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Abstract: The voltage inverters have the high-frequency switching characteristic, which will generate
massive high-frequency harmonics in the motors. Especially, the inductance of the high-speed
permanent magnet synchronous motor (HPMSM) is designed to be small, and the high-frequency
harmonic content will be higher than that of ordinary motors, which adversely affects the system.
To overcome this problem, this paper proposed a harmonic suppression method based on the LC
filter and the adaptive notch filter for HPMSMs. The LC filter is connected between the inverter and
the HPMSM to filter out high-frequency harmonics, however, at the cost of the system resonance.
Therefore, the adaptive notch filter with the frequency tracking capability is designed to offset specific
resonant peaks by constructing an antiresonant peak. The least mean square adaptive algorithm
automatically adjusts the filter parameters according to the variation of the input signal to ensure
accurate filtering in complex cases. Simulation and experiment results prove the practicability and
effectiveness of the proposed scheme. The harmonic contents of HPMSM are significantly reduced,
and the dynamic response performance of the control system is improved.

Keywords: adaptive notch filter; current harmonic suppression; high-speed permanent magnet
synchronous machine (HPMSM); LC filter; resonance

1. Introduction

The advantages of the high-speed permanent magnet synchronous motor (HPMSM)
include high power density, high reliability, fast operation, and the possibility of direct
connection to the load. Therefore, it is widely used in industry, especially in compressor ma-
chines, vacuum cleaners, generators, etc. [1–3]. However, the structural characteristics and
operating conditions of HPMSM determine that the stator inductance is generally designed
to be small, and the electrical frequency is also much higher than that of conventional
motors [4,5]. The voltage source inverter (VSI) is a common driver device for motor control,
which has a high switching frequency and will generate a large number of high-frequency
current harmonics. The harmonics mainly appear around the switching frequency and its
integer multiples, causing distortion of the current in the motor windings [6–8]. Abundant
harmonic currents will induce large noise, iron loss, and torque turbulence, leading to the
reduction of motor capability and system efficiency [9–11].

To restrain the current harmonics, increasing the equivalent inductance is the most
simple and intuitive method. In [12], series inductors are connected in series in each phase
of the stator winding to increase the equivalent inductance and successfully reduce the
harmonic component of the stator current. Nevertheless, the series inductors will inevitably
enlarge the volume and weight of the system. It has been proposed to add LC filters
between the three-phase stator winding and the inverter, which can effectively reduce the
increase in system size while providing filtering effects [13]. However, the introduction of
the LC filter brings about a resonance peak in the system. Due to the low circuit impedance,
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the voltage and current oscillations will appear, which brings challenges to the stability of
the drive system.

To overcome this, many papers have proposed damping technologies for suppressing
the resonant peak, which are mainly divided into two categories: the passive damping
method and the active damping method. One of the most commonly used passive damping
schemes is to connect the damping resistance with the filter capacitor in series, because
of its simple design and implementation [14]. In order to obtain good high-frequency
attenuation and very low damping loss, many improved passive filter topologies have been
proposed and verified [15–17]. Additionally, in [18], the “critical damping ratio” metric
is first introduced and solved, which provides an efficient and accurate method for the
damping design of filters. However, although the passive damping method has the effect of
suppressing resonance, it will inevitably cause additional power losses, which decreases the
efficiency of the system [19]. As a result, the active damping scheme with no additional loss
has been favored by the industry, and the active damping strategy has been widely studied
and developed in academic circles. In [20], a virtual impedance system is built by using
the transfer function equivalent method. The impedance is emulated using the feedback
current of the filter capacitor to provide the damping effect, so it will not consume any
extra energy of the system. Other active damping methods such as high-pass filters [21],
hysteresis networks [22–24], infinite impulse response (IIR) digital filters [25,26], weighted
feedback currents (WAC) [27], etc. have been investigated. However, in most cases, those
methods require additional sensors, which enlarge the system volume, increase cost, and
enhance the possibility of interference.

Subsequently, a filter-based active damping technique was proposed in [28]. It was
achieved by simply inserting a low-pass filter or notch filter in the forward path of the
current control loop; thus, no extra sensors are required, which makes the method emerge
as a promising alternative to active damping. Actually, the trap filter concept was primarily
implemented in [28], where a genetic algorithm was applied to regulate the trap filter.
Furthermore, in [29], active filter-based damping techniques are summarized and analyzed
in the literature, and through simulations and experiments, the trap filter solution proves to
be the most flexible and effective active damping method, but the robustness of the scheme
may face challenges when parameter variations are taken into account, which severely
limits the application of the method. In addition, unlike the relatively constant frequency
in grid systems, the frequency of the motor varies considerably during operation, so the
frequency-tracking performance of the notch filter is critical [30].

In this paper, a high-frequency harmonic suppression method based on the LC filter
and the adaptive notch filter (ANF) is proposed. The LC filter is used to suppress the high-
frequency harmonic components of the stator current, and its parameter design method is
given after considering the applicable range and voltage drop. The ANF is set to eliminate
the consequent resonant peak. Noteworthily, the least mean square (LMS) algorithm is
applied as an adaptive law to the notch filter, whose characteristics can vary with harmonics
and noise, thus making the system adaptable. Moreover, through the speed feedback, the
notch filter is able to track the shift of the system resonant frequency and achieve frequency
adaption. The robustness and dynamic response capability of the HPMSM are improved.

The remainder of the article is organized as follows. In Section 2, the mathematical
model of the HPMSM is established, and the high-frequency current harmonics are an-
alyzed. In Section 3, the HPMSM system with LC filter is introduced, and the damping
technology of resonance peak suppression is discussed. Section 4 describes the modified
ANF structure and the implementation of the control system. In Section 5, the simulation
results are analyzed. In Section 6, experiments are carried out, and the practicability and
effectiveness of the scheme are proved. Finally, Section 7 concludes this article.
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2. High-Frequency Current Harmonics Analysis of HPMSM

In order to analyze the high-frequency current harmonics of HPMSM, it is necessary
to establish its mathematical model. The mathematical model of PMSM is studied in [31].
Because the circuit topology is the same, this model is also applicable to HPMSM. The
voltage equation for the three-phase winding of HPMSM in the three-phase coordinate
system can be written as

uA = RiA +
dψA
dt

, (1)

uB = RiB +
dψB
dt

, (2)

uC = RiC +
dψC
dt

. (3)

where uA, uB, uC represent three-phase voltages respectively; iA, iB, iC represent three-phase
currents; ψA, ψB, ψC represent three-phase flux linkages. R is the stator winding resistance.

The HPMSM is a complex nonlinear system, and, for its high-performance control,
vector control methods are proposed, which require the reconstruction of the motor mathe-
matical model in the d-q coordinate system.

By using Clark transformation and Park transformation, the following current expres-
sion in d-q coordinate system is obtained as

[
id
iq

]
=

2
3

 cos θe cos(θe −
2π

3
) cos(θe +

2π

3
)

−sin θe −sin(θe −
2π

3
) −sin(θe +

2π

3
)


iA

iB
iC

. (4)

where id, iq are the stator currents in d-q axis; θe is the electrical angle of the rotor.
The flux linkage equation in d-q coordinate system can be expressed as{

ψd = Ldid + ψ f

ψq = Lqiq
, (5)

where ψd, ψq are the flux linkages in d-q axis; Ld, Lq are the winding inductances in d-q axis;
ψf is the flux linkage generated by the permanent magnet.

The voltage equation in d-q coordinate system is
ud = Rid + Ld

did
dt
−ωeLqiq

uq = Riq + Lq
diq
dt

+ ωe(Ldid + ψ f )

, (6)

where ud, uq are the d-axis and q-axis stator voltages; ωe is the electrical angular speed of
the rotor.

For the purpose of achieving efficient control of the HPMSM, a drive control method
based on the SVPWM technology is used.

The SVPWM drive voltage signal contains a large number of PWM harmonics and
their sideband components in steady-state operation, and the odd and even times sideband
harmonics of the carrier wave have different variation patterns, respectively. The harmonic
frequency contained in the three-phase stator currents can be expressed as [9]

n fs ± k fb, (7)

where fs, fb are the switching frequency and fundamental frequency, respectively; n, k are the
harmonic orders of the switching frequency and the fundamental frequency, respectively.
When n is odd, k is a positive even number that is not an integer multiple of 3. When n is
even, k is a positive odd number that is not an integer multiple of 3.
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Set fs to 10 kHz and fb to 500 Hz; the three-phase current harmonics are plotted in
Figure 1. The Harmonics with high content are marked in red, and the other harmonics are
represented by blue bars. As shown in the figure, the main current harmonics appear in
the vicinity of the switching frequency, which is consistent with (7).
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where Udc is the bus voltage; ϕ0 is the initial phase of stator voltage vector; M1–4 and N1–4
are the constants which can be expressed as
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C2
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Ld
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Ld
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+
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,

. (10)

where C1–7 are the constants expressed as Bessel functions, which is related to the modula-
tion coefficient.

According to (8)–(10), the magnitude of the three-phase current harmonics will be
high when d-q axis inductances are small, so the filtering of harmonics is necessary.

The harmonics around the primary and secondary switching frequencies have been
resolved above, and higher harmonics can be analyzed similarly.
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3. HPMSM System with Output LC Filter

In order to restrain the high-frequency harmonics, the three-phase output LC filter is
connected between the inverter and the HPMSM. The single-phase circuit topology of the
HPMSM drive system is illustrated in Figure 2.
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Based on the circuit topology, the following voltage and current equations can be obtained:

uc = L
dia

dt
+ Ria + ea, (11)

ia1 = ia+C
duc

dt
= LC

d2ia

dt
+ RC

dia

dt
+ ia + C

dea

dt
, (12)

ua = uc + L1
dia1

dt
= LL1C

d3ia

dt3 +RL1C
d2ia

dt2 + (L + L1)
dia

dt
+Ria + L1C

d2ea

dt2 + ea. (13)

Depending on (11)–(13), the transfer function of the HPMSM with the LC filter can be
written as

φ(s) =
Ia(s)

Ua(s)
=

1
LL1Cs3+RL1Cs2 + (L + L1)s + R

. (14)

From (14), it can be deduced that in the low-frequency bands, the above system can be
simplified into a first-order inertial system, and the transfer function is equivalent to

φ(s) ≈ 1
(L + L1)s + R

. (15)

According to (15), the cut-off frequency in the low-frequency bands can be calculated as

ωcut ≈
L + L1 −

√
(L + L1)

2 − 4R2L1C

2RL1C
≈ R

L + L1
. (16)

The setting of the cut-off frequency needs to consider two aspects. Firstly, to filter out
all the major harmonic components, the cut-off frequency should be set lower than the
main harmonic of the lowest frequency, which is fs − fb according to (7). Secondly, to avoid
adverse impact on the fundamental component, the cut-off frequency should be higher
than the motor fundamental frequency and retain a certain margin, for example, not less
than twice the fundamental frequency. Therefore, the cut-off frequency needs to satisfy:

2 fb <
ωcut

2π
< fs − fb. (17)

It is worth noting that there is an optimal scope of application for this scheme. It can
be seen from (17) that if the fundamental frequency of the motor is too high, the frequency
band of the fundamental wave and the harmonics will cross, and the LC filter will not be
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able to filter out some harmonics. Therefore, the condition under which this scheme can be
effectively applied is:

fb <
1
3

fs. (18)

Typically, fs is 10 kHz, so fb should be below 3.33 kHz, which encompasses most
HPMSM operating ranges.

In addition, the problem of voltage drop on LC filters should also be considered. The
voltage drop will affect the transmission of electrical energy, resulting in additional reactive
power loss. In general, the voltage drop should not be greater than 10% of the input voltage.
As shown in Figure 2, the voltage drop can be calculated by obtaining the relationship
between Uc and Ua, and their relationship can be expressed as:∣∣∣∣Uc

Ua

∣∣∣∣ = ∣∣∣∣ R + jωL
R(1 −ω2CL1)+jω(L+L1 −ω2CLL1)

∣∣∣∣ =
√

R2 + ω2L2√
R2 (1 −ω2CL1)

2 + ω2(L+L1 −ω2CLL1)
2

(19)

Since the inductance of the high-speed motor is very small, the required LC filter
capacitance and inductance values are also small, and the following approximations can
be made: {

ω2CL1 ≈ 0

ω2CLL1 ≈ 0
(20)

Therefore, (19) can be further simplified to∣∣∣∣Uc

Ua

∣∣∣∣ =
√

R2 + ω2L2√
R2 + ω2(L+L1)

2
(21)

It can be seen from (21) that the voltage drop mainly depends on the inductance of the
LC filter, and, the larger the inductance L1, the more severe the voltage drop.

In summary, the selection of LC filter inductance needs to consider the setting of the
cut-off frequency and the amplitude of voltage drop, and the specific calculation method is
given from (16) to (21).

Figure 3 shows the Bode diagram of HPMSM with the LC filter. As shown in the
diagram, although the introduction of the LC filter enhances the system’s ability to suppress
high-frequency harmonics, it leads to the appearance of the resonance in the control system
at high frequency and also produces phase changes by −180 degrees. This phase change
brings a pair of closed-loop poles in the right half of the s-plane, leading to instability of
the system. To solve this problem, the resonant frequency needs to be determined.
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Based on (14), at high frequencies, the system can be reduced to a series connection of
an integral link and a second-order oscillation link. The equivalent transfer function is

φ(s) ≈ 1
s(LL1Cs2 + RL1Cs + L + L1)

. (22)



Appl. Sci. 2023, 13, 11309 7 of 20

From (18), it can be derived that the resonant frequency is

f =
1

2π

√
L + L1

LL1C
− R2

2L2 . (23)

The system’s Bode diagram is depicted in Figure 4 when the inductance of the LC filter
varies. The cut-off frequency and resonance peak of the system decrease with the increase
of the inductance, so it seems that the system resonance can be suppressed by simply
increasing the inductance. In reality, however, increasing the filter inductance will enlarge
the volume and weight of the LC filter, which is not conducive to the design of the drive
system. Therefore, the resonance peak can be suppressed using alternative techniques. The
most commonly used methods include passive and active damping methods.
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Choose RC as 1 ohm, 10 ohm, and infinity, respectively, the Bode diagram of the
system is shown in Figure 6. It can be seen that when the parallel resistance of the filter
capacitor is infinite, there is no suppression effect on the resonance peak, and with the
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decrease of the resistance, the resonance peak is restrained more effectively. However, the
introduction of resistors will result in additional power losses, which can be obtained as

Pn= 3
Uc

2

Rc
. (25)

According to (25), the power absorbed by the resistance will be extremely high when
RC is small, hence affecting the efficiency of HPMSM, which becomes the main draw-
back of the passive damping method. Therefore, it was replaced by the later active
damping method.
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3.2. Traditional Active Damping Methods

The traditional active damping method based on state variable feedback contributes to
obtaining the same damping effect as the actual resistance by simulating a virtual resistance
on the control. This suppresses the resonant peaks of the system without increasing the
system losses.

Figure 7 shows the control block diagram of the capacitor current proportional feed-
back method, which is a virtual resistor construction scheme with excellent performance.
Define the proportional feedback coefficient Hi as

Hi =
L1

KPWMCRC
; (26)

Then, the Bode diagram can be drawn as shown in Figure 8. It is clear that by adjusting
Hi, the active damping method can have a similar effect as the passive damping method
without introducing additional energy losses. Nevertheless, as shown in Figure 7, to
achieve the capacitor current proportional feedback method, the capacitor current iC is
needed. Since the LC filter is connected between the inverter and the motor, the current
hall sensor is often used to obtain the current value of the capacitor. Figure 7 shows the
control diagram of a single phase. In fact, all three phases of capacitive current need to be
sampled, so at least two additional current sensors are required. This increases the costs
and reduces the reliability of the system, which limits the application of the traditional
active damping method in practice.
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As a comparison case, the specific simulation results of the capacitor current propor-
tional feedback method are given in Section 5.

4. ANF Based Active Damping
4.1. ANF

As a new active damping scheme, the ANF can suppress the resonance peak without
additional sensors. It also has the ability to adjust its own coefficient using adaptive
algorithms when the external environment changes. Accordingly, when the magnitude of
harmonics and noise changes, the ANF can calculate the optimal filtering parameters in
real-time and maintain a good filtering effect, which improves the stability of the system.

The structure of ANF is shown in Figure 9, where x(t) represents the input signal,
which can be divided into the original fundamental signal and the interference signal. s(t)
is the fundamental signal; r(t) is the interference signal to be filtered by the ANF; rs(t) and
rc(t) are the reference signals generated by the controller and have the same frequency as
r(t), and A is their amplitude. ω1 and ω2 represent the accommodative coefficients; y(t)
is the generated anti-resonant signal, and e(t) stands for the output of the ANF, which is
obtained by subtracting the anti-resonant signal from the original signal. LMS is the chosen
adaptive algorithm. On the basis of the target of minimizing the mean square error e2(t),
the LMS algorithm can regulate the accommodative coefficient ω1 and ω2 according to the
error signal e(t) and the reference input signals rs(t) and rc(t). The specific algorithm of LMS
can be sorted into the formula

y(k) = ω1(k)rs(k) + ω2(k)rc(k)

e(k) = x(k)− y(k)

ω1(k+1) = ω1(k) + µe(k)rs(k)

ω2(k+1) = ω2(k) + µe(k)rc(k)

(27)

where µ represents the iterative step length; k represents the iterative order. Note that there
is t = kτ, where τ represents the sampling time.
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Figure 11. Comparison of filtering effects at different step sizes: (a) original signal with harmonics 
at 4500 Hz; (b) µ = 0.01; (c) µ = 0.001. 

The center frequency of the ANF only depends on the frequency of the reference in-
put signal. As a result, the ANF can change the frequency of the reference signal when the 
external disturbance signal varies, thus achieving adaptability. 
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According to (27), the transfer function of the ANF is derived as

e(s)
x(s)

=
s2 + ωo

2

s2 +
µA2

τ
s+ωo

2
, (28)

where ω0 = 2π f . Based on (28), set different step sizes and draw the Bode diagram, as
shown in Figure 10. Let µA2/τ = ω0/Q, where Q represents the quality factor, and then
the ANF can be equivalent to a band-stop filter with a center frequency of ω0. The step
size µ is an important factor in the filtering capability. As shown in Figure 11, the original
signal has a fundamental frequency of 500 Hz with a 4500 Hz harmonic superimposed.
When µ = 0.01, the filtered waveform still has significant harmonics, but when µ = 0.001,
harmonics are filtered out completely. However, the former takes only 0.05 s to converge,
while the latter takes 0.2 s. Therefore, it is necessary to consider the filtering effect as well
as the convergence time and choose a suitable step size. Generally, µ is not less than 0.01.
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The center frequency of the ANF only depends on the frequency of the reference input
signal. As a result, the ANF can change the frequency of the reference signal when the
external disturbance signal varies, thus achieving adaptability.

4.2. Design of ANF with Frequency Adaption

The control system structure is shown in Figure 12. The FOC control method is
adopted with a double closed-loop structure of speed and current, and the id = 0 control
mode is used. The PI controllers are used for both loops. The parameters of the PI controller
should be chosen carefully because they have a significant impact on the performance of
the control system. The design of traditional double closed-loop PI controllers has been
studied in [32,33].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 21 
 

4.2. Design of ANF with Frequency Adaption 
The control system structure is shown in Figure 12. The FOC control method is 

adopted with a double closed-loop structure of speed and current, and the id = 0 control 
mode is used. The PI controllers are used for both loops. The parameters of the PI control-
ler should be chosen carefully because they have a significant impact on the performance 
of the control system. The design of traditional double closed-loop PI controllers has been 
studied in [32,33]. 

PI + PI

PI

SVP
WM Inverter

LC
Filter

HPMSM
Position
Sensor

Speed 
Calculation

-

+

+

-

-

dq

ANF

+

+

-

-0drefi =

qrefi
qrefu

drefu
dcomu

qcomu
qu

du

uα

uβ

ai

bi

iα
iβ

di

qi

n

*n

αβ

αβ

abc

dq

αβ

θ

n

 
Figure 12. Structure of HPMSM harmonic suppression control system based on LC filter and ANF. 

For the speed loop PI controller, the parameter design is as follows: 

ቐKpω= βJ
1.5Pnψf

Kiω=βKpω

, (29)

where β  is the bandwidth of the speed loop; J  is the rotational inertia; Pn  is the pole 
pairs; and Kpω, Kiω represent the proportional link and integration link coefficient, re-
spectively. 

For the current loop PI controller, there are: 

⎩⎪⎨
⎪⎧Kpd=αLd

Kid=αR
Kpq=αLq

Kiq=αR

, (30)

where α is the bandwidth of the current loop; Kpd, Kid represent the d-axis proportional 
link and integration link coefficient, respectively, and Kpq, Kiq represent the q-axis pro-
portional link and integration link coefficient, respectively. For optimal results, the pa-
rameters can be fine-tuned based on the calculated results. 
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the star connection. To counteract the resonance peaks introduced by the LC filter, it is 
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For the speed loop PI controller, the parameter design is as follows:
Kpω =

βJ
1.5Pnψ f

Kiω = βKpω

, (29)

where β is the bandwidth of the speed loop; J is the rotational inertia; Pn is the pole pairs;
and Kpω, Kiω represent the proportional link and integration link coefficient, respectively.

For the current loop PI controller, there are:
Kpd = αLd

Kid = αR

Kpq = αLq

Kiq = αR

, (30)

where α is the bandwidth of the current loop; Kpd, Kid represent the d-axis proportional link
and integration link coefficient, respectively, and Kpq, Kiq represent the q-axis proportional
link and integration link coefficient, respectively. For optimal results, the parameters can
be fine-tuned based on the calculated results.

In Figure 12, a three-phase LC filter is connected in series at the output end of the
inverter to suppress the high-frequency harmonics, and the three-phase capacitor adopts
the star connection. To counteract the resonance peaks introduced by the LC filter, it is
necessary to compensate for the voltage reference signal udqref given by the current loop.
According to the characteristics of the ANF, the specific harmonic components of the current
error signal ĩdq can be extracted. Therefore, the d-q axis ANF is set after the current loop,
and its output udqcom is used as voltage compensation signals so that the resonant peak can
be eliminated.



Appl. Sci. 2023, 13, 11309 12 of 20

The internal structure of q-axis ANF is illustrated in Figure 13, and the d-axis one is
similar. In the stable state, y(t) represents the harmonic component of ĩdq(t) at the resonant
frequency, generating voltage compensation signal uqcom after a PI controller. The transfer
function of the ANF can be written as

y(s)
x(s)

=
µA2

τ s

s2 + µA2

τ s+ωo2
. (31)

The first step in setting up the notch filter is to determine the resonant frequency.
From (23), it is easy to calculate the resonant frequency of the control system in the three-
phase coordinate system. However, the input signals of proposed ANF are the currents in
the d-q coordinate system, and the resonant frequency will be changed by the coordinate
system transformation.

In the design of HPMSM, the star connection method is generally used in the three-
phase winding. According to the characteristics of three-phase symmetry and half-wave
symmetry, even harmonics and odd harmonics with an integer multiple of three do not
exist in the HPMSM. Therefore, the three-phase current considering harmonics can be
written as

ia = i1cos(ωt + θ1)+i5cos(− 5ωt + θ2)+i7cos(7ωt + θ3)+i11cos(− 11ωt + θ4)+i13cos(13ωt + θ5) + · · ·
ib = i1cos(ωt + θ1 − 2

3 π
)
+i5cos(− 5ωt + θ2 − 2

3 π
)
+i7cos(7ωt + θ3 − 2

3 π
)
+i11cos(− 11ωt + θ4 − 2

3 π
)
+i13cos(13ωt + θ5 − 2

3 π
)
+ · · ·

ic = i1cos(ωt + θ1 +
2
3 π
)
+i5cos(− 5ωt + θ2 +

2
3 π
)
+i7cos(7ωt + θ3 +

2
3 π
)
+i11cos(− 11ωt + θ4 +

2
3 π
)
+i13cos(13ωt + θ5 +

2
3 π
)
+ · · ·

. (32)

where i1, i5, i7, i11, and i13 represent the current components of the fundamental wave and
the corresponding harmonics separately; θ1–5 correspond to the initial angles of the above
currents; ω is the fundamental rotating frequency.

On the basis of the rotating magnetic field theory, the rotation direction of the fun-
damental current and that of the rotor are the same, while the 5th harmonic and the
fundamental wave rotate in the opposite direction, and the rotation speed of the fifth
harmonic can be expressed as −5ω. The seventh harmonic has the same rotation direction
with the fundamental wave, so the rotation speed is 7ω, and so on. Based on (4), the current
can be transformed into d-q coordinate system, which is written as{

id = id1 + i5cos(− 6ωt + θ2) +i7cos(6ωt + θ3)+i11cos(− 12ωt + θ4)+i13cos(12ωt + θ5) + · · ·
iq = iq1 + i5sin(− 6ωt + θ2

)
+i7sin(6ωt + θ3)+i11sin(− 12ωt + θ4)+i13sin(12ωt + θ5) + · · ·

. (33)

It can be concluded from (33) that the angular speed of harmonics of order (6n ± 1)
are ±6 nω. According to this, by adjusting the inductance of the LC filter appropriately, the
resonant frequency obtained by (23) can be close to (6n ± 1) in the three-phase coordinate
system. Then, based on the conclusion obtained from (33), the resonance frequency can be
simply converted to 6 n in the d-q coordinate system, and this is also the center frequency
that needs to be set in the ANF.

However, the speed of HPMSM is bound to vary during operation, which in turn leads
to the change of the current fundamental frequency. To ensure the ANF works properly at
various speeds, it needs to be modified. The speed feedback is introduced to determine
the motor resonant frequency, and then the resonant frequency can be calculated by the
following formula:

f = fabc− fe = fabc −
Pnωn

2π
. (34)

where f represents the notch frequency; fabc represents the resonant frequency in the
three-phase static coordinate system; fe represents the fundamental frequency of the stator
current; and ωn is the mechanical angular velocity. As shown in Figure 13, the adaptive
notch appliance is equipped with a frequency tracking capability through the frequency
calculation module.
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When the resonant frequency f is determined by the above calculations, the controller
can generate the reference input signals rs(t) and rc(t). Finally, select an appropriate step
size considering the bandwidth and convergence speed, and then the ANF is completed. It
is worth adding that the parameters of PI controller in Figure 13 should be consistent with
the current loop PI controller.

During the HPMSM operation, the adaptive coefficients are continuously updated
using the LMS algorithm according to (27), which allows the filter to work at the optimal
state. Therefore, y(t) is approximately equal to the resonant component in the input signal.

5. Simulation Analysis

For the purpose of verifying the effectiveness of the proposed harmonic suppression
strategy for HPMSM based on the LC filter and ANF, the simulations based on MAT-
LAB/Simulink R2020b are carried out. The simulation model of the proposed scheme is
shown in Figure 14. To ensure the reliability of the simulation, the same parameters are
used in the simulation and experiment, as detailed in Table 1. The parameters of the PI
controller are selected as follows: Kpω is 0.5, Kiω is 20; Kpd, Kpq are 0.1, and Kid, Kiq are 200.
In the simulation, the load torque is 0.5 N m, and the rotor speed is 8000 rpm, which is
equivalent to 20,000 rpm for a 2-pair pole motor.

Table 1. Parameters of HPMSM Control System.

Parameters Symbol Value

Power rating Pn 730 W
Pole pairs Pn 5

Permanent magnetic linkage ψ f 0.0509 Wb
Rated speed ωn 10,000 rpm

Rotor diameter Dr 28 mm
Stator resistance Rb 1.41 Ω

D-axis stator inductance Ld 0.8 mH
Q-axis stator inductance Lq 0.8 mH

Rotor inertia J 0.0005 kg·m2

ANF step size µ 0.02
Filter inductance L1 0.3 mH
Filter capacitance C 4.7 µF

Switching frequency f s 10 kHz

Figure 15 gives the three-phase current waveforms and the FFT analysis using different
schemes, where Figure 15a is without the harmonic suppression method; Figure 15b
adopts the harmonic suppression method based on the LC filter; Figure 15c adopts the
traditional active damping method based on proportional feedback of capacitance current,
and Figure 15d adopts the harmonic suppression method based on the LC filter and ANF.
It should be noted that in order to make it easier for readers to distinguish the content of
each harmonic, the FFT waveforms have different scales.
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Figure 14. The simulation model of proposed scheme.
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By simulation, it can be seen that the phase current in Figure 15a is obviously dis-
torted due to the existence of harmonic current. The current harmonics of HPMSM are 
considerably large, with a total harmonic content of 13.8%. The harmonics are mainly dis-
tributed around the integer multiples of the switching frequency, and the distribution law 
satisfies (7). When the LC filter is introduced, the high-frequency jitter of the current is 
suppressed; however, the sinusoidality of the waveform decreases. From FFT analysis, it 
is clear that the use of the LC filter effectively suppresses the high-frequency harmonics, 
but it brings the system resonance peak as shown by the red column in Figure 15b. The 
amplitude of the resonance peak reaches 22%. Consequently, the total harmonic content 
of the system increases instead. From Figure 15c,d, it can be seen that, with the use of the 
active damping method, the current waveform becomes smooth, and the sinusoidality 
improves dramatically. The resonant peak is suppressed extremely well, and the reso-
nance peak has completely disappeared. At the same time, it can be concluded that the 
damping capacity of the two schemes are almost the same, and they both make the three-
phase current harmonic content of the HPMSM drops to about 4%, which is 10% lower 
than the case without filtering. In contrast, the ANF is more advantageous because it does 
not require additional sensors. Therefore, the simulation results prove the effectiveness of 
the proposed scheme. 

6. Experimental Verification 
The experimental test setup is shown in Figure 16, and the LC filter is connected be-

tween the inverter and the HPMSM. The experiment is powered by a single-phase regu-
lator with an output voltage of up to 250 V and a rated power of 3 kVA. The torque sensor 
is coaxially connected with the HPMSM, whose maximum measured torque is 1 N/m, and 
the measurement accuracy is 0.2%. The measured speed and torque are displayed in real-
time on the torque and speed displayer. The hysteresis brake is used as the load; its rated 
torque is 2 N/m; and the load torque can be changed by the load controller. In order to 
demonstrate the experimental platform clearly, the schematic diagram of the system is 
given in Figure 17. Figure 17 shows the connection of the above measurement systems 
and, in addition, how the control system works. The sampled current and speed position 
information is processed by TMS320F28335, and the corresponding switching signal is 
generated in real-time to control the inverter bridge. 

The traditional vector control model using double closed loops of speed and current 
with id = 0 mode is built and implemented in the TMS320F28335 digital signal controller. 
The system parameters are given in Table 1, where the choice of the ANF step size weighs 
the convergence speed and accuracy. 

Figure 15. Simulation results of three-phase current waveforms and FFT analysis at 8000 rpm with
0.5 N·m load: (a) without LC filter; (b) with LC filter; (c) with LC filter and traditional active damping
method; (d) with LC filter and ANF.
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By simulation, it can be seen that the phase current in Figure 15a is obviously dis-
torted due to the existence of harmonic current. The current harmonics of HPMSM are
considerably large, with a total harmonic content of 13.8%. The harmonics are mainly
distributed around the integer multiples of the switching frequency, and the distribution
law satisfies (7). When the LC filter is introduced, the high-frequency jitter of the current is
suppressed; however, the sinusoidality of the waveform decreases. From FFT analysis, it
is clear that the use of the LC filter effectively suppresses the high-frequency harmonics,
but it brings the system resonance peak as shown by the red column in Figure 15b. The
amplitude of the resonance peak reaches 22%. Consequently, the total harmonic content
of the system increases instead. From Figure 15c,d, it can be seen that, with the use of the
active damping method, the current waveform becomes smooth, and the sinusoidality
improves dramatically. The resonant peak is suppressed extremely well, and the resonance
peak has completely disappeared. At the same time, it can be concluded that the damping
capacity of the two schemes are almost the same, and they both make the three-phase
current harmonic content of the HPMSM drops to about 4%, which is 10% lower than
the case without filtering. In contrast, the ANF is more advantageous because it does not
require additional sensors. Therefore, the simulation results prove the effectiveness of the
proposed scheme.

6. Experimental Verification

The experimental test setup is shown in Figure 16, and the LC filter is connected
between the inverter and the HPMSM. The experiment is powered by a single-phase
regulator with an output voltage of up to 250 V and a rated power of 3 kVA. The torque
sensor is coaxially connected with the HPMSM, whose maximum measured torque is
1 N/m, and the measurement accuracy is 0.2%. The measured speed and torque are
displayed in real-time on the torque and speed displayer. The hysteresis brake is used as
the load; its rated torque is 2 N/m; and the load torque can be changed by the load controller.
In order to demonstrate the experimental platform clearly, the schematic diagram of the
system is given in Figure 17. Figure 17 shows the connection of the above measurement
systems and, in addition, how the control system works. The sampled current and speed
position information is processed by TMS320F28335, and the corresponding switching
signal is generated in real-time to control the inverter bridge.
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The traditional vector control model using double closed loops of speed and current
with id = 0 mode is built and implemented in the TMS320F28335 digital signal controller.
The system parameters are given in Table 1, where the choice of the ANF step size weighs
the convergence speed and accuracy.

6.1. Harmonic Suppression Performance Tests

To verify the effectiveness and feasibility of the proposed scheme, the load current
waveforms under different strategies are observed. In each group of experiments, the speed
is set to 8000 rpm; the fundamental frequency is 666.7 Hz; and a load of 0.5 N/m is applied
to HPMSM.

Figure 18 shows the three-phase current waveforms and its FFT analysis. The experi-
ments are divided into three groups: without the LC filter, with the LC filter, and with the
LC filter and ANF at the same time. It should be noted that to make it easier for readers to
distinguish the content of each harmonic, the FFT waveforms have different scales. When
harmonic filtering is not considered, as shown in Figure 18a, the current waveforms are
three-phase symmetry but contain severe saw tooth spikes. FFT analysis revealed a large
number of high-frequency harmonics, and the harmonics are mainly distributed around
the multiples of the switching frequency, which is consistent with the theoretical analysis
and simulation results. Figure 18b illustrates the case of introducing the LC filter. The
high-frequency harmonics content drops significantly, but the system has a resonant peak
near 4000 Hz which is highlighted by the red column, causing the FFT to rise by 5.82%
instead. The waveforms show that the saw tooth spikes of the currents are suppressed,
and the jitter of the waveforms becomes less significant. However, the sinusoidality of
waveforms decreases, and the three-phase current becomes unbalanced. In Figure 18c,
the ANF is introduced. The sinusoidality of the currents is improved, and the waveform
becomes relatively smooth and regains three-phase symmetry. The FFT result shows that
the high-frequency harmonics are almost completely filtered out, and the ANF precisely
suppresses the resonant peak of the system, reducing the harmonic content by 9.9% and
15.72%, respectively, compared to the above strategy.

The three-phase current waveforms and FFT analysis results at 8000 rpm with a 0.1 N
load of HPMSM, and are added further to demonstrate the ability of ANF to eliminate
resonant peaks, as shown in Figure 19. When the load is reduced, the current value also
decreases, and the waveform contains more ripple. However, the symmetry of the current
is good, and there is no resonant peak in the FFT, indicating that the ANF can adjust the
parameters automatically to achieve active damping under different load conditions.
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Figure 18. Experiment results of three-phase current waveforms and FFT analysis at 8000 rpm with 
0.5 N·m load: (a) without LC filter [2 A/div]; (b) with LC filter [2 A/div]; (c) with LC filter and ANF 
[2 A/div]. 
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resonant peaks, as shown in Figure 19. When the load is reduced, the current value also 
decreases, and the waveform contains more ripple. However, the symmetry of the current 
is good, and there is no resonant peak in the FFT, indicating that the ANF can adjust the 
parameters automatically to achieve active damping under different load conditions. 
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Figure 19. Experiment results of three-phase current waveforms and FFT analysis at 8000 rpm with
0.1 N·m load [1 A/div].

6.2. Frequency Adaptive Performance Tests

In order to verify the frequency adaptive performance of the ANF, the speed of
HPMSM was suddenly reduced from 8000 rpm to 6000 rpm, and the current waveforms
and FFT analysis results are illustrated in Figure 20. Figure 20 shows that when the
frequency of HPMSM is changed from 667 Hz to 500 Hz, the high-frequency harmonics of
the stator currents are successfully suppressed with an extremely low harmonic content of
5.29%. Importantly, there is no need to adjust any parameters, and the resonance peak is
still precisely filtered out. The experimental results show that the resonant peak is able to
be suppressed when the HPMSM is running at various speeds due to the introduction of
speed feedback.
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6.3. Speed Regulation Performance Tests

To demonstrate the advantages of the proposed scheme for HPMSM further, speed
regulation experiments with and without the proposed scheme are carried out, as shown
in Figure 21.
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Figure 21. Experimental results of the speed mutation: (a) no-load start experiment without proposed
scheme; (b) no-load start experiment with proposed scheme; (c) speed sudden change experiment
with proposed scheme.

Comparing Figure 21a,b, it can be seen that without filtering high-frequency harmonics,
the HPMSM shows a large speed fluctuation reaching the set speed of 2000 rpm, and the
speed regulation performance is poor. But when the proposed harmonics suppression
scheme is adopted, the speed fluctuation is significantly reduced, and the speed regulation
performance is enhanced. Figure 21c supplements the result of the HPMSM with a sudden
speed dropping from 8000 rpm to 6000 rpm. After the sudden speed change, HPMSM
responds quickly with low overshoot and small steady-state error, which validates its
excellent speed regulation performance.

6.4. Load Disturbance Tests

Suppression of high-frequency harmonics can also improve the anti-disturbance perfor-
mance of HPMSM. To illustrate this point, load disturbance experiments are implemented.
HPMSM runs steadily at 8000 rpm under no load, and then suddenly increases the load
by 0.5 N·m to observe the change of the rotor speed. The comparison results are shown
in Figure 22. In Figure 22a, the speed drops by 200 rpm after loading, and it takes 0.3 s
for HPMSM to recover stability, which indicates the anti-interference ability of HPMSM
is not strong under the traditional control mode. In contrast, when the proposed scheme
is adopted, as shown in Figure 22b, the speed decreased by only 50 rpm after the sud-
den load change. Besides, the speed recovery time is reduced to 0.1 s. In summary, by
filtering out high-frequency harmonics, the anti-disturbance performance of HPMSM is
significantly improved.
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This paper presented a low-inductance HPMSM harmonic suppression scheme us-
ing the LC filter and the modified ANF. The LC filter is connected between the inverter
and the motor and serves to suppress the harmonics of the stator currents, especially the
high-frequency harmonic components caused by the inverter switching. However, the
introduction of the LC filter induces system resonance, while the ANF has been designed
to eliminate the system resonance peak. The LMS algorithm is used in the notch filter,
which can adapt to certain parameter changes. In addition, speed feedback is introduced
to track the fundamental frequency in real time; thus, the notch filter can operate effec-
tively under different operating conditions of HPMSM. The proposed method has been
experimentally proven to have good harmonic suppression capability, and the dynamic
response performance, and anti-interference capability of the controlled HPMSM have im-
proved. The proposed method does not increase system losses, call for additional sensors,
or demand a complicated algorithm. Therefore, the proposed method is attractive and
promising for HPMSM drives in industry and wide power conversion applications that
require high-quality sinusoidal current control.
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