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Abstract: With the increasing frequency of emergencies in recent years, the emergency response
capacity of the emergency management system needs to be improved. Based on safety stock strategy,
this paper proposes a multilevel siting model on the topic of mobile emergency response. We modeled
the emergency response needs during emergencies by incorporating the population distribution of
each region. The uncertainty of emergencies is modeled by aggregating the frequency of crises in
each region over the past 20 years. The site selection model minimizes contingency logistics costs that
include transshipment, deployment, inventory, and safety stock costs. In this paper, the IA (Immune
Algorithm) is optimized to solve the constructed emergency site selection model. The experiments on
the model were carried out with data from the area of Chongqing, Sichuan Province. The number
of logistics centers and distribution storage warehouses was tested. The influence of safety stock
strategy on the total cost of emergency logistics was analyzed. The research results found that the
cost of safety stock is negatively related to the cost of transshipment. In addition, the total cost of
emergency logistics has a lower bound. Adding distribution and storage warehouses does not further
reduce the total emergency logistics cost.

Keywords: emergencies; site selection of mobile emergency logistics; safety inventory; immune
algorithm

1. Introduction

With globalization and technological advances, the frequency and impact of emergen-
cies are increasing. For example, the New Crown epidemic in 2020, the Australian Hill
fires in 2021, the Texas blackout in 2020, and the Indonesian earthquake in 2019 caused
shortages or difficulties in shipping supplies. Emergency logistics systems that can respond
quickly depend on large safety stocks. Large safety stocks can significantly raise the to-
tal cost of emergency logistics. Safety stock is the number of supplies increased to cope
with uncertainty, which directly affects the reliability and speed of emergency response.
Therefore, setting safety stock is an important consideration in the optimization problem of
mobile emergency logistics.

For the multi-stage site selection problem of emergency logistics, based on the un-
certainty and ambiguity of disaster relief information, Zhu [1] proposed a cooperative
optimization model with a comprehensive evaluation framework as the supplier of emer-
gency materials. A multi-attribute grouping decision ranking method is used to select the
best emergency material suppliers. Multi-objective fuzzy optimization was carried out
in three emergency response phases: pre-disaster, disaster, and post-disaster. Increased
demand uncertainty sometimes leads to lower levels of safety stock and increases total
storage costs. In order to limit the excess risk, Zhang [2] proposed relying more on capital
stock to reduce the reliance on safety stock. Based on a continuous nonlinear formulation
that integrates location, allocation and inventory decisions, Puga [3] proposed a location-
inventory siting model for large supply chains with uncertain demand. That model includes
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transportation cost, cycle stock, safety stock, ordering and facility activation. According to
the problem of preference uncertainty in the decision-making process, Liu [4] presents a
Group Decision-Making (GDM) method with Interval Linguistic Fuzzy Preference Rela-
tionship (ILFPR). To verify the applicability and credibility of the proposed method, the
article is validated with case studies. In response to the problem of high uncertainty in the
evolutionary direction of emergencies, Fei [5] offered a hybrid decision-making approach
that takes into account intuitionistic fuzzy environments, linguistic environments, and
their hybrid environments. The article verifies the effectiveness of the proposed model
in the case of flooding in China. Wu [6] solved the rescue path selection problem in the
uncertain environment of vehicular traffic accidents by minimizing the vehicle travel time
of nodes and road sections. The risk coefficient of the rescue path is calculated based on the
elastic time window, and decision support is provided for the path selection of emergency
rescue. To solve the emergency demand uncertainty problem, Ge [7] introduced a two-stage
model. The model is used to calculate the problem of the siting and material distribu-
tion of emergency logistics centers in the region. The NSGA-II algorithmic site selection
model is combined to solve the problem. In order to solve the emergency rescue problem
for driver-passenger hijacking incidents, Luo [8] proposed a multi-vehicle mutual rescue
(MMR) model for cab platforms. The Pareto evolutionary algorithm (SPEA II), Frank-Wolfe
algorithm, and two-stage coding method are applied to solve the NP-hard problem of the
MMR model. The MMR model is examined using road information and O-D traffic, and the
utility of the hybrid algorithm and the MMR model is analyzed. In response to the problem
of uncertain production disruptions affecting the supply chain during emergencies, Zhu [9]
investigated a new recovery strategy. This strategy utilizes investments to adjust the speed
and duration of capacity recovery. A two-stage stochastic programming model (RTSPM)
that simulates the recovery behavior in response to different disruptions to avoid risks is
proposed. To justify the efficiency of the method, the article proposed a trust-region-based
decomposition method to solve the RTSPM. To respond to the emergency relief problem of
uncertainty in the last-mile delivery time, Zhang [10] proposed an opportunity constraint
model. This model considers emergency fair siting as emergency logistics centers (ELCs).
For the contingency decision-making problem with uncertain information, Li [11] proposed
a novel consensus model to manage the non-cooperative behavior of experts in large-scale
group decision-making problems. This model introduces a group consistency index that
considers both the fuzzy preference value and the degree of cooperation to detect the
non-cooperative behavior of experts. Among the studies related to safety stock, de Kok [12]
proposed a typology of multilevel inventory management.

Extensive research on multilevel inventory management under uncertain demand
is categorized and reviewed. Maximizing the total cost of network population coverage
and minimizing the risk of network management, Hasani [13] proposed a humanitarian-
based approach to the stockpile grouping problem. This model optimizes the number of
inventory groups and service levels, the distribution of relief supplies, the location of relief
facilities, and the distribution of relief services. Based on blood expiration, shortage and
capacity, Ma [14] developed a dynamic emergency blood collection model. It was found
that the safety stock, target stock level and emergency blood demand estimation could
be moderately increased. This allows for emergency blood stock control parameters. To
minimize the expected total cost per unit of time, Bono [15] proposed an inventory strategy.
By considering energy costs, the article calculated the optimal size of order quantity,
safety stock and inventory cycle length. In order to design dynamic multi-commodity
SSC networks to compute contingency safety stocks and shared safety stocks, Zadeh [16]
proposed a mixed integer nonlinear programming (MINLP) model and mixed integer
linear programming (MILP) model. To demonstrate the stochastic humanitarian inventory
control model, Ozguven [17] validated the minimum safety stock level for contingency
inventory through a case study. Paterson [18] presented two methods of centralizing
inventory. Passive transshipment transfers inventory elsewhere in the network to cope
with shortages at one location. Active inventory redistribution is carried out to minimize
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the possibility of future shortages. Aiming at the uncertainty of the actual demand at the
demand point and the vehicle transportation time, Huali Sun [19] investigated a robust
optimization model for the location path of emergency facilities. The article minimizes the
sum of rescue time for material delivery to the demand point.

To summarize, existing research on emergency logistics siting problems mainly fo-
cuses on emergency uncertainty, safety stock strategy, and carrying out siting problems in
different contexts. This paper addresses the multilevel siting problem of mobile emergency
logistics, considering safety stock under contingency. To solve the problems of frequent
demand for emergencies and high emergency demand uncertainty, we calculate the emer-
gency demand through statistical population distribution and propose a multilevel siting
model for mobile emergency logistics, considering safety stock. The mobile emergency lo-
gistics system consists of logistics centers, distribution storage warehouses, and emergency
distribution facilities at three levels. The logistics center can process national-level logistics,
demand information and ensure that emergency supplies reach the disaster area as soon as
possible based on diversified transportation modes. As the relay station of the mobile emer-
gency logistics system, distribution storage warehouses are responsible for the temporary
storage and secondary distribution of emergency supplies. The emergency distribution
facility is the final link of the mobile emergency logistics and is responsible for delivering
emergency supplies to the affected population. Therefore, a three-level architecture is
used to construct the multi-level siting model of mobile emergency logistics. Minimize the
cost of emergency logistics storage and transit under emergencies. Finally, the optimized
immuno-optimization algorithm is used to solve the problem. We verify the effectiveness of
the mobile emergency multilevel siting model by comparing and analyzing the traditional
deployment scheme and heuristic deployment. Finally, appropriate management decision
suggestions are given for the characteristics of emergencies in different scenarios.

2. Model Construction
2.1. Problem Description

Emergencies involve many people and cover a wide range; emergency needs are
urgent, easy to spread, and must be coordinated in response to all regions. In the multilevel
location of mobile emergency logistics, the security inventory strategy directly affects
emergency logistics’ inventory and transfer costs. Uneven resource allocation, unclear
material transshipment strategies, and insufficient material stockpiles exist in the emergency
material distribution process. Consider safety stock strategies for emergency site selection
to minimize emergency logistics deployment, storage, and transit costs.

Multi-level location selection for mobile emergency logistics is influenced by many
variables. Such as demand, fixed costs of location selection, safety stock costs and trans-
shipment costs. Mobile emergency logistics includes a logistics center, a distribution
warehouse, and mobile emergency facilities.

The logistics center is responsible for transporting emergency materials to the distri-
bution warehouse. The distribution warehouse is responsible for distributing emergency
materials to the mobile emergency facilities, and the distribution warehouses can transfer
between each other. Mobile emergency facilities can cover emergency needs in a particular
region, as shown in Figure 1.

Compared with traditional emergency logistics, mobile emergency can effectively
reduce the storage and transportation costs of emergency logistics. The security inven-
tory strategy can ensure the rapid deployment and distribution of emergency materials.
In mobile emergency logistics, emergency materials must be deployed and distributed
according to actual needs to provide sufficient materials to reach the emergency area on
time. To realize rapid deployment and distribution, it is necessary to set up several logistics’
centers, distribution silos, and mobile emergency facilities in mobile emergency logistics
and disperse emergency materials to each logistics center and distribution silos. A reason-
able mathematical model must describe its structure and characteristics to solve mobile
emergency logistics’ multilevel location-allocation problem. According to the features of
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the multilevel location problem of mobile emergency logistics, its variable description is
shown in Table 1, and the following hypothesis is proposed:

Table 1. Variable descriptions.

Variable symbol:

K, J, I logistics center distribution & forwarding storage warehouse j and mobile emergency
unit alternative point collection

Fk, f j logistics center distribution & forwarding storage warehouse j site selection fixed costs

djk, dij

logistics center to distribution & forwarding storage warehouse j unit material
transportation cost, distribution & forwarding storage warehouse j to mobile emergency
unit i unit material transportation cost

µi, µj
mobile emergency unit and distribution and forwarding storage warehouse j coverage
area emergency demand value

h1, h2 logistics center distribution & forwarding storage warehouse j unit storage cost

Pk, Lj
emergency supplies transported to the logistics center k shipping time, transportation
time from logistics center distribution & forwarding storage warehouse j

α safety stock factor

q maximum number of distribution storage silos covered by logistics centers

Decision variables

ak logistics center whether the alternative point is selected

yij
whether the mobile emergency unit i is assigned to the distribution & forwarding
storage warehouse j

xjk distribution & forwarding storage warehouse j whether to assign to logistics center k

Assumption 1. There is no capacity limit for the logistics center and distribution warehouse.

Assumption 2. There are average inventory costs and safety inventory costs in the logistics center
and distribution warehouse.

Assumption 3. The emergency demand in the area covered by mobile emergency facilities is usually
distributed (µi, σi)
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2.2. Mobile Emergency Logistics Multilevel Site Selection Model

Based on the population distribution, road traffic and administrative boundaries of
the coverage area, the site selection model selects the number and location of logistics’
centers and warehouses. In order to solve the multilevel siting model for mobile emergency
logistics, the improved immuno-optimization algorithm (IIA) has strong global search ca-
pability, adaptability and robustness. Compared with other models, the mobile emergency
logistics model allows the distribution warehouses to transfer to each other. To minimize
the total cost of emergency logistics, a multilevel siting model of mobile emergency logistics
is constructed for emergency events:

minF = ∑
k∈K

Fkak + ∑
j∈J

( f jxj + ∑
j∈I

∑
k∈K

l̂jkxjk + ∑
i∈I

∑
j∈J

d̂ijµi) + S + T (1)

S = αh1∑
j∈J

σj

√
Lj+αh2 ∑

k∈K

√
Pk(∑ Ljσ

2
j ) (2)

T = (α∑
j∈J

σj

√
Lj − α

√
∑
j∈J

Ljσ
2
j ) ∑

i,j∈K
dij/n (3)

l̂jk = djk∑ µiyij (4)

d̂ij = dijµi (5)

µj = ∑
i

µi, σj =
√

∑
i

σ2
i (6)

∑
j∈J

xjk ≤ q, xj = {0, 1}, ∀k ∈ K (7)

∑
j∈J

∑
i∈I

dij ≤ (Dr
i + djc), ∀j ∈ J, ∀i ∈ I (8)

The objective Function (1) represents the minimization of the location cost of mobile
emergency logistics. The total cost includes the fixed costs of logistics centers and distri-
bution warehouses, transportation costs at all levels, and safety stock costs. Constraint
(2) indicates that the safety stock cost consists of the logistics center safety stock cost and
the distribution warehouse safety stock cost. Constraint (3) suggests that the retransfer
transportation cost equals the average distance between the distribution bins multiplied by
the safety stock difference between the distribution bins. Constraint (4) indicates that the
transportation cost between the logistics center and the distribution warehouse is related
to the transportation volume and price. Constraint (5) indicates the relationship between
transportation cost and demand volume. Constraint (6) shows that the emergency demand
expectation obeys a normal distribution. Constraint (7) indicates that, at most, one facility
is in the set of candidate sites for the distribution warehouse. Constraint (8) is used to
constrain the maximum coverage of the distribution area of the distribution warehouse.

3. Solution Algorithms
3.1. Algorithm Flow

To find the optimal or near-optimal solution to the problem, IIA simulates the mecha-
nisms of recognition, selection, mutation, and memory between antibodies and antigens.
The three-level mobile emergency logistics site selection model is computationally large,
and many influencing factors do not guarantee an optimal solution. Considering the influ-
ence of multiple structured factors according to the solution problem is often necessary in
practical situations, so a heuristic algorithm is used. To prevent falling into local optimal
solutions and improve the algorithm’s convergence speed and search efficiency, the elite
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strategy is used to enhance the retention of some of the best individuals. Elite selection is to
rank the individuals according to their adaptation values, select the best ones as privileged
individuals, and store these privileged individuals in the memory. The steps of the immune
optimization algorithm are shown in Figure 2:
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Step 1: Antigen identification, fitness function construction, and constraints formula-
tion. Step 2: Initialize the antibody population. Generate antibodies randomly based on the
number of demand points in the burst. The antibodies are extracted from memory to form
the initial antibody population. If the initial memory is empty, the initial antibodies are
generated randomly. Step 3: Calculate fitness values. Evaluate the fitness values of viable
solutions in the population. Store the best antibody in the population in memory based on
the ranking. Step 4: Select to judge and determine if the loop has reached the preset number
of iterations. If it reaches its end, otherwise go to the next step. Step 5: Avoid falling into lo-
cal optimal solutions and obtain global optimal solution. Calculation Step 6: Immunization
operation—immunize the antibody population, i.e., selection, crossover, and mutation, ac-
cording to the results of Step 3. The roulette mechanism performs selection [20,21] using the
expected reproduction probability obtained from (10) as the individual selection probability.
The crossover was operated by the single-point crossover method. The mutation zone
is served by randomly selecting mutation sites. Step 7 is to perform population renewal.
Replace antibodies in the population with randomly generated new antibodies that have a
lower expected probability of reproduction. A new generation of antibodies is formed and
proceeds to step 3.

3.2. Diversity Evaluation

The adaptation value of the antibody to the antigen is denoted as Av, i.e., the degree
of recognition of the antigen’s objective function to the antibody, which is the emergency
logistics cost used to indicate the excellence of the solution under the coverage constraint.
According to the mobile emergency logistics siting model for distribution warehouse siting,
the design affinity Function (8) is shown in Figure 2. The first term denotes the distance
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cost. The second term denotes the inventory cost. The third term denotes the safety stock
cost approximation.

Av =
1
Fv

, Fv = dijµi + λh∑
j∈J

µj + γαh
√

Lσj (9)

To ensure the diversity of the antibody population, the affinity between the antibodies
is expressed. The similarity of each scheme indicates the length of the antibody, i.e., the
number of loci. The number of places where the antibody is identical to the antibody, i.e.,
the overlapping regions in the two site selection schemes, T is a preset threshold. The R-bit
sequential method is adopted to determine the similarity between the antibodies, which
is a partial matching rule to prevent falling into the local optimal solution. We can avoid
the local optimal solution by determining whether the answers are similar and excluding
similar solutions.

Sv,s = 1,
kv,s

L
≥ T; 0, else (10)

The antibody concentration is the proportion of similar antibodies in the antibody
population, i.e., the proportion of similar solutions among all site selection solutions. It is
the total number of antibodies, i.e., the number of all site selection solutions. The more
significant antibody concentration represents the higher similarity of the two solutions.
Combining the elite strategy with minus can preserve the global optimal solution to a
certain extent and prevent the optimal solution from being too similar and falling into the
local optimum.

Cv =
1
N ∑

j∈Mi

Sv,s (11)

The antibody-antigen affinity and antibody concentration determine the expected
reproduction probability of an individual in a population Cv. It is a constant. Then, the
individual antigen affinity is positively correlated with the predicted reproduction proba-
bility P; antibody concentration is negatively correlated with the expected reproduction
probability P. This promotes an excellent level of emergency logistics for high antigen affin-
ity antibodies, i.e., site-selection schemes, and suppresses individuals with high antibody
concentrations Cv, i.e., site-selection schemes with too much similarity, thus ensuring the
diversity of individual populations. The remaining individuals were stored and ranked
according to the expected reproduction probability P. Those with higher adaptation values
were more likely to produce offspring among the ranked individuals.

P = β
Av

∑ Av
− (1− β)

Cv

∑ Cv
(12)

4. Analysis of Examples
4.1. Description of the Example

A total of 148 alternative points were selected for mobile emergency logistics multilevel
site selection in the Chongqing-Sichuan region. The center of mass of each administrative
county and district is regarded as an alternative point in the region. The population distri-
bution of each county and district is used to determine the demand for each alternative
point. The fixed site selection cost is divided by 10 for the average house price in Sichuan
and Chongqing. The normalization of alternative site coordinates and population distribu-
tion is shown in Figure 3. The population distribution data for Chongqing and Sichuan
were obtained from the seventh population census. Population density distribution data is
obtained from the World Pop Hub. The coordinates of the demand points are obtained by
calling the Gaode map to find the center of mass of the region through the Data Map. The
fixed cost of the alternative point location is equal to that shown in the parameter setting in
Table 2. The alternative sites in Sichuan and Chongqing are summarized in Table 3.
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Table 2. Basic parameter settings.

Symbols Charges Value

Fi,j,k alternative site selection fixed costs 700

h unit storage cost of logistics center and distribution warehouse 0.2

L lead time for distribution of storage silos to mobile emergency facilities 1

P lead time from logistics center to distribution and storage warehouse 1

α service level factor 1.5

Table 3. Coordinates and population size of Sichuan and Chongqing regions.

Number Administrative City Political Districts and Counties Coordinates Population (10,000)

1 Deyang Jingyang District 104.411173, 31.128261 66.32
2 Deyang Luojiang District 104.516205, 31.320187 31
3 Deyang Zhongjiang County 104.672767, 31.04837 25
4 Deyang Shifang city 104.172259, 31.133931 37
5 Deyang Mianzhu 104.22251, 31.343409 38

. . . . . . . . . . . . . . .
161 Chongqing Youyangxian 108.77212, 28.8412 23.85
162 Chongqing Xiushanxian 108.97297, 28.4526 13.09
163 Chongqing Qianjiang District 108.77067, 29.5333 103.05
164 Chongqing Jiangjin District 106.25928, 29.2837 63.66
165 Chongqing Hechuan District 106.27328, 29.9909 49.48
166 Chongqing Nanchuan District 107.09896, 29.1566 46.05
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4.2. Algorithm Analysis

The algorithm was programmed and experimented with using MATLAB2020B. The
experimental computer environment was an Intel 11th Gen Core i5-1135G7@2.40GHz
quad-core with 16 G of RAM. Sensitivity analysis of IIA was performed, and it was found
that the population size affects the search range of the algorithm.

Theoretically, increasing the number of iterations increases the likelihood that the
algorithm will find a globally optimal solution. In our experiments, we took 50 times, that
is 300 times, as the maximum number of iterations after the solution results were stabilized
and there were no more changes. The crossover probability and variance probability
are used to balance the local optimal solution and the global optimal solution, so the
crossover probability is taken as 0.5 for stabilizing the speed and aggregation of the search
process. The variance probability is taken as 0.4 to increase the population’s diversity
and not make the search process too scattered and difficult to converge. The diversity
evaluation parameter prevents the solutions from being too similar and falling into local
optimal solutions, and 0.95 can effectively ensure the diversity of the solution results. The
population size of 200 is determined mainly based on the number of candidate points. This
not only helps to improve the search space of the algorithm but also ensures its performance
while considering computational efficiency. The memory capacity is the maximum capacity
to store the optimal solution. It is taken as 40 in order to guide the algorithm in the search
process. It prevents the algorithm from falling into a local optimal solution, but it is not too
large to affect the computational efficiency.

In order to test the potential solution space, a sensitivity analysis was performed on
population size. Solutions were performed for population sizes of 50, 100, 150, 200 and
250 without changing other parameter settings. To address the effect of population size
on the value of the objective function, an improved immuno-optimization algorithm was
tested. The results show that the population size affects the initial solution level directly, and
the larger the population size, the better the initial performance. As the number of iterations
increases, population size is negatively correlated with affinity. The larger the population,
the more stable the convergence is. However, the number of iterations required to stabilize
the relationship increases. After many iterations, the population size does not have much
effect on the affinity value. This is because both the maximum and minimum population
size curves eventually converge to a closer affinity value. Therefore, it is reasonable to
set the population size to 200, as shown in Figure 4, with Xlabel representing the number
of iterations.
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The unimproved immune optimization algorithm (IA) and the improved immune
optimization algorithm (IIA) were selected for performance comparison. The parameter
settings of the enhanced algorithm are shown in Table 4. The solution comparison with
the Genetic Algorithm (GA) and Particle Swarm Algorithm (PSO) using both algorithms
according to the same parameters, respectively, is shown in Figure 5. To verify the ef-
fectiveness of the improved immune optimization algorithm, its adaptation values were
compared with those of the other three basic intelligent optimization algorithms.

Table 4. Parameter settings of the immune optimization algorithm.

Parameters Value

maximum number of iterations 300
crossover probability 0.5
mutation probability 0.4

diversity evaluation parameters 0.95
population size 200

memory bank capacity 40
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Figure 5. Comparison of algorithm iterations.

From Figure 6, we can see that the adaptation value of IIA is higher than that of IA,
GA, and PSO algorithms in the early iteration. As the number of iterations increases, the
local search ability and global search ability of the IIA algorithm are further enhanced. The
adaptation value of IIA algorithm is better than that of the PSO and IA algorithms. PSO
and IA are more stable throughout the iterations, and the final search result is slightly better
than GA’s. Still, PSO tends to fall into the local optimum at the beginning of the iteration.
In addition, the GA optimum is more stable at the beginning of the algebraic iteration. Still,
with the increase in iterations, the GA falls into the local optimum solution, while the IIA
solves this problem. It jumps out of the local optimum, enhances the local search ability,
and improves the data quality of IA.

IIA outperforms most classical intelligent algorithms by combining adaptation value
and stability. It effectively reduces the cost of emergency logistics, has a robust global
search capability, and is not easily trapped in the local optimum. Therefore, the IIA solver
obtains the siting result of the siting model. The solution can provide a certain reference for
the actual emergency logistics site selection planning.
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4.3. Result Analysis

The coordinates of mobile emergency facilities in 148 counties and districts were
selected in Sichuan and Chongqing. The emergency logistics centers were chosen using
the improved immune optimization algorithm. As shown in Figure 6, two logistics centers
were deployed in Jinniu District, Chengdu and Hechuan District, Chongqing. Distribu-
tion warehouses were selected among the alternative sites in the remaining districts and
communities. Materials were transported to the distribution warehouses through the
logistics centers.

The relationship between the affinity value, solution time, and the number of ware-
houses is shown in Figure 7.
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An increase in the number of warehouses will increase the level of mobile emergency
logistics. Affinity decreases as the number of warehouses increases. Still, the affinity curve
decreases with the increase in the number of warehouses, slows down significantly, and
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levels off around the number of warehouses equal to 18. Due to the intelligent optimization
algorithm, the solution time becomes longer as the number of allocated storage points
increases. The solution time also fluctuates occasionally as the number of allocated storage
bins increases. Generally speaking, the higher the safety stock coefficient of the distribution
warehouse, the larger the safety stock is. The larger the safety stock, the lower the transit
cost. The statistics of the number of emergencies at all levels in the last 20 years in all
districts and counties of Sichuan and Chongqing are shown in Table 5 and plotted as shown
in Figure 8.

Table 5. Frequency of emergencies in Sichuan and Chongqing in the past 20 years.

Number Political Districts and Counties Level 1 Level 2 Level 3 Level 4 Total

1 Jingyang 5 8 10 15 38
2 Mianzhu 3 5 7 11 26
3 Luojiang 2 4 6 9 21
4 Zhongjiang 4 7 9 14 34
5 Guanghan 6 9 11 16 42

. . . . . . . . . . . . . . . . . . . . .
155 Wushan 1 3 5 7 16
156 Wuxi 1 3 5 7 16
161 Fuling 1 3 5 7 16
162 Shijiazhuang 1 3 5 7 16
163 Wanzhou 1 3 5 7 16
164 Tongnan 1 3 5 7 16
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Level 1 to 4 emergencies have approximately the same probability of occurring in each
region. Each region’s safety stock factor assignment is based on a summary of the number
of emergencies. The safety stock coefficients were assigned to four intervals (0.2, 0.3, 0.4,
0.5) for the total number of emergencies in the last 20 years (0–16, 17–30, 31–45, 46–70). The
number of warehouses is equal to 18. Warehouses in each region are assigned safety stock
coefficients according to Table 4 for site selection. The results of the warehouse siting are
shown in Figure 9. In summary, further analysis leads to the following:
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Based on the above site selection results, the relationship between inventory, trans-
shipment, and total costs is measured by adjusting the safety factor, as shown in Figure 10.
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Inventory costs include contingency and safety inventory costs, and transshipment
costs include horizontal and vertical transportation costs. In general, inventory costs
become higher as the safety stock factor increases. Transit costs decrease as the safety stock
factor increases. The total cost of emergency logistics is mainly affected by transshipment
costs. Total emergency logistics costs increase with the rise in the safety stock factor. In
addition, the calculations based on the above overview also lead to:

(1) Safety stock and transshipment costs are negatively correlated, i.e., an increase in
safety stock will reduce transshipment costs. The ratio of safety stock and trans-shipment
fee unit costs affects the setting of the safety stock strategy. The larger the proportion of
safety stock costs, the greater the impact on total costs. The smaller the transit fee balance,
the greater the impact on total costs. In general, transshipment costs mainly affect the total
cost of emergency logistics. Therefore, a higher safety stock factor in emergency-prone
areas can reduce the transshipment cost more effectively, and it is reasonable and feasible to
assign a value to the safety stock factor according to the statistical level of emergency events.

(2) The deployment of the Emergency Logistics Center has been effective. Contingency
logistics centers can only be deployed in smaller quantities because of higher deployment
costs and inventory levels. Transit costs mainly affect the total cost of emergency logistics.
Emergency logistics centers cover several warehouses. The more the logistics transfer effect
plays, the stronger it is, and warehouses can still move the transfer. Therefore, from the
perspective of the mobile emergency logistics system, the actual coverage of the emergency
logistics center has been significantly improved under the safety stock strategy.

(3) There is a lower limit on the cost of mobile emergency logistics. The total cost
of emergency logistics is limited by population distribution, transshipment costs, and
inventory costs and cannot be further reduced after it reaches a certain level. The removal
of restrictions on the number of emergency logistics centers and warehouses to be deployed
has resulted in an overall leveling off of the total cost of emergency logistics. The total
cost of contingency logistics will not decrease as a result of an increase in the number of
contingency logistics centers and warehouses. Non-core counties and districts with sparse
population distribution, remote distance, and low safety stock coefficients covering their
emergency needs mainly rely on the neighboring warehouses for transshipment. This
suggests that adopting a hierarchical coverage of mobile emergency logistics is a more
effective strategy in emergencies.

In summary, we give the following management suggestions: 1. In areas where
emergencies occur more frequently, setting up a higher level of safety stock can effectively
reduce the total cost of emergency logistics; 2. Emergency logistics centers should be
built in areas where the population is more concentrated so that they can more effectively
respond to the emergency needs of many people during emergencies; 3. In areas where the
population distribution is more sporadic, the number of distribution warehouses should be
increased and their coverage expanded to meet emergency needs more effectively.

5. Conclusions

This paper models the problem of mobile emergency logistics siting for emergencies,
considering safety stock. The model estimates the demand for emergency supplies and sets
the safety stock strategy by quantifying the population distribution and the frequency of
past emergencies. In order to adapt to the uncertainty and dynamics of emergencies, the
immuno-optimization algorithm is improved. The quality and efficiency of the solution
to the emergency logistics positioning optimization problem are improved. The examples
show that the model has strong advantages in improving the solution quality of emergency
logistics location optimization. However, there are some limitations to the current study.
Inter-level transportation and transshipment in the three-level emergency logistics system
are not considered. There is no planning for emergency logistics synergy at the national
or higher level. Decision makers can plan appropriate emergency logistics sites based on
the scale of the emergency, population distribution in the jurisdiction, and safety inventory
factors. The focus of future research is to explore the directions of multi-objective mobile
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emergency logistics site selection, mobile emergency big data service optimization, and
enrichment of more emergency scenario requirements.
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