drivers of
air pollution are essential for improving air quality and promoting the sustainable devel-
opment of the ecological environment. In this study, air quality data were functionalized
using the B-spline basis function. The smoothing parameters were determined using the
roughness penalty method, which can ensure the smoothness of the function curve while
also ensuring accuracy. A functional cluster analysis based on the principal component
coefficient and functional linear model were used to analyze both the spatiotemporal dy-
namic characteristics and the driving factors of air pollution in Fujian Province. The results
showed that AQI and the air pollutants presented notable spatiotemporal heterogeneity
within the study area. Moreover, the functional linear model fit was good, and the impact
of anthropogenic factors on air pollutants had certain seasonal characteristics. The func-
tional linear model could elucidate the degree of influence of temporal change through the
coefficient function. These conclusions could be taken as a guide for effectively controlling
air pollution and promoting the sustainable development of the ecological environment.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/app132011206/s1, Figure S1: Change in the Air Qual-
ity Index, CO, NO2, O3, PM2.5, PM10, and SO2 concentrations in Fujian Province from 1 January 2015
to 31 December 2021 (unit: mg/m3, except for CO: ug/m3).
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