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Abstract: Phytoremediation of lead (Pb) in contaminated soils using hyper-enriched plants is an
important task. It is a green and sustainable measure. Studies have revealed that three ornamental
plants, Tagetes patula (T. patula), Solanum nigrum (S. nigrum), and Mirabilis jalapa (M. jalapa), have the
ability to enrich for Pb; however, studies on difference between them and root morphology and the
relationship between tolerance and capacity are lacking. The ability of three lead-enriching plants,
T. patula, S. nigrum, and M. jalapa, to cope with Pb stress was assessed in hydroponic experiments
using five Pb stress concentrations (0–1000 mg/L). Under different Pb stress conditions, the growth
of the shoots and roots of three tested ornamental plants was inhibited to varying degrees. In the
three tested ornamental plants, Pb mainly accumulated in the roots, and the highest levels of Pb
observed in the shoots of T. patula, S. nigrum, and M. jalapa were 1074.1 mg/kg, 958.7 mg/kg, and
975.3 mg/kg, respectively. All plants reached a critical level of Pb hyperaccumulation. Redundancy
analysis showed that changes in the root architecture of the three tested ornamental plants were
significantly and positively correlated with tolerance as well as the enrichment and transfer ability
of the heavy metal Pb. Therefore, these three ornamental plants have the potential to remediate
Pb-contaminated water and soil and can increase the tolerance and enrichment characteristics of
Pb by regulating the root biomass and root length of the three test ornamental plants via various
agronomic measures. In addition, more research should be conducted to assess their effectiveness as
phytoextractants under field conditions.
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1. Introduction

Lead is a heavy metal element that has poor mobility on the surface of soil and is diffi-
cult to degrade [1]. With the rapid development of China’s industrialization, urbanization,
and agricultural modernization, human activities have released a large amount of Pb into
the environment. What is even scarier is that Pb can enter the human body through the
food chain or skin contact and damage human health [2,3]. Therefore, the identification of
optimal methods to remove the heavy metal Pb from soil and reduce its toxicity represents
an urgent need within current economic and social development [4,5].

Against the background of China’s promotion of constructing an ecological civilization,
phytoremediation technology has become the first choice for Pb-contaminated soil due
to its economic, green, and sustainable development advantages [6,7]. Phytoremediation
involves the use of plant roots, which absorb heavy metals and then transfer them to
aerial parts. Plants can communicate and interact with the soil microbiome and other
plants through their roots [8]. Roots show high developmental plasticity and are frequently
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adapted to their environment. Finally, the shoot parts are harvested and treated to remove,
degrade, or fix heavy metals [9]. Therefore, plant roots are the first tissues and organs
to make contact with pollutants [10], and studies have found that the root architecture
of plants has an important relationship with the absorption and accumulation of heavy
metals [11]. With the development of science and technology, the use of plant genetic
engineering could greatly promote the process of heavy metal pollution remediation [12].
The use of ornamental plants to remediate heavy metal pollution in soil could not only
reduce the content of heavy metals in environmental soil but also achieve the purpose
of beautifying the environment [13]. The screening of heavy metal hyperaccumulator
plant varieties has always been an important method to promote heavy metal pollution
remediation [14]. However, it is very difficult to find a plant species that meets the criteria
for hyperaccumulation plants.

Moreover, the shortcomings of hyperaccumulator plants, such as small biomass and
slow growth, had become the key factors limiting the widespread application of phytore-
mediation of heavy metal-contaminated soils [15]. Therefore, the selection of ornamental
plants with fast growth rates, large biomass, and potential for hyper-enrichment of heavy
metals for pollution remediation had also become one of the feasible measures [16]. Previ-
ous studies have reported that T. patula, S. nigrum, and M. jalapa were ornamental plants
with a high capacity to enrich Pb [3,17,18], and had been selected as the key candidates for
remediation of Pb-contaminated soil.

More than 450 species of heavy metal hyperaccumulating and tolerant plants are
known in tropical and temperate regions, most of which were nickel hyperaccumulators,
while lead hyperaccumulation occurs in a few species [19]. Currently, there are also a
large number of reports on the screening of ornamental plants with a high capacity of
enriching Pb [13]. However, most of the current studies have focused on the biomass and
enrichment coefficients of ornamental plants [5,14,20]. Studies on how ornamental plant
root morphology responds to Pb stress and the correlation between root morphology and
Pb tolerance, uptake, and enrichment in ornamental plants are lacking. The aim of this
study is to determine the response of root morphology of test ornamental plants to Pb
stresses and to study the relationship between the root architecture of ornamental plants
and their ability to tolerate and enrich the heavy metal Pb through hydroponic experiments.
The research results provide an important scientific basis for accelerating the large-scale
popularization and application of flowers and the phytoremediation of heavy metal and
Pb-contaminated environments.

2. Materials and Methods
2.1. Experimental Material

Ornamental plants included T. patula, S. nigrum, and M. jalapa. The hydroponic
experiments were performed in the laboratory of the Jilin Institute of Chemical Technology
using the same method for growing plants in a nutrient solution reported by Lu et al. (2020).
Purchased ornamental plant seeds were used to raise the seedlings. The soil for seedlings
was taken from the on-campus experimental site of Jilin Institute of Chemical Technology
(126◦37′34.18′′ E and 43◦54′30.0′′ N).

2.2. Material Cultivation and Experimental Design

In order to eliminate the effects of other ions, 1.18 g/L Ca(NO3)2·4H2O and 0.51 g/L
KNO3 were used as the nutrient solution in this experiment. The pH of the nutrient solution
was adjusted to 6.8–7.0 with 1 mol/L NaOH or HCl, and the nutrient solution was kept in
continuous ventilation for 24 h.

Selected full-grown, uniformly sized flower seeds were soaked at 25 ◦C for germination
and then sown and nursed. Then, seedlings with good growth that exhibited the same size
after one month were selected. The roots were rinsed with deionized water first. Then,
the ornamental seedlings were rinsed in 0.1% KMnO4 solution for 10 min and then placed
in a 1 L (1.18 g/L Ca(NO3)2·4H2O and 0.51 g/L KNO3) medium for 5 days. Finally, the
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ornamental seedlings were placed into the nutrient solution and mixed with Pb(NO3)2
for the Pb stress experiment, and the ornamental plants were incubated under Pb stress
for 15 days. The Pb concentration in this experiment was set to 0 mg/L (CK, control
treatment), 100 mg/L (T1 treatment), 200 mg/L (T2 treatment), 500 mg/L (T3 treatment)
and 1000 mg/L (T4 treatment).

2.3. Experimental Methods

Each tested ornamental plant was cultured in a conical flask (250 mL). One ornamental
plant was placed in each conical flask, and each experimental treatment was repeated thrice.
The culture medium was changed every 5 days. Plant samples were harvested after 15 days.
The roots of the tested ornamental plants were soaked in 20 mmol/L Na-EDTA for 15 min,
rinsed with deionized water, and absorbed using absorbent paper, the root fresh weight
was determined. The root length, root surface area, root volume, and mean root diameter
of ornamental plants were determined using previously reported research methods [21].
Cut with scissors and photographed, all root systems were stored in 75% alcohol. Then,
the root systems were scanned with an Epson (V800) scanner, and the scanned pictures
were analyzed with the WinRHIZO Root Analysis System (WinRHIZO_Pro 2021, Regent
Instrument Inc., Quebec, QC, Canada) to derive the total root length, root surface area, root
volume, and average root diameter of the maize root systems. Finally, together with the
aerial parts, the sample was dried in an oven to a constant weight at a temperature setting
of 105 ◦C for 30 min and 75 ◦C until the plant weight remained constant. The samples were
pulverized with a plant pulverizer and passed through a 100 mesh sieve and the plant
samples were then digested with an HNO3:HClO4 (3:1, v/v) mixture [17].

2.4. Measurement Items and Methods

The Pb concentration in the plant samples was determined using a flame atomic absorp-
tion spectrophotometer (TAS-990, Beijing Purkinje General Instrument Co., Beijing, China).

To assess the tolerance and enrichment ability of the tested ornamental plants when
exposed to the heavy metal Pb, we referred to the report from Lu et al. (2020), and
the tolerance index (TI) was calculated by dividing the aboveground and underground
biomass of the plants treated with different lead concentrations by the biomass treated
with a control solution. The enrichment coefficient (EC) was obtained by dividing the
Pb concentration in the aerial part or the underground part of the flower plant using the
Pb concentration added to the culture medium. The transfer factor (TF) was obtained by
dividing the Pb concentration into the aerial portion of the tested ornamental plants using
the Pb concentration in the underground portion, the specific calculation formula is as
follows [14]:

TI = Plant biomass in Pb treatments/Plant biomass in Pb-free treatments (1)

EC = Pb concentration in shoots or roots/Pb concentration in hydroponic solutions (2)

TF = Pb content in the shoots/Pb content in the roots (3)

2.5. Statistical Analysis

The fresh weight, dry weight, Pb content, tolerance index, enrichment coefficient,
and transfer coefficient of the tested flowers and plants were all analyzed using SAS
9.2 (SAS Institute, Inc., Cary, NC, USA). Graphs were generated using GraphPad Prism
6.02 (GraphPad Software, Inc., La Jolla, CA, USA). Differences were compared using the
significant difference test (LSD) at the 0.05 levels of probability. Ordination techniques were
applied using two international types of standard software, CANOCO 4.5 and CanoDraw
(version 4.5) [22], and a linear model was selected for redundancy analysis (RDA).
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3. Results and Discussion
3.1. Effects of Pb Stress on the Biomass of Ornamental Plants

The fresh weight and dry weight of the shoots and roots of three ornamental plants
decreased to varying degrees with the increasing Pb concentration (Figure 1), and all
reached a significant level of difference (p < 0.05). Compared with CK, the fresh weights of
the shoots of T. patula, S. nigrum, and M. jalapa decreased by 21.3% to 63.7% (2.52 to 7.51 g),
31.1% to 77.8% (2.08 to 5.21 g), and 17.1% to 61.6% (2.49 to 8.99 g), with mean values of
40.4%, 54.0%, and 43.3%, respectively. The fresh weights of these roots decreased by 19.0%
to 69.8% (0.29 to 1.06 g), 21.9% to 66.7% (0.15 to 0.47 g), and 18.5% to 50.8% (0.72 to 1.97 g),
with mean values of 49.6%, 49.0%, and 35.8%, respectively. The dry weight of the shoots
decreased by 25.2% to 69.3% (0.41 to 1.13 g), 26.7% to 68.9% (0.22 to 0.58 g), and 19.9% to
62.4% (0.42 to 1.33 g), with mean values of 49.8%, 50.1%, and 42.5%, respectively. The root
dry weight decreased by 30.5% to 75.9% (0.18 to 0.44 g), 25.3% to 78.9% (0.08 to 0.25 g), and
27.7% to 61.9% (0.19 to 0.42 g), with mean values of 57.6%, 57.1%, and 48.1%, respectively.
Growth inhibition and reduced biomass production are general responses of higher plants
to heavy metal toxicity [23]. Similar results were obtained in our experiments. Different
concentrations of Pb stress significantly inhibited the growth of the shoot and root parts of
the tested ornamental plants. Compared with the control, the shoot and root biomasses
of the tested ornamental plants were reduced by 35.8% to 57.6%, which is consistent with
the results of Cui et al. (2013) in three ornamental plants (Tagetes patula, Dahlia pinnata,
and Ipomoea quamoclit) [24]. The possible reason for this is that the metabolic processes
of plants, including photosynthesis, are altered under heavy metal stress [25]. These
phenomena are some of the physiological responses exhibited by plants to Pb treatment,
as the presence of Pb in cells, even in small amounts, may have a wide range of adverse
effects on physiological processes [26]. In this study, the aboveground biomass of the test
ornamental plants, T. patula and S. nigrum, decreased similarly compared to the control
treatment, while M. jalapa decreased less than T. patula and S. nigrum, indicating that M.
jalapa is more tolerant to Pb than T. patula and S. nigrum.

3.2. Effects of Pb Stress on the Tolerance Index of Ornamental Plants

TI was used to characterize plant tolerance to heavy metals [27]. With the increase in
the Pb concentration, the TI values of the tested ornamental plants decreased significantly
(p < 0.05). Compared with the CK, the TI values of the shoots of T. patula, S. nigrum, and M.
jalapa decreased by 25.2% to 69.3%, 27.0% to 69.0%, and 19.9% to 62.4% with mean values
of 49.8%, 50.3%, and 42.5%, respectively (Figure 2). The TI values of the roots of T. patula,
S. nigrum, and M. jalapa decreased by 30.5% to 75.9%, 26.0% to 79.2%, and 27.4% to 61.7%
with mean values of 57.6%, 57.6%, and 47.9%, respectively. The following tolerance order
of the three ornamental plants was observed as follows: M. jalapa > T. patula > S. nigrum.
The TI values in the shoots were higher than those in the roots under the conditions of this
test, which is consistent with the results of Lu et al. (2020), who examined the response of
six ornamental plants to Pb pollution stress.
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Figure 2. Tolerance index of the shoots and roots of tested ornamental plants under different Pb
concentrations (A,B). T. patula, Tagetes patula. S. nigrum, Solanum nigrum and M. jalapa, Mirabilis jalapa.
CK, the Pb concentration in hydroponic solutions was set to 0 mg/L. T1, the Pb concentration in
hydroponic solutions was set to 100 mg/L. T2, the Pb concentration in hydroponic solutions was set
to 200 mg/L. T3, the Pb concentration in hydroponic solutions was set to 500 mg/L, and T4, the Pb
concentration in hydroponic solutions was set to 1000 mg/L. The different lowercase letters indicate
significant differences under Pb concentrations for the same ornamental plants at the p < 0.05 level.
Other symbols are the same as in Figure 1.

3.3. Effects of Pb Stress on the Pb Content of Ornamental Plants

Lead stress had a significant effect on the Pb content in ornamental plants (p < 0.05).
With the increase in the Pb concentration, the Pb content in the aerial and underground
portions of the tested ornamental plants increased significantly (Table 1). Compared
with the CK, the Pb content of the shoots and roots of ornamental plants showed a clearly
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increasing trend, especially in the underground portion of the Pb, with a significant increase
in amplitude. In the specific analysis, the Pb content of the shoots of the ornamental T.
patula, S. nigrum, and M. jalapa plants increased by 8.3- to 24.9-, 14.7- to 27.8-, and 3.9-
to 25.4-fold with a mean fold increase in values of 16.6, 21.8, and 13.7, respectively. The
Pb content of ornamental plants in roots increased by 43.1- to 189.5-, 41.7- to 168.6-, and
31.3- to 172.9-fold with mean fold increase in values of 114.9, 99.2, and 90.9, respectively.
The experimental results show that the content in the roots of ornamental plants was
significantly greater than that in the shoots, and the Pb content in the shoots of the tested
ornamental plants increased multi-fold compared to the control, which is consistent with
the study on Tegetes minuta and Bidens pilosa [28]. The result was reasonable and similar to
the results of previous studies (4–20 times higher); however, the fold increase in the root
compared with the control far exceeded the shoot parts. A possible reason for this is that
most heavy metal ions are stored in root cells and are bound to the cell wall in plants [29].
The Pb content reached 1074.1 mg/kg for T. patula only under the 1000 mg/L treatment.

Table 1. Pb content, enrichment coefficients, and translocation factors of tested ornamentals under
Pb stress.

Ornamental
Variety Treatments

Pb Content (mg/kg) Enrichment Coefficient Translocation
FactorShoot Root Shoot Root

T. patula CK 43.2 ± 6.91 e 55.1 ± 6.99 e - - -
T1 359.4 ± 28.1 d 2432.2 ± 178.8 d 3.59 24.3 0.15
T2 574.1 ± 47.2 c 5284.3 ± 517.7 c 2.87 26.4 0.11
T3 862.1 ± 47.8 b 8370.7 ± 466.5 b 1.72 16.7 0.10
T4 1074.1 ± 111.8 a 11,698.4 ± 672.6 a 1.07 11.7 0.09

S. nigrum CK 32.1 ± 3.40 e 54.5 ± 7.29 e - - -
T1 503.8 ± 34.0 d 2197.6 ± 213.8 d 5.04 22.0 0.23
T2 656.7 ± 41.2 c 4073.0 ± 205.7 c 3.28 20.4 0.16
T3 838.6 ± 42.9 b 6671.4 ± 244.3 b 1.68 13.3 0.13
T4 958.7 ± 40.7 a 9835.4 ± 180.7 a 0.96 9.84 0.10

M. jalapa CK 38.5 ± 4.58 e 47.1 ± 5.72 e - - -
T1 150.8 ± 14.2 d 1472.4 ± 29.2 d 1.51 14.7 0.10
T2 339.4 ± 25.5 c 2603.9 ± 19.9 c 1.70 13.0 0.13
T3 642.3 ± 41.8 b 4900.2 ± 93.4 b 1.28 9.80 0.13
T4 975.3 ± 26.0 a 8139.0 ± 207.2 a 0.98 8.14 0.12

T. patula, Tagetes patula. S. nigrum, Solanum nigrum and M. jalapa, Mirabilis jalapa. CK, the Pb concentration in
hydroponic solutions was set to 0 mg/L. T1, the Pb concentration in hydroponic solutions was set to 100 mg/L.
T2, the Pb concentration in hydroponic solutions was set to 200 mg/L. T3, the Pb concentration in hydroponic
solutions was set to 500 mg/L, and T4, the Pb concentration in hydroponic solutions was set to 1000 mg/L. The
different lowercase letters in the same column indicate significant differences (p < 0.05).

3.4. Effects of Pb Stress on the Root Architecture of Ornamental Plants

Lead stress also had a significant effect on the change in root architecture of ornamental
plants (p < 0.05). As the Pb concentration increased, the root length, root surface area, root
volume, and root average diameter of the tested ornamental plants also exhibited different
degrees of change (Figure 3). Compared with the CK, the root length of T. patula, S. nigrum,
and M. jalapa decreased by 6.0% to 52.3% (62.49 to 544.55 cm), 4.7% to 66.1% (12.81 to
182.22 cm), and 31.7% to 70.3% (48.64 to 107.66 cm) (with the exception of T. patula, which
increased by 8.3% under the 100 mg/L treatment) with mean values of 30.9%, 35.5%,
and 52.1%, respectively. The root surface area decreased by 35.9% to 55.8% (48.51 to
75.43 cm2), 17.8% to 76.4% (10.32 to 44.39 cm2), and 20.7% to 84.2% (10.40 to 42.27 cm2)
(with the exception of T. patula, which increased by 13.5% and 0.7% under the 100 mg/L
and 200 mg/L treatments, respectively) with mean values of 45.8%, 42.8%, and 53.7%,
respectively. The root volume decreased by 7.9% to 59.4% (0.17 to 1.25 cm3), 9.9% to 73.3%
(0.15 to 1.13 cm3), and 34.9% to 70.6% (0.93 to 1.88 cm3) (with the exception of T. patula,
which increased by 29.7% under the 100 mg/L treatment) with mean values of 31.7%,
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36.0%, and 50.4%, respectively. The root average diameter decreased by 30.5% to 75.9%
(0.002 to 0.04 mm), 25.3% to 78.9% (0.09 to 0.41 mm), and 5.1% to 28.5% (0.02 to 0.13 mm),
with mean values of 5.1%, 44.0%, and 16.8%, respectively. However, the root average
diameter of M. jalapa increased by 13.9% and 42.6% under the 100 mg/L and 200 mg/L
treatments, respectively. The results show that the roots of the tested ornamental plants
were poisoned by the heavy metal Pb to different degrees, inhibiting the growth of the root
system. This finding may be because Pb stress inhibited cell division of the root tip [30],
which is consistent with that noted in a study on rice [31]. There are several possible reasons
for this [11], including a reduction in root length and dry weight, changes in volume and
diameter, and the production or inhibition of lateral roots in the presence of lead, as well as
effects on mineral balance or genotoxicity to the plant.
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Figure 3. Comparisons of root length (A), root surface area (B), root volume (C), and root average
diameter (D) for tested ornamental plants under different Pb concentrations. T. patula, Tagetes patula.
S. nigrum, Solanum nigrum and M. jalapa, Mirabilis jalapa. CK, the Pb concentration in hydroponic
solutions was set to 0 mg/L. T1, the Pb concentration in hydroponic solutions was set to 100 mg/L.
T2, the Pb concentration in hydroponic solutions was set to 200 mg/L. T3, the Pb concentration in
hydroponic solutions was set to 500 mg/L, and T4, the Pb concentration in hydroponic solutions was
set to 1000 mg/L. The different lowercase letters indicate significant differences under the tested Pb
concentrations for the same ornamental plants at the p < 0.05 level.

3.5. Effects of Pb Stress on the Enrichment Coefficient and Transfer Factor of Ornamental Plants

The ability of plants to accumulate heavy metals is generally expressed by the EC
value [32]. As the Pb concentration increased, the enrichment coefficients of the shoot and
root portions of the tested ornamental plants showed a downward trend (Table 1), and the
EC value of the roots of tested ornamental plants was significantly greater than that of the
shoots. This finding also demonstrates that the ability of the tested ornamental plants to
enrich the heavy metal Pb is greater in the roots than in the shoots. The EC values of the
shoots of T. patula, S. nigrum, and M. jalapa decreased by 1.1 to 3.6, 1.0 to 5.0, and 1.0 to 1.7
with mean values of 2.3, 2.7, and 1.4, respectively. The EC values of the roots decreased by
11.7 to 26.4, 9.8 to 22.0, and 8.1 to 14.7, with mean values of 19.8, 16.4, and 11.4, respectively.
The EC values of the roots T. patula, S. nigrum, and M. jalapa were 8.5, 6.0, and 8.4 times that
of the shoots, respectively.
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The ability of plants to transfer heavy metals from their roots to shoots is usually
expressed by the TF value [32]. With the increase in Pb concentration, the transfer coeffi-
cients of the tested ornamental plants T. patula, and S. nigrum showed a downward trend
(Table 1), and the transfer coefficients of the tested ornamental plants M. jalapa showed a
trend that first increased and then decreased. The TF values of T. patula, S. nigrum, and M.
jalapa ranged from 0.09 to 0.15, 0.10 to 0.23, and 0.10 to 0.13, respectively, under different Pb
contamination stress treatments with mean values of 0.11, 0.15, and 0.12, respectively. The
results show that the order of enrichment ability for Pb was S. nigrum > M. jalapa > T. patula.

3.6. Relationship between Root Morphological Indices and Tolerance, Enrichment, and Transfer
Coefficients of Tested Ornamental Plants

Redundancy analysis (RDA) showed that the root dry weight, root length, root surface
area, root volume, and root average diameter of the three tested ornamental plants could
explain 92.5%, 88.9%, and 96.5% of the variation in the shoot Pb concentration, tolerance
index, enrichment coefficient, and translocation factor of ornamental plants, respectively
(Figure 4). Among all the constrained variables, root dry weight had a significant influence
on the tolerance index of the three tested ornamental plants (T. patula, S. nigrum, and M.
jalapa) and explained 68.4%, 60.7%, and 87.1% of the variance, respectively (Table 2). Among
the three tested ornamental plants, only the root diameter of M.jalapa had a significant
influence on ornamental plants’ enrichment ability for Pb and explained 76.2% of the
variance (Table 2). It can be concluded that the biomass and root length of the root systems
of the three tested ornamental plants can be adjusted to improve the plants’ tolerance
and enrichment ability of Pb under different Pb concentration stress conditions. The
findings regarding the use of these ornamental plants for phytoremediation or landscaping
contaminated areas should be beneficial.
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Figure 4. Redundancy analysis (RDA) on the shoot lead concentration (SLC), tolerance index (TI),
enrichment coefficient (EC), and translocation factor (TF) with the root dry weight (RDW), root
length (RL), root surface area (RS), root volume (RV), and root average diameter (RAD) of ornamental
plants, respectively. T. patula, Tagetes patula (A), S. nigrum, Solanum nigrum (B) and M. jalapa, Mirabilis
jalapa (C).
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Table 2. Results of permutation test of redundancy analysis (RDA) on predictor variables for the
tolerance and enrichment capacity of ornamental plants.

Ornamentals Variety Root Morphology Index Explains (%) F Value p Value

T. patula RDW 68.4 28.193 0.002
RL 16.3 2.523 0.152
RS 12.8 1.913 0.182
RV 11.1 1.631 0.246

RAD 6.8 0.945 0.332

S. nigrum RDW 60.7 20.101 0.002
RL 33.0 6.402 0.024
RS 41.5 9.236 0.006
RV 29.5 5.449 0.026

RAD 43.4 9.951 0.006

M. jalapa RDW 87.1 88.122 0.002
RL 84.8 72.766 0.002
RS 65.2 24.315 0.002
RV 79.2 49.537 0.002

RAD 76.2 41.516 0.002
T. patula, Tagetes patula. S. nigrum, Solanum nigrum and M. jalapa, Mirabilis jalapa. RDW, root dry weight. RL, root
length. RS, root surface area. RV, root volume. RAD, root average diameter.

4. Conclusions

In conclusion, the growth in the shoots and roots of the three tested ornamental
plants was significantly inhibited under Pb stress. As the Pb concentration increased,
the root length, root surface area, and root volume of the three tested ornamental plants
showed a clear decreasing trend, but the average root diameter of M. jalapa showed a
trend that first increased and then decreased. M. jalapa exhibited the strongest tolerance
among the three tested ornamental plants. The highest values of Pb content in the shoots
were 1074.1 mg/kg, 958.7 mg/kg, and 975.3 mg/kg, indicating that all plants reached
the critical level of Pb hyperaccumulators [33]. In addition, the EC values of the tested
ornamental plants were the highest in the shoot part of S. nigrum and the root part of T.
patula. Unfortunately, the TF values were all less than one. Redundancy analysis showed
that root architecture changes in the three tested ornamental plants were closely related to
the tolerance, accumulation, and transfer ability of the heavy metal Pb. In the hydroponic
experiment, the three tested ornamental plants minimized the toxicity of heavy metals to
themselves through the plasticity of the root system and the coping strategy of reducing the
growth of the root system rather than increasing the accumulation and transfer of heavy
metals through a change in the root system’s configuration. Therefore, in actual heavy
metal-contaminated water and soil environments, various agronomic measures can be
taken to improve the tolerance and enrichment capacity by regulating the root biomass and
root length of the three test ornamental plants. Whether the hydroponic experiments of
the three ornamental plants Pb to different results from soil growth in real environments,
these results need to be further verified by potting experiments and in situ experiments.
In addition, the ornamental plants examined in this study were also annual ornamental
plants. Plants must be sown, cultivated, and regularly watered each year. All of this entails
significant expenses. Future studies might look into picking certain perennial ornamental
plants or collaborating with local landscape management.
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