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Abstract: Reflective cracking is a common distress of old pavement overlaid with an asphalt layer. The
asphalt rubber stress-absorbing membrane interlayer can effectively mitigate and prevent reflective
cracking. However, the existing test methods and evaluation indices for the crack resistance of the
asphalt rubber stress-absorbing membrane interlayer are insufficient and unsystematic. They do not
account for the significant effect of gradation parameters on the crack resistance in a comprehensive
way. Therefore, this research aims to explore the impact of gradation parameters on the performance
of the asphalt rubber stress-absorbing membrane interlayer. Based on the Chinese and U.S. standards,
three kinds of 10 types of gradation were selected, forming a total of seven groups. The asphalt
rubber stress-absorbing membrane interlayer was subjected to −10 ◦C and 15 ◦C beam bending test,
low-temperature semi-circular bend test, crack expansion semi-circular bend test, and overlay test
to evaluate its cracking resistance. The correlation and influence law between the key sieve hole
method, graded fractal method, and Bayley method parameters of different grades and beam bending
test, low-temperature semi-circular bend test, crack expansion semi-circular bend test, and overlay
test indexes were quantitatively analyzed by the coefficient of variation and Pearson correlation
analysis method. The results showed that the performance of the mixtures with different gradation
ranges varied significantly in different tests, as indicated by the maximum difference of 56.07% in
stress absorption. This implied that gradation is a critical factor that affects the stress absorption
performance of mixes. The different sensitivities of different tests to the parameters of the key
sieve method, the graded fractal method, and the Bailey method indicated that the stress absorption
performance was affected by a combination of factors. Therefore, in order to evaluate and optimize the
stress absorption performance, it was necessary to comprehensively consider the interactions among
the parameters of the key sieve method, the graded fractal method, and the Bailey method. The
stress absorption performance included crack resistance and crack expansion resistance, which were
inversely related and needed to be balanced and optimized during design. The−10 ◦C beam bending
test and crack expansion semi-circular bend tests were more suitable test methods for evaluating
stress absorption performance, and maximum flexural–tensile strain, strain energy density, fracture
energy, and flexibility index were recommended as evaluation indicators. This research provides a
reference for the optimization of the grading design of asphalt rubber stress-absorbing membrane
interlayers, and provides test methods and indicators for the evaluation of crack resistance.

Keywords: crack resistance; gradation; reflective cracking; asphalt rubber stress-absorbing
membrane interlayer
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1. Introduction

For the maintenance of old roads or the reconstruction and upgrading of low-grade
highways, the commonly adopted method is to overlay the asphalt pavement layer. Under
the action of load and environment, the asphalt pavement layer will fill in the original
old pavement joints and cracks at the occurrence of the stress concentration phenomenon,
so that the asphalt pavement layer produces the bottom-up cracks-reflection cracks [1,2].
Reflective cracking can cause damage such as cracking and loosening, which significantly
reduces the performance and service life of the pavement. To mitigate and prevent reflective
cracking, stress-absorbing layer technology has been developed [3,4]. This technology
involves adding a layer of material that can absorb the stress and strain caused by the
movement of the old pavement, thus delaying or avoiding the formation of reflective
cracks [5,6].

A stress-absorbing membrane interlayer is a type of interlayer material that is placed
between the asphalt surface layer and the original old pavement or semi-rigid base. Its
main function is to absorb or reduce the stress concentration that occurs at the joints or
cracks of the old pavement, and to decrease the load stress and temperature stress at the
bottom of the asphalt surface layer. This can slow down the initiation and expansion of
reflective cracks, and effectively improve the service life of the asphalt surface layer [5,6].
The common materials for stress-absorbing layers are crumb-rubber-modified asphalt [7],
geotextile [8], and smart composite [9]. Among them, crumb-rubber-modified asphalt has
been widely used due to its excellent performance and sustainability [3].

Ogundipe [10,11] and Chen [7] examined the reflection cracking resistance perfor-
mance of a stress-absorbing membrane interlayer (SAMI) under traffic load and found that
the SAMI can significantly delay reflective cracking. Li [12] studied the reflection cracking
resistance performance of six kinds of asphalt overlays by bending and shear tests. The
results show that SAMPAVE (Stress Absorbing Mixtures Pavement), a stress absorbing
mixture developed by Chang’an University, has excellent anti-cracking performance for
fatigue. Pan [13] studied the crack resistance of warm mix rubber-modified asphalt mixture
(WMRMA) by tensile stress restrained specimen test (TSRST) and finite element analysis
method. The results show that WMRMA shows good low-temperature performance in the
case of blending and compaction temperature fall of 30 ◦C, and it can delay the formation
and extension of reflective cracks on the asphalt surface and prolong the service life of
the asphalt surface. Baghel [14] developed a 3D finite element model to simulate the load
response of inverted pavement with two types of interlayers: aggregate interlayer and
stress-absorbing membrane interlayer. The results showed that the asphalt concrete layer of
stress-absorbing membrane interlayer pavement experienced lower stress and strain levels
than that of aggregate interlayer pavement. Yu [15] conducted the Hamburg wheel tracking
test on four stress-absorbing interlayers, and the results showed that the asphalt–rubber
sand concrete interlayer had the best reflection crack resistance performance. Asadi [16]
conducted an experimental study on the influence of temperature, frequency, and geocom-
posite strength on the asphalt overlay cracking. The results revealed that temperature was
the most significant factor in the reflective cracking rate. Shafabakhsh [17] examined the
performance of natural zeolite and hydrated lime as additives for crumb-rubber-modified
asphalt binder to prevent reflective cracking in composite pavements. The results show that
both additives reduced the crack propagation rate, but natural zeolite was more effective
than hydrated lime. Qiang [18] tested three kinds of warm mix rubber asphalt with differ-
ent gradations and found that the gradation had a significant effect on the performance.
Tran [19] conducted the notched semi-circular bending (SCB) test on seven different grada-
tions of hot mix asphalt. The results show that the aggregate gradation has a significant
correlation with the crack resistance of hot mix asphalt. Germann [20] invented the overlay
test (OT). Zhou [21] improved the OT. Wang [22] tested the stress-absorption interlayer
(SAI) with the waste tire rubber and amorphous poly alpha olefin complex modified asphalt
binder and found that SAI has good fatigue resistance and reflection cracking resistance
performance. It is considered that the number of cycles and the fracture property indexes
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of the OT can effectively evaluate the reflection cracking resistance performance. Liu [23]
used the ultimate bending strain and stress intensity factor as the evaluation indexes of
the 5-type dense-graded stress-absorbing layer asphalt mixture to delay crack propagation.
Zhou [24] reported that there are four main forms of asphalt pavement cracking: thermal,
reflection, bottom-up fatigue, and top-down, and found that different tests reflect different
forms of asphalt mixture cracking.

Previous studies have only conducted qualitative classification of gradation, without
quantitatively evaluating its effect on stress absorption performance. Moreover, the existing
research has considered a limited number of gradation types, which are not representative
of different regions, and the recommended gradation ranges vary greatly among them.
Therefore, it is necessary to further investigate the influence of gradation parameters
on the performance of asphalt rubber stress-absorbing membrane interlayer (AR-SAMI).
In addition, the cracking resistance of AR-SAMI is not adequately and systematically
evaluated by the existing evaluation systems. Therefore, it is necessary to develop a
comprehensive evaluation index system for AR-SAMI to provide a theoretical basis for its
rational application.

The main objective of this research is to examine the influence and correlation of the
key sieve method, the gradation fractal method, and the Bailey method parameters on the
cracking resistance evaluation indices, and to propose suitable test methods and indices for
evaluating the crack resistance performance of AR-SAMI. The beam bending test (BBT),
low-temperature SCB (LT-SCB) test, crack expansion SCB (CE-SCB) test, and OT were
conducted to measure the crack resistance of the AR-SAMI.

2. Materials and Methods
2.1. Crumb-Rubber-Modified Asphalt

The crumb-rubber-modified asphalt was prepared with 70#A grade base asphalt, 20%
dosage of 30–80 mesh rubber powder, and stabilizer [25]. The stabilizer is produced by
Guangxi Transportation Science and Technology Group Co., Ltd., Nanning, China. The
properties of the rubber-modified asphalt are shown in Table 1.

Table 1. Properties of crumb-rubber-modified asphalt.

Physical Properties Unit Value Technical
Requirement [26] Standard [27]

Penetration (25 ◦C, 100 g, 5 s) 0.1 mm 39.3 30~70 T 0604
Ductility (5 ◦C, 5 cm/min) cm 11.6 >5 T 0605

Softening point ◦C 75.5 >65 T 0606
Brookfield viscosity (180 ◦C) Pa·s 2.51 2.0~5.0 T 0625
Elastic recovery rate (25 ◦C) % 94.0 >60 T 0662

2.2. Aggregate

This study used limestone as both coarse and fine aggregates, and their main properties
are shown in Table 2.

Table 2. Properties of aggregate.

Aggregate Types Technical Index Units Value
Technical

Requirement
[28]

Standard [27]

Coarse
aggregate

Crushing value % 17 ≤26 T 0316

Apparent relative
gravity

13.2 mm
-

2.705
≥2.60 T 03049.5 mm 2.735

4.75 mm 2.63

Bulk specific
gravity

13.2 mm
-

2.676
- T 03049.5 mm 2.654

4.75 mm 2.611
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Table 2. Cont.

Aggregate Types Technical Index Units Value
Technical

Requirement
[28]

Standard [27]

Coarse
aggregate

Water absorption
13.2 mm

%
0.41

≤2.0 T 03049.5 mm 1.11
4.75 mm 0.27

Los Angeles
abrasion loss

10–20 mm
%

15.6
≤30 T 03175–10 mm 20.1

3–5 mm 18.7

Flat and
elongated

particles content

10–20 mm
%

13.2 ≤15
T 03125–10 mm 10.9 ≤15

3–5 mm 7.5 ≤20

Adhesional degree with aggregate - 5 ≥4 T 0616

Fine aggregate

Bulk specific gravity - 2.62 - T 0304

water absorption % 0.27 - T 0304

Apparent specific gravity - 2.622 ≥2.50 T 0304

Sand equivalent % 69 ≥60 T 0334

Angularity (flow time method) s 32.2 ≥30 T 0345

2.3. Asphalt Mixture
2.3.1. Gradation

The mineral gradation of a stress-absorbing membrane interlayer can be mainly classi-
fied into two types: 5-type [29,30] and 10-type [28,31–38] gradation, with the latter being
more prevalent. The 10-type gradation is mostly continuous, and all levels of gradation
intersect and overlap with each other. The gradation curve analysis showed that the
CAM [31] gradation had a gap at 0.15 mm sieve. The gradation of all levels had a signif-
icant difference in the passing rate of 4.75 mm sieve. The CAM, JTG F40-2004 [28], and
DBJ/T13-147-2012 [38] had a higher passing rate of 4.75 mm sieve than the other gradations.
Therefore, three types of type-10 gradations were classified as 10A, 10B, and 10C, as shown
in Figure 1. The test gradation is shown in Figure 2.
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Figure 2. Gradation of AR-SAMI.

(a) Referring to the gradation range of CAM, it was named 10A, and one gradation was
selected and named 10A-1.

(b) Referring to the gradation range of JTG F40-2004 and DBJ/T13-147-2012, it was named
10B, and one gradation was selected and named 10B-1.

(c) Referring to the gradation range of DB45/T 1098-2014 [32], DB 36/T 744-2013 [33],
DG/TJ08-2109-2012 [34], DB11/T 916-2012 [35], DB13/T 1013-2009 [36], and DB14/T
160-2015 [37], it was named 10C, and three gradations were selected and named 10C-1,
10C-2, 10C-3. Referring to the specific engineering gradation of Minzu (MZ) Avenue
and Guigang (GG) Expressway, two gradations were selected and named 10C-MZ
and 10C-GG.

To eliminate the influence of the change of air voids on the asphalt mixture, the
Marshall design method was adopted. The optimum asphalt content was determined as
the one corresponding to 2.5% design air voids. The volume parameters of the asphalt
mixture are shown in Table 3.

Table 3. Asphalt mixture volume parameters.

Gradations
Types

Optimal
Asphalt–

Aggregate
Ratio/%

Theoretical
Maximum
Relative

Density of
Asphalt
Mixture

Bulk
Volume
Relative

Density of
Asphalt
Mixture

VV/% VMA/% VFA/% Stability/kN Flow
Value/mm FB Asphalt Film

Thickness/µm

10A-1 6.95 2.394 2.333 2.5 16.82 85.15 9.48 2.87 0.94 10.06
10B-1 6.10 2.425 2.364 2.5 15.11 83.41 8.65 2.76 1.08 9.70
10C-1 7.49 2.381 2.333 2.5 17.64 85.66 7.66 3.14 0.45 21.24
10C-2 6.55 2.410 2.343 2.5 15.93 84.38 7.81 3.33 1.35 9.71

10C-MZ 7.49 2.377 2.316 2.5 17.70 85.90 7.05 4.07 0.88 15.28
10C-GG 7.00 2.403 2.340 2.5 16.65 85.00 6.84 2.87 0.93 9.53

10C-3 6.46 2.409 2.350 2.5 15.78 84.18 7.84 3.78 1.02 11.51

2.3.2. Gradation Evaluation Methods

Gradation is an important factor that affects the performance of asphalt mixtures. It is
of great significance to quantify the effect of gradation and evaluate the performance of
mixtures using suitable evaluation parameters. The current methods for grading evaluation
can be mainly classified into two categories: the key sieve method and the grading fractal
method. The key sieve method evaluates the gradation by using the passing rates or
ratios of certain key sieves or sieves in the mineral gradation. The grading fractal method
evaluates the gradation by using the fractal theory to obtain the fractal dimension of
composite gradation (D), the fractal dimension of coarse aggregate gradation (Dc), and the
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fractal dimension of aggregate (Df) of the gradation. The grading parameters used in this
chapter are as follows:

(a) Key sieve passing ratios. As shown in Figure 2, there is a large difference in the passing
ratios at the 4.75 mm sieve among different gradations. According to JTG F40-2004 [28],
the 10-type gradation uses the 2.36 mm sieve as the key sieve to distinguish between
coarse and fine aggregates. The passing rates at the 4.75 mm and 2.36 mm sieves
affect the voids in the mineral aggregate (VMA) and the air voids (VV) of the mixture,
and VMA and VV affect the mixture properties. Therefore, P4.75mm and P2.36mm were
selected as key sieve passing rates.

(b) Key particle size aggregate content. The content of coarse aggregate above 2.36 mm
affects the skeleton structure of the mixture and determines the initial voids in the
mixture. Therefore, 4.75–9.5 mm and 2.36–4.75 mm were selected as key particle sizes.

(c) The primary control sieve index (PCSI) [39]

PCSI = PPCS − PPCS,MDL (1)

where PCSI is the difference in percentage passing between the given gradation and
the point on the maximum density line at the primary control sieve; P is the passage
ratio of the corresponding sieve, %; d is the maximum nominal particle size, mm;
the primary control sieve (PCS) is 0.22 × d, mm; PPCS,MDL is the passage ratio of the
maximum density curve at PCS, taken as 47%, %.

(d) Parameters of the Bailey method

CA =
PD/2 − PPCS
100− PD/2

(2)

FAc =
PSCS
PPCS

(3)

FA f =
PTCS
PSCS

(4)

where CA is the coarse aggregate ratio; FAc is the fine aggregate coarse ratio; FAf is the
fine aggregate fine ratio; the secondary control sieve (SCS) is 0.22 × PCS; the third
control sieve (TCS) is 0.22 × TCS.

(e) Fractal dimension
D = 3− k (5)

where D is the mass fractal dimension; k is the slope of the fitting line obtained
by linear regression in the double logarithmic coordinates of the sieve size and the
passing rate. When only the part above 2.36 mm or below is taken, the gradation
fractal dimensions Dc and Df of coarse aggregate and fine aggregate can be calculated
according to the fitting line, respectively.

The gradation parameters of the test gradations are shown in Table 4.

Table 4. Evaluation parameters of each gradation.

Gradation Types 10A-1 10B-1 10C-1 10C-2 10C-MZ 10C-GG 10C-3

Key sieve aggregate
content (%)

4.75–9.5 mm 19 34 64 60 49.7 43.8 60
2.36–4.75 mm 28 17 8 7 23.1 17 9

P4.75mm 80 57 28 35 49.1 38.7 38
P2.36mm 52 40 20 28 26 21.7 29

PCSI 5 −7 −27 −19 −21 −25.3 −18
CA 1.4 0.4 0.11 0.11 0.45 0.28 0.15
FAc 0.38 0.48 0.55 0.61 0.53 0.63 0.52
FAf 0.55 0.47 0.45 0.59 0.49 0.64 0.53
D 2.44 2.45 2.35 2.52 2.4 2.46 2.45
Dc 2.62 2.44 1.96 2.17 2.17 2.09 2.19
Df 2.42 2.46 2.42 2.64 2.52 2.57 2.52
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2.4. Methods

The stress-absorbing performance can be evaluated from two aspects: crack resistance
and crack expansion resistance. Crack resistance reflects the ability of the material to
resist cracking under tensile stress, while crack expansion resistance reflects the ability of
the material to prevent further crack expansion when cracks already exist. To evaluate
these two aspects of the AR-SAMI performance, four test methods can be used: BBT,
LT-SCB, CE-SCB, and OT. BBT is an important test to measure the tensile strength of the
material, which can evaluate the crack resistance of the material under fatigue cracking and
low-temperature shrinkage cracking conditions. The LT-SCB test can simulate the actual
stress on the AR-SAMI under temperature stress and traffic load, which can evaluate the
crack resistance of the material under low-temperature conditions. The CE-SCB test can
evaluate the fracture characteristics of the asphalt mixture and obtain the crack propagation
resistance of the mixture, which has a high correlation with the actual road performance of
the AR-SAMI. The OT can simulate the basic characteristics of the reflective crack expansion
in asphalt pavements. The classification of the stress absorption evaluated by these four
test methods is shown in Table 5. Guangxi Province is situated in the southern part of
China, between 20◦54′–26◦20′ N. The 30-year average of the annual extreme minimum
temperature in this region is −1.6 ◦C. To simulate the worst-case scenario, the minimum
temperature of the test was set at −10 ◦C, while the room temperature was set at 15 ◦C.
The test process is shown in Figure 3.

Table 5. Cracking patterns in response to the test methods.

Test Name Crack Resistance Crack Expansion Resistance

BBT
√

LT-SCB test
√

CE-SCB test
√

OT
√
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2.4.1. BBT

The test was conducted according to JTG E20-2011 [27], using the universal material
testing machine, under the conditions of test temperature −10 ◦C, 15 ◦C, and loading rate
50 mm/min. There were three parallel test specimens for each group. The bending and
tensile strength (RB), bending tensile strain (εB), flexural modulus of strength (SB), and
strain energy density (Dse) were calculated according to the specifications.

2.4.2. LT-SCB Test

The process of preparing the LT-SCB test specimen is shown in Figure 4. The test was
conducted according to AASHTO TP 105-13 [40], with an initial load of 1 ± 0.1 kN and a
loading speed of 0.6 mm/min to ensure the contact between the specimen and the loading
device. After reaching the initial load, the load was continuously applied at a loading speed
of 5.0 mm/min until the end of the test. The test was terminated when the first load below
0.5 kN was recorded or when the displacement transducer reached its maximum range.
Four parallel specimens were tested for each group. The fracture energy (Gf) and fracture
toughness (KIC) were calculated according to the specifications.
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2.4.3. CE-SCB Test

The process of preparing the CE-SCB test specimens is shown in Figure 5. The test
was conducted according to EN 16697-44-2010 [41] and AASHTO TP 124-16 [42], with an
initial stress of 0.1 ± 0.01 kN applied to the specimens by a linear loading control system at
a loading rate of 0.05 kN/s. After reaching the initial load of 0.1 kN, the test was carried
out at a displacement rate of 50 mm/min by the linear loading control system. The test
was terminated when the load dropped below 0.1 kN. Four parallel specimens were tested
for each group. The Gf and flexibility index (FI) parameters were calculated according to
the specifications.
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2.4.4. OT

The process of preparing the OT specimens is shown in Figure 6. The test was
conducted according to the TEX-248-F [43] protocol, with the following steps: the specimen
was attached to the bottom plate of the apparatus using epoxy resin, and a weight of
2.268 kg was applied to the top and left to cure for 24 h. The test was carried out at a
constant temperature of 25 ± 0.5 ◦C with a maximum constant displacement of 0.635 mm
of the slider. The test was terminated when the maximum load decreased by 93%, or when
the load reduction did not reach 93% within 1200 cycles. Three parallel specimens were
tested for each group. The load loss rate (R) and the crack resistance index (CRI) were
calculated according to the specifications.
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3. Results and Discussion
3.1. BBT

(a) The variation of RB, εB, SB, and Dse with gradation was inconsistent (as shown in
Figure 7). As shown in Figure 8, there was a positive correlation between εB and Dse, while
there was a negative correlation between εB and SB. εB reflected the deformation resistance
ability of the asphalt mixture, and Dse reflected the energy absorption ability of the material
during the failure process. Both of them reflected the viscoelastic failure characteristics of
the asphalt mixture, so they had a positive correlation. SB was more suitable for the assess-
ment of brittle failure, which was inconsistent with the failure mechanism of the asphalt
mixture, so it had a negative correlation. In summary, εB and Dse were recommended as
indicators for evaluating the performance of asphalt mixtures.
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(b) The εB and Dse of different gradation mixtures were different. These values indi-
cated the deformation and energy required for the failure of the asphalt mixtures under
load. As shown in Figure 9, at −10 ◦C, the maximum difference in εB was 2397.5 µε, and
the maximum difference in Dse was 20.06 kPa. At 15 ◦C, the maximum difference in εB was
2994.3 µε, and the maximum difference in Dse was 15.34 kPa. The 10B-1 had the highest
values of εB and Dse at both temperatures, indicating that it had superior performance
among the gradations.
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Figure 9. εB and Dse of different gradations. (a) εB and Dse at −10 ◦C. (b) εB and Dse at 15 ◦C.

(c) There were differences in the correlation between the gradation parameters and
the εB and Dse. The R2 value of the linear regression of the same gradation parameter at
different temperatures was also different. As shown in Figure 10, the P4.75mm, P2.36mm,
PCSI, and Dc had strong correlations with εB and Dse at −10 ◦C. At 15 ◦C, the P4.75mm had a
better correlation with εB and Dse, while the P2.36mm, PCSI, and Dc had a better correlation
only with εB. For a more comprehensive analysis, the P4.75mm, P2.36mm, PCSI, and Dc were
chosen to further analyze the effect of gradation.
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Figure 10. R2 of gradation parameters fitting curve. (a) εB at −10 ◦C. (b) Dse at −10 ◦C. (c) εB at 15 ◦C.
(d) Dse at 15 ◦C.

(d) As the P4.75mm, P2.36mm, PCSI, and Dc increased, εB and Dse of the mixture improved.
As shown in Figure 11, the populated data points are for the 10A-1 gradation, which was not
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fitted due to the differences in its relevant performance indexes from the other gradations.
As the passing rate of sieves and PCSI increased, the fine aggregate content in the mixture
also increased, which enhanced the suspension effect of coarse aggregate in asphalt mortar.
This caused a larger deformation during the bending failure process and consequently
increased εB. The Dse of the asphalt mixture also increased with the bonding effect of
asphalt mortar, which consumed more energy for the crack expansion during the bending
failure. This index reflected that a more uniform gradation of asphalt mixture created a
denser structure with smaller gaps between coarse aggregates. Therefore, in the gradation
design, the Dc should be increased moderately to improve the bending resistance of the
asphalt mixture. However, the Dc should not be excessive; otherwise, it will enhance the
interference effect of finer aggregate and increase the porosity of the asphalt mixture, thus
impairing its damage resistance. Based on this analysis, this paper recommends that the Dc
should be controlled below 2.50.
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3.2. LT-SCB Test

(a) Both the Gf and KIC of the asphalt mixture were influenced by its gradation (as shown
in Figure 12). These two parameters showed a similar trend and magnitude for different
gradations. Furthermore, a strong linear correlation (R2 = 0.962 and p-value < 0.01) between
the Gf and KIC was observed, as shown in Figure 13. The higher the values of Gf and KIC, the
better the performance and crack resistance of the asphalt mixture. Therefore, Gf and KIC were
recommended as indicators for evaluating the quality of the asphalt mixture.
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(b) The Gf and KIC of different gradation mixtures were different. The gradations
of 10A-1 and 10B-1 had higher values of Gf and KIC, indicating better resistance to load-
induced damage. As shown in Figure 12, the maximum difference in Gf between the
gradations was 342 J/m2, and the maximum difference in KIC was 0.637 MPa·m0.5, with a
maximum difference of 56.07%. The gradation of 10B-1 had the highest Gf and KIC, while
the gradations of 10C-1 and 10C-3 had the lowest values, suggesting that there might be
considerable variability within the same gradation range.

(c) There were differences in the correlation between the grading parameters and the
Gf and KIC. As shown in Figure 14, the asphalt film thickness had the best correlation
with Gf and KIC, with R2 values of 0.6873 and 0.6916, respectively. These values were
both greater than 0.6, indicating a strong linear relationship. Therefore, the asphalt film
thickness was selected as a parameter to further analyze the effect of gradation changes on
the performance of the asphalt mixture.
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(d) The Gf and KIC of the asphalt mixture decreased as the asphalt film thickness
increased (as shown in Figure 15). The reason for this was that when the asphalt film
thickness reached a certain value, further increasing the thickness would result in some
free asphalt inside the mixture, which made the mixture more susceptible to damage at
low temperatures.
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3.3. CE-SCB Test

(a) The gradation of the asphalt mixture influenced both the Gf and FI (as shown in
Figure 16). A good linear correlation between these two parameters was observed, with
R2 = 0.843 p-value < 0.01 (as shown in Figure 17). These results indicated that the Gf and FI
of the asphalt mixture change in the same way with the gradation variation. Therefore, Gf
and FI were recommended as evaluation indicators.
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(b) The Gf and FI varied among different gradations of the asphalt mixture, with the
gradation of 10C having the highest values of these parameters. The Gf reflected the energy
required for the asphalt mixture to develop and propagate cracks until failure, while the FI
represented an intrinsic property of the material that characterizes the crack growth rate
and the resistance to fatigue damage. As shown in Figure 16, the maximum difference in
Gf between gradations was 2085 J/m2, and the maximum difference in FI was 13.1, with a
relative difference exceeding 30%. The gradation of 10A had the lowest Gf and FI, while all
the 10C gradations had higher values of these parameters, indicating better resistance to
load-induced damage.

(c) There were differences in the correlation between the grading parameters and
the Gf and FI. As shown in Figure 18, the P4.75mm and P2.36mm, PCSI, and Dc had the best
correlation with Gf and FI, with R2 values greater than 0.7. These values indicated a strong
linear relationship. Therefore, these four parameters were selected to further analyze the
effect of gradation changes on the performance of the asphalt mixture.
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(d) The Gf and FI of the asphalt mixture decreased with the increase of P4.75mm, P2.36mm, 
PCSI, and Dc, as shown in Figure 19. These parameters indicated that the gradation be-
came finer, the fine aggregate content in the mixture increased, and the coarse aggregate 
was suspended in asphalt mortar. This reduced the resistance to crack expansion and ac-
celerated the failure of the specimen. The increase of Dc also disrupted the coarse aggre-
gate skeleton, which provided deformation resistance for the mixture. Therefore, the Dc 
value should be minimized in the gradation design. 
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Figure 18. R2 of gradation parameters fitting curve. (a) Gf. (b) FI.

(d) The Gf and FI of the asphalt mixture decreased with the increase of P4.75mm, P2.36mm,
PCSI, and Dc, as shown in Figure 19. These parameters indicated that the gradation became
finer, the fine aggregate content in the mixture increased, and the coarse aggregate was
suspended in asphalt mortar. This reduced the resistance to crack expansion and accelerated
the failure of the specimen. The increase of Dc also disrupted the coarse aggregate skeleton,
which provided deformation resistance for the mixture. Therefore, the Dc value should be
minimized in the gradation design.
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(e) The coarse aggregate content has an effect on the crack resistance and crack ex-
pansion resistance. As shown in Figure 20, it can be seen that with the increase of coarse 
aggregate content, the peak load shows a trend of increasing and then decreasing, while 
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indicates that an increase in the coarse aggregate content improves the aggregate skeleton 
strength and crack resistance. Excessive coarse aggregate content reduces the peak load 
of the asphalt mixture, but the amount of deformation experienced at the peak load con-
tinues to increase and the Gf does not show a significant decrease. After the peak load, the 
load decay of asphalt mixture with lower coarse aggregate content is faster, indicating 
that their resistance to crack expansion is poor. Combined with Figure 21, it can be found 
that the specimens with less crack expansion in the same gradation contain more and 
denser coarse aggregates, which indicates that the presence of coarse aggregates can ef-
fectively cause crack expansion resistance. The changes in crack extension between speci-
mens of different gradation also show obvious differences, indicating that gradation has 
an important effect on crack expansion resistance. 
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(e) The coarse aggregate content has an effect on the crack resistance and crack ex-
pansion resistance. As shown in Figure 20, it can be seen that with the increase of coarse
aggregate content, the peak load shows a trend of increasing and then decreasing, while
the amount of deformation experienced to reach the peak load continues to increase. This
indicates that an increase in the coarse aggregate content improves the aggregate skeleton
strength and crack resistance. Excessive coarse aggregate content reduces the peak load of
the asphalt mixture, but the amount of deformation experienced at the peak load continues
to increase and the Gf does not show a significant decrease. After the peak load, the load
decay of asphalt mixture with lower coarse aggregate content is faster, indicating that their
resistance to crack expansion is poor. Combined with Figure 21, it can be found that the
specimens with less crack expansion in the same gradation contain more and denser coarse
aggregates, which indicates that the presence of coarse aggregates can effectively cause
crack expansion resistance. The changes in crack extension between specimens of different
gradation also show obvious differences, indicating that gradation has an important effect
on crack expansion resistance.
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Figure 19. Correlation of gradation parameters with Gf and FI. (a) Passing rate of key sieve with Gf. 
(b) Passing rate of key sieve with FI. (c) PCSI with Gf and FI. (d) Dc with Gf and FI. 

(e) The coarse aggregate content has an effect on the crack resistance and crack ex-
pansion resistance. As shown in Figure 20, it can be seen that with the increase of coarse 
aggregate content, the peak load shows a trend of increasing and then decreasing, while 
the amount of deformation experienced to reach the peak load continues to increase. This 
indicates that an increase in the coarse aggregate content improves the aggregate skeleton 
strength and crack resistance. Excessive coarse aggregate content reduces the peak load 
of the asphalt mixture, but the amount of deformation experienced at the peak load con-
tinues to increase and the Gf does not show a significant decrease. After the peak load, the 
load decay of asphalt mixture with lower coarse aggregate content is faster, indicating 
that their resistance to crack expansion is poor. Combined with Figure 21, it can be found 
that the specimens with less crack expansion in the same gradation contain more and 
denser coarse aggregates, which indicates that the presence of coarse aggregates can ef-
fectively cause crack expansion resistance. The changes in crack extension between speci-
mens of different gradation also show obvious differences, indicating that gradation has 
an important effect on crack expansion resistance. 
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3.4. OT

(a) The gradation of the asphalt mixture affected both the R and CRI (as shown in
Figure 22). A good linear correlation between these two parameters was observed, with
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R2 = 0.8906 and p-value < 0.01 (as shown in Figure 23). These results suggest that the R and
CRI of the asphalt mixture vary in the same way with the gradation changes. Therefore, R
and CRI were recommended as evaluation indicators.
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(b) The gradation of the asphalt mixture had an effect on the R and CRI. The R and
CRI indicated the resistance of the asphalt mixture to damage under loading. As shown
in Figure 22, the gradation range of 10A had the highest R and CRI, indicating the worst
performance in terms of damage resistance. The gradation ranges of 10B and 10C had
lower R and CRI, indicating better performance in terms of damage resistance. Among
them, the gradation of 10A-1 had the highest R with a value of 14.59%, while the 10C-MZ
gradation had the lowest value. The CRI had the lowest value for the gradation of 10A-1
and the highest value for the gradation of 10B-1 with a difference of 18.1%. Therefore, it
can be concluded that the gradation range of 10A had unsatisfactory performance, while
the gradation ranges of 10B and 10C had better performance.

(c) Correlation analysis of the gradation parameters with R and CRI showed that
different gradation parameters affected the performance of the asphalt mixture to different
degrees. As shown in Figure 24, the CA had the highest correlation coefficients with R
and CRI, with values greater than 0.6. This indicated that CA was an important factor
affecting the performance of the asphalt mixture. Therefore, CA was selected as the main
parameter of gradation change to further explore its influence on the performance of the
asphalt mixture.
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(d) The R of the asphalt mixture increased and the CRI decreased as the CA increased
(as shown in Figure 25). When the CA increased, the content of 2.36 mm aggregate particles
in the coarse aggregate fraction increased, which reduced the interlocking and stability
of the coarse aggregate skeleton and disrupted the dense structure of the asphalt mixture.
As a result, the cracks encountered less resistance and propagated faster during the OT,
leading to lower performance and higher damage to the asphalt mixture.
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The performance of the asphalt mixture was affected by the gradation, but the gra-
dation range alone was not sufficient to determine the quality of the asphalt mixture. The
results of different tests showed that different gradation ranges had different advantages
and disadvantages in terms of flexural fatigue resistance, low-temperature cracking re-
sistance, resistance to crack expansion, and deformation resistance. Therefore, to better
characterize the performance of the asphalt mixture, the influencing factors and the optimal
values of the gradation parameters need to be further analyzed, as shown in Table 6.

Table 6. Main gradation parameters of different test.

Gradation
Parameters P4.75mm P2.36mm PCSI Dc CA

Asphalt
Film

Thickness

BBT
√ √ √ √

LT-SCB test
√

CE-SCB test
√ √ √ √

OT
√
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The main influencing parameters of the asphalt mixture performance varied depend-
ing on the test method. The BBT and CE-SCB test were mainly influenced by the coarse
aggregate passing rates, PCSI, and Dc, while the LT-SCB test was mainly influenced by the
asphalt film thickness and the OT was mainly influenced by the CA. The increase in the
coarse aggregate passing rates, PCSI, and Dc and the decrease in the 2.36 mm aggregate
content improved the performance of the asphalt mixture in the BBT but reduced its per-
formance in the CE-SCB test, suggesting that these two tests reflected different aspects of
the asphalt mixture performance. The decrease in the asphalt film thickness enhanced the
performance of the asphalt mixture in the LT-SCB, indicating that the asphalt film thickness
was a key factor affecting the low-temperature cracking resistance of the asphalt mixture.
The performance of the asphalt mixture in the OT improved with the decrease in the CA,
which indicated that the CA was a significant parameter affecting the damage resistance of
the asphalt mixture.

3.5. Relevance of Evaluation Methods

The crack resistance of asphalt mixtures is an important performance indicator, but
there is a lack of a unified test method and evaluation standard for it. In this paper, four
different tests were used to evaluate the crack resistance of asphalt mixtures under various
conditions: the BBT, LT-SCB, CE-SCB, and OT tests. For a more comprehensive evaluation
of the crack resistance of asphalt mixtures, the relationship and differences between these
four tests need to be further investigated.

3.5.1. Dispersion of Tests

To evaluate the crack resistance of asphalt mixtures more effectively, this paper used
the coefficient of variation as a measure of data dispersion. The coefficient of variation is the
ratio of the standard deviation to the mean value. The lower the coefficient of variation, the
more stable and reliable the parallel test data are. The higher the coefficient of variation, the
more dispersed and uncertain the parallel test data are. This paper analyzed the coefficient
of variation for the parallel test results of different tests, as shown in Figure 26.
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The data dispersion of different tests varied significantly. The OT had the most stable
data, with the lowest coefficient of variation values of 5.33 and 5.45, respectively. This
indicated that the OT had high repeatability and reliability. The LT-SCB test had the most
dispersed data, with the highest coefficient of variation value of 26.77. This indicated that
the LT-SCB test was influenced by various factors.
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3.5.2. Distinction of Tests

To analyze the ability of different tests to distinguish the gradation of asphalt mix-
tures, the coefficient of variation of the mean value of each test parameter under different
gradation conditions was calculated, as shown in Figure 27. The coefficient of variation
reflected the degree of variation of the parameter value under different gradations, and the
higher the coefficient of variation, the higher the sensitivity of the parameter to gradation,
and the better the ability to distinguish the effect of gradation on the performance of the
asphalt mixture.
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The ability of different tests to differentiate the gradation of asphalt mixtures varied
significantly. The LT-SCB test had the highest coefficient of variation value of 23.45, indicat-
ing that it was the most sensitive to gradation changes and could effectively distinguish
the effects of different gradations on the performance of the asphalt mixture. The OT had
the lowest coefficient of variation value of 5.47, indicating that it was the least sensitive to
gradation changes and could not effectively distinguish the effects of different gradations
on the performance of the asphalt mixture.

3.5.3. Correlation of Tests

To examine the correlation between different tests, the Pearson test was conducted.
The Pearson test measures the linear correlation between data using a correlation coefficient
that ranges from −1 to 1. A correlation coefficient close to 1 or −1 indicates a strong
correlation, while a correlation coefficient close to 0 indicates a weak correlation. The
results of the Pearson correlation analysis are shown in Figure 28.
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(a) The −10 ◦C BBT had a good positive correlation with the LT-SCB test. The correlation
coefficients between their parameters were all greater than 0.5, indicating that the
flexural fatigue resistance and the low-temperature crack resistance of the asphalt
mixture were consistent under low-temperature conditions. The higher the toughness
of the asphalt mixture, the higher its deformation and load dissipation, and the higher
its crack resistance.

(b) The 15 ◦C BBT had a poor correlation with other tests. The correlation coefficients
between their parameters were mainly less than 0.5, indicating that the flexural fatigue
resistance of the asphalt mixture at room temperature was different from other types
of cracking resistance.

(c) The CE-SCB test had a good correlation with the OT. The correlation coefficients be-
tween the Gf, FI, and the R and CRI were−0.638, 0.543, and−0.756, 0.714, respectively.
These values indicated that the Gf of the asphalt mixture increased as the R decreased.
The FI and CRI characterized the load decay and the crack growth rate after peak load.
The higher the FI and CRI, the slower the load decay and the crack growth, and the
higher the crack resistance.

(d) The −10 ◦C BBT, LT-SCB, CE-SCB, and OT tests had some degree of negative correla-
tion. For example, the correlation coefficient between the Gf of the LT-SCB test and
the Gf of the CE-SCB test was −0.681, which implies that the asphalt mixture with
higher energy consumption at low-temperature cracking was less prone to cracking,
while the asphalt mixture with lower energy consumption at crack expansion after
cracking had faster crack development. This indicated that the cracking mechanism
of asphalt mixtures under different conditions was different and that different types
of tests should be considered comprehensively in performance evaluation.

In summary, the BBT, LT-SCB, CE-SCB, and OT tests can evaluate the crack resistance
of asphalt mixtures, but they have different emphases. The LT-SCB test is highly influenced
by the asphalt film thickness, which cannot effectively reflect the impact of gradation
change on crack resistance. Moreover, the specimen preparation process is complex, time-
consuming, and limited by equipment conditions. The OT data are relatively stable, but
the test sensitivity to gradation is low. Therefore, this paper suggests that the εB and Dse of
the −10 ◦C BBT and the Gf and FI of the CE-SCB test should be used as the crack resistance
evaluation indices of AR-SAMI.

4. Conclusions

In this paper, the influence of gradation on the stress absorption performance of
AR-SAMI was studied. Based on the BBT, LT-SCB, CE-SCB, and OT tests, key sieve hole
method, graded fractal method, and Bayley method parameters were used as indicators.
The main conclusions are as follows:

• The AR-SAMI with different gradations showed different performance in different
tests, with a maximum difference of 56.07%. The AR-SAMI of 10B gradation had the
best performance in the BBT, while the AR-SAMI of 10A and 10B gradation had the
best performance in the LT-SCB test. The AR-SAMI of 10C gradation had the best
performance in the CE-SCB test, and the AR-SAMI of 10B and 10C gradation had good
performance in the OT.

• The different tests were influenced by different parameters. The performance of the
AR-SAMI in the BBT improved with the increase of the P4.75mm and P2.36mm, PCSI,
and Dc. However, the performance of the AR-SAMI in the CE-SCB test deteriorated
with the increase of these parameters. The performance of the AR-SAMI in the LT-SCB
test improved with the increase of the asphalt film thickness, while the performance
of the AR-SAMI in the OT worsened with the increase of the CA.

• The stress absorption performance of asphalt mixtures consisted of two aspects: crack
resistance and crack expansion resistance. These two aspects were inversely related
to each other, meaning that a mixture with better crack resistance did not necessarily
have better crack expansion resistance.
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• The −10 ◦C BBT, LT-SCB, CE-SCB, and OT tests could be used to evaluate the stress
absorption performance, but they reflected different aspects of performance. It was
recommended to use the −10 ◦C BBT and CE-SCB tests as the evaluation methods of
stress absorption performance. The εB and Dse of the −10 ◦C BBT and the Gf and FI of
the CE-SCB test were recommended as the evaluation indicators.

This paper evaluated the stress absorption performance of asphalt mixtures with
different gradations, but the number of gradations was limited, and, thus, could not
provide a comprehensive and effective comparison. Therefore, further research is needed to
explore the influence of more gradations on stress absorption performance. In addition, this
paper only focused on the effect of gradation on stress absorption, which was not sufficient
to reflect the actual engineering performance of asphalt mixtures. It is recommended to
combine the road performance of AR-SAMI with the stress absorption performance to
obtain a more realistic and comprehensive evaluation.
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