
Citation: Zhao, J.; Gao, Z.; Wang, S.;

Niu, Y.; Deng, L.; Sa, Y. Multi-Object

Deep-Field Digital Holographic

Imaging Based on Inverse

Cross-Correlation. Appl. Sci. 2023, 13,

11430. https://doi.org/10.3390/

app132011430

Academic Editor: Davood Khodadad

Received: 28 August 2023

Revised: 16 October 2023

Accepted: 17 October 2023

Published: 18 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Multi-Object Deep-Field Digital Holographic Imaging Based
on Inverse Cross-Correlation
Jieming Zhao 1 , Zhan Gao 1,* , Shengjia Wang 2 , Yuhao Niu 1 , Lin Deng 1 and Ye Sa 1

1 Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University,
Beijing 100044, China; 19118048@bjtu.edu.cn (J.Z.); 19118036@bjtu.edu.cn (Y.N.); 20118039@bjtu.edu.cn (L.D.);
22110517@bjtu.edu.cn (Y.S.)

2 Laboratory of Optics in Free Space (LOFS), Key Laboratory of In-Fiber Integrated Optics,
Ministry of Education, Harbin Engineering University, Harbin 150001, China; shengjia.wang@hrbeu.edu.cn

* Correspondence: zhangao@bjtu.edu.cn

Abstract: To address the complexity of small or unique reconstruction distances in digital holography,
we propose an inverse cross-correlation-based algorithm for the digital holographic imaging of
multiplanar objects with a large depth of field. In this method, a planar output mapping is closely
around the objects, and it is established by calculating the image inverse cross-correlation matrix of the
reconstructed image at similar reconstruction distances, whereby the object edges serve as the result
guide. Combining the search for edge planes with the depth estimation operator, the depth of field of
digital holography is improved, thus allowing for a digital holography that is capable of meeting the
requirements of the holographic imaging of multiplanar objects. Compared with the traditional depth
estimation operator method, the proposed method solves the reconstruction ambiguity problem in
multiple planes with a simple optical path, and no additional optical or mechanical devices need to
be added, thus greatly improving the reconstruction quality. The numerical calculation results and
the experimental results with multiplanar samples validate the effectiveness of the proposed method.

Keywords: digital holography; depth of field; cross-correlation

1. Introduction

Digital holography can simultaneously record the amplitude and phase information
fields of an object in a photodetector under non-contact conditions [1,2]. The image of the
object can then be numerically reconstructed through interference recording and diffraction
reconstruction [3]. Digital holography can offer high sensitivity in detecting subtle morpho-
logical changes and deformations due to its ability to capture small phase variations. This
sensitivity makes it well suited for applications requiring precise measurements. Further-
more, digital holography is highly suitable for recording multi-dimensional information,
thereby enabling the measurement of dynamic behaviors under specific conditions [4,5].
The advantages of digital holography also extend to its potential for quantitative analysis
through the computer-based processing of amplitude and phase information. By inte-
grating image processing and analysis techniques, additional valuable information can be
extracted from data. As a result, digital holography has found extensive use in diverse
domains, including industrial manufacturing, biology, medicine, and materials science.
Its applications encompass three-dimensional topography measurement [6,7], particle
field characterization [8], deformation analysis [9], stress distribution mapping, and other
areas [10]. Many of its key issues are also commonly discussed [11].

In digital holography, diffraction reconstruction is the key aspect allowing one to
realize the reconstruction of three-dimensional scenes. In this process, the selection of
the appropriate diffraction distance has a critical influence on ensuring the quality of the
three-dimensional reconstruction. In the case of a single-plane image of the object’s digital
reconstruction, the assumption of a well-defined focal plane often holds true. Consequently,
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a range of actual measurement distances can be explored, and image quality can be eval-
uated at various diffraction reconstruction distances to identify the optimal one [12–14].
However, the situation becomes complicated when the measured object is a multiplanar
object; this is because the image quality is affected by multiple planes, and it is also at which
point the single-focal plane assumption no longer applies. Therefore, optimizing the se-
lection of the diffraction distance is a crucial technique for realizing multiplanar digital
holographic imaging with a large depth of field.

In order to accomplish the holographic reconstruction of multiplanar objects, different
structures and algorithms have recently been proposed. Lauren Wolbromsky et al. proposed
a spectral multiplexing method under low-coherent-light sources [15]. This method uses
the principle that the different angles of the reference light are separated in the spectrum;
as such, objects at different locations are recorded in the interference fringes of different
directions in order to image multiple depths in a single acquisition. However, this method
has a complex and bulky optical path structure, and it requires a precise mechanical
displacement stage to adjust the axial distance between different reference optical paths.
In addition, in order to achieve spectral separation, the holographic optical path must be
set up as an off-axis optical path, thereby losing more spatial bandwidth; meanwhile, at the
same time, the relative angle of each reflector has a strict mutual exclusion requirement.
Tang Ming et al. proposed an autofocusing algorithm [16] that is based on the area criterion
applied to the monitoring of microscopic plankton. By dividing the hologram into regions
and focusing them sequentially, the best reconstruction distance for the object can be
identified as the distance where the reconstructed object occupies the smallest area, which
is determined according to the principle of minimizing the dispersion spot when the
object is focused. A limitation of this method is that there are many a priori conditions
for determining the existence of objects in a region, and the algorithm is not very widely
applicable. With the development of deep learning, a dense encoder–decoder network was
proposed by Yufeng Wu et al. [17] for 3D particle field measurement. This method still
suffers from a long training time, the use of a single recognition model, and the existence
of a priori knowledge. In addition, entropy-minimization-based methods are gradually
emerging [18–20]. These methods involve calculating the local minimum of the entropy
value in a reconstructed image sequence and considering it the focused section. However,
such approaches require the reconstruction of an entire image sequence, which can be
computationally intensive. A. Anand et al. also utilized correlation algorithms for cell
classification and reconstruction [21]. The correlation algorithms used in this method focus
on the classification of healthy and non-healthy cells, and cellular localization is determined
by thresholding the resolution and thickness distribution of the system.

In this article, we propose an algorithm based on image inverse cross-correlation,
which is designed to realize the large-depth-of-field digital holographic reconstruction of
multiplanar objects. The fundamental concept behind this algorithm is the use of adjacent
reconstructed images for inverse cross-correlation computation to effectively capture the
edge information of the object in an image, thus allowing one to accurately locate the edge
position of the object and further segment the plane where the object is located. Through
the integration of the depth estimation operator, the optimal reconstructed distances are
calculated for each segmented plane, thus realizing multi-plane digital holographic imaging
with a large depth of field. Additionally, the reconstruction of overlapping objects can
be achieved. Compared to traditional methods, the advantages of this algorithm are
its simplicity and efficiency. This approach capitalizes on the synergy of image inverse
correlation and depth estimation, thus eliminating the need for intricate optical systems or
mechanical devices. A potential application of the proposed method lies in a multiplanar
large-depth-of-field digital holographic imaging, in which it will provide a new solution
for realizing high-quality multi-object three-dimensional scene reproduction.
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2. Principle
2.1. Digital Holographic Reconstruction

Digital holography can be divided into two major steps: interference recording and
diffraction reconstruction. In the diffraction reconstruction process, a reconstructed image
is reproduced in digital form through numerical calculations that are carried out on com-
puters [2], as described in Equation (1). Here, U0(x0, y0) represents the field distribution
function of an object before diffraction, U(x, y) represents the light field distribution func-
tion of the reconstructed image, and z is the diffraction reconstruction distance. The symbols
F and F−1 denote the two-dimensional fast Fourier and inverse transforms, respectively.
H is the transfer function in the frequency domain, which is expressed in Equation (2); u
and v are used to represent the frequency domain values in the vertical and horizontal
directions, respectively; λ denotes the wavelength; and k represents the wave number.

U(x, y) = F−1{F{U0(x0, y0)} · H} (1)

H = ejkz
[

1− λ2

2

(
u2 + v2

)]
(2)

In the case where U0(x0, y0) is known, the key factor for reconstructing the light
field distribution of an image U(x, y) is to find the appropriate diffraction distance z.
Figure 1 shows the difference in the reconstructed image at different reconstruction dis-
tances. The quality of the reconstructed images varies across different reconstruction
distances. When the numerical diffraction distance is equal to the measured length from
the object to the photodetector, the reconstructed image of the object is the clearest, while
the rest of the positions are blurred.

CCD

Z
best

Figure 1. The influence of different reconstruction distances on the image.

Through numerical simulations, the diffraction reconstruction process can be realized
on a computer. Depending on the properties of an object and the diffraction reconstruction
distance, we can obtain different reconstructed images. As such, in digital holography,
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a suitable diffraction reconstruction distance is essential for achieving high-quality and
clear reconstructed images.

In the case of single-plane objects, determining the appropriate diffraction reconstruc-
tion distance z can often be achieved by employing a focusing evaluation function, which
is used to explore a suitable range of measurement distances for the experimental subject.
However, when dealing with multiplanar samples, the presence of out-of-focus information
from different planes results in the smudging of indicators within the evaluation function,
which significantly deteriorates the effectiveness of the search process.

However, when researching the reconstruction of multiplanar objects, we noticed
that the edge diffraction fringes of the reconstructed objects varied significantly. Based
on this observation, we can adopt a new method through which to determine the edge
information of an object, thereby locking the position of the plane. Specifically, it is possible
to search for alterations in diffraction fringes between neighboring reconstruction frames,
which helps to accurately capture the position of an object’s borders. Once the boundary
information of the planes has been ascertained, it becomes feasible to allocate distinct
diffraction reconstruction distances to each plane, thus facilitating the achievement of
multiplanar digital holographic imaging with a large depth of field.

With this approach, instead of relying on the traditional focusing evaluation function
to determine the diffraction reconstruction distance, the edge information of an object is
used as an anchor point to accurately locate the positions of diverse planes. This method is
able to surmount the challenges posed by multiplanar samples during the reconstruction
process, thus allowing each plane to be reconstructed at an appropriate distance and
resulting in the heightened accuracy and clearer large-depth-of-field digital holographic
imaging of multiplanar objects. In addition to improving the quality of imaging, this
method also introduces a fresh perspective for tackling the digital holographic imaging
challenges that involve multiplanar objects.

2.2. Introduction of Image Cross-Correlation

Image cross-correlation is a prevalent technique in the realms of signal processing and
image analysis. It can be used to compare and analyze the degree of similarity or correlation
between two signals or images, and it is widely utilized in various domains, such as object
detection and recognition [22–26], image registration [27–30], motion tracking [31–34],
image matching [28,34–37], and numerous other applications. It is also widely used in
incoherent coded aperture correlation holographic imaging [38–40].

Image cross-correlation is based on a cross-correlation algorithm that is used in signal
processing, one that calculates the sum of the products between pixels in the overlapping
portion of a sliding window and the image itself, whereby the window traverses both
images (where the sliding window serves as the template image). The outcome is a newly
derived image matrix that is termed the cross-correlation image or cross-correlation matrix.
Each pixel’s value within this cross-correlation matrix represents the similarity between the
original image and the template image within the overlapping region at the corresponding
location. A greater resemblance in pixel distribution between the template image region
and the original image leads to higher values in the corresponding pixels of the cross-
correlation matrix.

In two-dimensional images, similarity is defined as in Equation (3), where γ is the
cross-correlation matrix of the image; Ix,y and Tu,v are the weighting cross-correlation
image and the template image, respectively; I(x, y) denotes the light intensity value of
the weighting image at pixel (x, y); Īu,v is the average value of I(x, y) in the range of the
template image Tu,v; and t̄ is the template average.

γ =
∑xy[I(x, y)− Īu,v][T(x− u, y− v)− t̄]{

∑xy[I(x, y)− Īu,v]
2 ∑xy[T(x− u, y− v)− t̄]2

}1/2 (3)
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Generally, the method of finding the maximum value of the cross-correlation matrix
γ is used for image alignment, whereas, in this paper, we use the process of finding the
position of object edges by locating the pixel points under a certain threshold of γ; we call
this the inverse cross-correlation operation. In contrast to direct edge extraction algorithms,
this method proves more suitable for cases where the diffraction information of an object is
intertwined and mixed with the background diffraction fringes. In addition, the edges of
the object cannot be easily extracted.

2.3. Calculation Flow Chart

The flowchart presented in Figure 2 outlines the process of the inverse cross-correlation
digital holographic imaging of multiplanar objects with large depth of field.

The entire process can be divided into four main parts: diffraction reconstruction,
cross-correlation, multiplanar reconstruction, and image fusion.

Threshold setting

cluster demarcation Area 1,Area 2···Area N

Off-axis Holography 

+1 Order Filtering

Related Parameters

Angular Spectrum
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H2

Reconstructed Image 2
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Figure 2. Flowchart of inverse cross-correlation digital holographic imaging.

In digital holographic imaging, diffraction reconstruction is a crucial step in realizing
three-dimensional image reproduction. Prior to diffraction reconstruction, a hologram must
first be processed through an a + 1 order frequency domain filter; this is an indispensable
process for all off-axis holograms.

Diffraction reconstruction. The filtered hologram involves two reconstructions that
use the angular spectrum reconstruction algorithm. Each reconstruction generates a re-
constructed image, and the purpose of the two reconstructions is to generate two images
that can be computed in correlation with each other. It is necessary to note that the diffrac-
tion distance z differs between the two reconstructions, thus leading to a change in the
transfer function H. As a result, two different reconstructed images are obtained, named
Reconstructed Image 1 and Reconstructed Image 2, respectively.

Cross-correlation. In this process, Reconstructed Image 1 and Reconstructed Image 2
are subjected to an image cross-correlation operation, as described in Equation (3), to obtain
the inverse cross-correlation matrix. Subsequently, the image edges are divided into
multiple labeled regions, named Area 1 to Area N, by setting a threshold.

Multi-plane reconstruction. Depth estimation is performed separately for each de-
lineated area, and the area is reconstructed according to the position of the extreme point
in the estimation curve. This step contributes to a more accurate reconstruction of the
structures and characteristics of objects within each distinct area.

Image fusion. Ultimately, the images obtained from the reconstruction are integrated
based on their respective regional positions. This step involves amalgamating the recon-
structed information from various regions to generate a comprehensive composite image.
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This sequence of processes enables large-depth-of-field reconstruction for multiplanar
objects in digital holographic imaging. Through synergizing multiple steps, including
filtering, reconstruction, cross-correlation, depth estimation, and image fusion, the obstacles
encountered when imaging multiplanar objects can be effectively overcome, thus leading
to enhanced image quality and reconstruction precision. This method holds potential
applications in the field of digital holographic imaging, and it provides a new way of
realizing finer and more realistic object reconstruction.

3. Numerical Calculation Results
3.1. Viability Verification

Figure 3 illustrates the numerical calculation process of the large-depth-of-field digital
holography of multiplanar objects when subjected to inverse cross-correlation. Figure 3a
shows the proposed optical path system: the coherent light from the laser is collimated by a
spatial filter (SF) and a lens (L), which is then separated into an object path and a reference
path using a beam splitter, BS1. After encountering reflector M2, the object’s light path
interacts with the three-plane object, as shown in Figure 3b, which then incidents to the
beam-combining mirror BS2, and this is then received by the photodetector. The reference
light is reflected from reflector M1 to the beam-combining mirror BS2. The angle of BS2
is fine-tuned to separate the reference light from the object light. After the two lights
interact, the off-axis hologram can be observed in the photodetector. Assuming that the
length and width of the image output by the photodetector are W and H (respectively),
after the specific off-axis digital holographic filter processing, the diffraction-reconstructed
image under different values of reconstruction distance, z, is calculated on a computer
using the angular spectrum diffraction method. Two adjacent reconstruction distances, z1
and z2, are selected. The color bars’ values indicate the normalized amplitudes. And a
cross-correlation operation is performed. Since the reconstructed images have the same size,
a cross-correlation coefficient matrix with a size of (2W − 1) ∗ (2H − 1) can be obtained,
as shown in Figure 3c. The pixel coordinates are found under a specific threshold ζ in the
matrix, thereby denoting the edge coordinates of the object to be measured. In addition,
the neighboring coordinates can be used as vertices to filter out the planes of different
measured objects, as shown in Figure 3d.

In the simulation, the size of the object and the photosensitive surface of the CCD were
the same, the diffraction distance from the farthest object to the CCD was 0.93 m, and the
three measured objects were uniformly distributed in the z-direction within the range
of the depth of field—namely 0.62 m. The sample size of the CCD was 512× 512 pixels,
and the whole sensitive area was 5× 5 mm. Image reconstruction was performed in steps
of 0.062 m. The actual position of the reconstructed image should be at the coordinates with
step index values of 50, 55, and 60. The simulations are performed by MATLAB R2023a.

With the initial condition that the different measured objects were located in different
planes, the exact location of each object in the plane could be found by integrating the
depth estimation operator, as shown in Figure 4. Figure 4a presents the intercepted pixel
ranges of different objects, which are respectively distinguished by color into four different
planes: blue, red, gray, and orange. Figure 4b illustrates the normalized reconstruction
distance coefficients, which are calculated using the depth estimation operator in the plane
range corresponding to Figure 4a. The results are the same as those presented in the
simulation data, thus verifying the feasibility of the proposed algorithm. Figure 4c shows
the reconstructed images of each object at their optimal reconstruction distances.

After fusing the images of the extreme value points, the results shown in Figure 5
were obtained. The color bar values indicate the normalized amplitude. It is evident that
each measured object is clearly displayed without blurring. The depth of field under this
simulation can reach 2.497 m according to our calculations, thus highlighting the significant
effect of multiplane depth-of-field expansion.
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Figure 3. Numerical calculation process of a large depth-of-field digital holography of multiplanar
objects when subjected to inverse cross-correlation. (a) Optical setup. (b) Multi-plane objects.
(c) Cross-correlation coefficient matrix. (d) Different plane ranges of different objects.

(a)

(b)

(c)

75×88 190×67 151×69 190×73

Figure 4. Intercept plane reconstruction results. (a) Different intercept planes. (b) Normalized
reconstruction distance coefficients. (c) The reconstructed image at the maximum point.
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Figure 5. Fused image.

By following the aforementioned computational procedures, the inverse cross-correlation
technique can be used to realize accurate numerical solutions in the large-depth-of-field
digital holographic imaging of multiplanar objects. This method combines optical prin-
ciples with computerized image processing to obtain information about an object from
multiple aspects so as to reconstruct a high-quality image of a multiplanar object, thus
providing a powerful solution for achieving a more accurate and detailed imaging of
multiplanar objects.

3.2. Comparison with Single-Depth Estimation Algorithms

During the reconstruction process, a single-depth estimation operator is commonly
employed to determine the numerical reconstruction distance. However, for large-depth-
of-field multiplanar objects, several challenges arise when employing such approaches.

Figure 6 illustrates the estimation results of various estimation operators, and the
results are discussed and analyzed herein. The operator types are divided into different
types of depth estimation operators, where type 1 is based on an image gradient operator,
type 2 is a frequency domain evaluation operator, and type 3 is an autocorrelation operator
based on image statistics theory. The red cross section indicates the actual plane where the
three subjects are located. After a comprehensive comparison, the single-depth estimation
operator has two major disadvantages compared with the inverse cross-correlation operator
proposed in this article: (1) The reconstruction distance normalization coefficient for single-
depth estimation operators appears to be disorganized. It can be clearly seen in Figure 6a
that the ideal quadratic function curve is not present; even in the case of minimal values
of the interval, it appears at the second measured object plane position, such as in the
case of Laplace, EOG, Brenner, Roberts, and Schaar operators in type 1, as well as in DCT
and Wave operators in type 2. (2) The reconstructed image corresponding to the distance
under the extremum point is blurred, and only the general outline of the object can be
seen; thus, the detailed information of the subject has been lost. Figure 6b shows the
reconstructed images corresponding to the extreme value points of the different single-
depth estimation operators.

After comparing Figure 4 to Figure 6, it is obvious that the reconstructed images of each
object produced when using the inverse cross-correlation algorithm are very clear and that
their planes are accurate, thus indicating that the limitations of the traditional single-depth
estimation operator have been overcome. Therefore, the inverse cross-correlation algorithm
proposed in this article provides a reference value with respect to the data processing for
large-depth-of-field digital holographic imaging in multiple planes.
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Laplace
Sobel

EOG,Brenner
Roberts
Schaar
DCT

WaveFFT

(a) (b)

Figure 6. The result of single-depth operators. (a) Normalized reconstruction distance coefficients.
(b) The reconstructed image at the maximum point.

4. Experiment

This experiment used the same optical path as that used in the simulation. The three
measured objects in the optical path were the letters “B” and “J” in the same plane, and the
letters “T” and “U” in different planes. All the letters were printed on a polyester mask
plate and did not transmit light. The thickness of the polyester mask plate was 0.18 mm,
with the dimensions of the letters B, J, T, and U being equal to 0.5 × 0.5, 0.9 × 0.9, 0.8 × 0.8,
and 0.8 × 0.8 mm2, respectively.

In this experiment, we employed a semiconductor laser (model MSL-FN-532-200mW,
manufactured by the Changchun Institute of Optical Machinery) with a central wavelength
of 532 nm. The photodetector utilized was a MER-125-30UC CCD, featuring a pixel size
of 3.75 µm × 3.75 µm, and a pixel count of 1292 × 964. In this experiment, no microscopes
or other lens sets were used. The resolution that is directly related to the CCD, which is
theoretically able to measure objects with a pixel-size resolution, was used.

4.1. Large Depth-of-Field Reconstruction in the Non-Overlapping Case

Unlike the simulation data, the holograms captured during the experimental process
contained large noise, such as scattering noise and other types; thus, each point that met
the threshold was reconstructed separately, and all the reconstructed images were merged
together. The specific process employed was as follows: Assuming that there are a total of i
extreme points within the threshold selected by the inverse cross-correlation coefficient Cc
(and taking the position of each extreme point as the center coordinate), rectangular boxes
with the respective dimensions of S × S, M × M, and L × L are constructed (S < M < L);
following this, 3i rectangular boxes can be obtained. The rectangular boxes are used as
the boundaries to find the reconstruction distances zµσ, which correspond to the 3i regions
(µ = S, M, L; σ = 1 to i). After applying zµσ globally, all the reconstructed images are then
fused and processed to obtain the final results.

The cross-correlation results are shown in Figure 7: Figure 7a shows the hologram
obtained by CCD, and Figure 7b shows the inverse cross-correlation matrix Cc under
z1 = 10.0 cm and z2 = 10.5 cm. Since the four measured objects do not overlap with each
other at this time, only M × M (M = 50 pixels) could be reconstructed by choosing the
matrix box. Figure 7c shows a schematic diagram of the rectangular box. The color bar
values indicate the normalized amplitude.
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(b) (c)(a) (b)

Figure 7. (a) Hologram. (b) Inverse cross-correlation coefficient matrix. (c) Schematic diagram of the
rectangular box.

The results are shown in Figure 8. Figure 8a shows the reconstructed phase dis-
tribution in the case of a single-depth estimation operator’s extreme point; at this time,
the reconstruction distance z = 21.0 cm. The color bars indicate the phase values. It can be
seen that, due to the mutual interference of the various planes, the phase is blurred, and the
actual different positions of the measured object are forced to be reproduced in the same
plane and thus cannot be accurately distinguished. Additionally, the reconstruction of the
phase represents the error. Figure 8b shows the reconstructed image under the method
proposed in this paper. The phase of each plane is clearly visible, and the relative positional
distance between planes can be obtained: BJ and T are 7.2 cm apart, and T and U are
6.1 cm apart.

7.2CM

7.2 cm

6.1 cm

(a) (b)

Figure 8. Phase distribution. (a) Single-depth estimation operator. (b) Proposed method.

To better characterize the ability of the depth-of-field enhancement, the quality of
the reconstructed image was quantified using the Fourier transform criterion. Firstly,
the Fourier transform was applied to the reproduced image to obtain the sum of the spatial
frequency components, SFT , whose expression is shown in Equation (4). M and N denote
the number of horizontal and vertical pixels in the reconstructed image, and Re and Im are
the real and imaginary parts of the spectrum, respectively. The higher the value of the SFT ,
the more information is available in the reconstructed image, and the higher the accuracy
of the reconstruction.
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SFT =
M

∑
m=1

N

∑
n=1

√
Re2(F{I(m, n)}) + Im2(F{I(m, n)}) (4)

The SFT of the single-depth operator was 0.53× 108, as calculated using Equation (4)
for the reconstructed image in Figure 8a, and the SFT of the proposed algorithm was
1.28× 108 in Figure 8b. After synthesizing the between-display and quantization calculation
in Figure 8, it can be seen that the digital holographic depth of field under the inverse
cross-correlation calculation was greatly extended in the non-overlapping state, and the
measurement of multiplanar objects was realized.

4.2. Large-Depth-of-Field Reconstruction in an Overlapping Case

In real applications, overlapping between measured objects is frequent, and this is the
key problem in multiplanar reproduction. The experimental results based on this algorithm
are shown in Figure 9.

(c)(a) (b)

Figure 9. (a) Hologram. (b) Inverse cross-correlation coefficient matrix. (c) Schematic diagram of the
rectangular box of M × M pixels.

Figure 9a shows the hologram obtained via CCD, and Figure 9b shows the inverse
cross-correlation number matrix Cc under z3 = 12.0 cm and z4 = 18.0 cm. Since T and U
overlapped with each other in the four measured objects at this time, three different sizes
for the rectangular boxes were chosen to be reconstructed in turn, in which S, M, and L
were 30, 50, and 80 pixels, respectively. In addition, Figure 9c shows the schematic diagram
of the M × M rectangular box. The color bar values indicate the normalized amplitude.

Figure 10 shows the reconstruction results, where Figure 10a,b are divided into the
phase distribution under a single plane versus that which corresponds to this algorithm.
The color bars indicate the phase values. In this case, each plane can be reproduced even if
the measured objects overlap. The reproduced overlap can still be interfered in different
planes, but its value is low and negligible, as shown by the red box. The SFT of the single-
depth operator was 0.58× 108 (calculated using Equation (4)). The SFT of the proposed
algorithm was 1.20× 108. Under the overlap of the measured object, this algorithm can still
accurately reproduce the depth of field of different planes, and it can calculate the relative
positions between different planes.
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8.3 cm

5.8 cm

(a) (b)

Figure 10. Phase distribution. (a) Single-depth estimation operator. (b) Proposed method.

5. Discussion
5.1. Factors Affecting Depth of Field

In discussing the maximum achievable depth of field using this method, we summarize
the following factors that influence the depth of field.

The multi-plane depth of field is initially constrained by the single-plane depth of the
field. Hence, the depth of field under the single plane is discussed first. The influencing
factors include the sampling number (N) of the photodetector, the ideal position (Zi) of
the object reconstruction, the reconstruction algorithm, parameters relating to the optical
instruments in the system (such as microscope parameters), etc. Since the angular spectrum
reconstruction algorithm was used in this article and no additional optical instrumentation
was employed, only the first two influencing factors are discussed herein.

Sampling number (N) of the photodetector. In the angular spectrum reconstruction
algorithm, if it is assumed that the energy concentration of the point source within nσ

pixels in the reconstruction plane is the limiting condition for the depth of field, then the
relationship between the actual reconstruction plane’s position Zm and Zi that deviates
from the ideal position is shown in the following equation (Equation (5)):

|zm − zi| =
3zi

nδ · N
(5)

This equation indicates that the larger the sampling number (N) of the photodetector,
the smaller the depth of field of its digital holography.

Ideal position (Zi) for object reconstruction. Based on the above equation, the depth
of field of a single-plane object increases as the ideal object reconstruction position (Zi)
is raised.

The following section addresses the factors affecting the depth of field during the
inverse cross-correlation calculation and experimental processes, which include the shape
of the object itself, its position characteristics, threshold, and noise.

The morphology and position characteristics of the object itself. The reconstruction
of multiplanar objects is affected by various factors, such as the shape, size, and position of
the object being measured. In the case of complex diffraction profiles, an algorithm is more
likely to capture the object’s edge characteristics. Moreover, the size difference between the
measured objects affects the accuracy of an algorithm. The larger the difference, the easier it
is for the algorithm to ignore the edges of smaller objects, thus affecting their reconstruction.
Position discrepancy refers to cases where the same measured object is placed at the same
total distance but where the relative distance between the objects is inconsistent. In such
cases, although the measured object is the same, the incidence of diffraction stripes on the
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photodetector differs, and the difference in the diffraction shape also affects the size of the
depth of field.

Threshold. In the inverse cross-correlation calculation, the selection of the threshold
value is a critical parameter for determining the coordinates of object edge positions.
The number of location coordinates increases as the threshold value decreases. A larger
threshold tends to result in missing the measured target, while a smaller threshold increases
the difficulty of clustering and reduces accuracy.

Noise. Speckles or other types of noise often appear in interferometric experiments,
and they can affect depth-of-field results. In practical measurements, it is recommended to
employ different noise reduction processes to mitigate the effects of noise.

By considering these factors, a deeper understanding of the challenges and limitations
associated with the multiplanar large-depth-of-field digital holographic imaging process
can be gained. Simultaneously, this knowledge enables the implementation of appropriate
measures for optimizing reconstruction outcomes, thereby facilitating the achievement of
higher-quality multiplanar large-depth-of-field digital holographic imaging results.

5.2. Axial Resolution

The axial resolution in 3D imaging refers to the ability to distinguish objects along
the optical axis. In digital holography, it can be quantified as the minimum axial distance
required for two planes to be distinguished clearly. This resolution can be expressed using
Equation (6) [41], where λ represents the wavelength; z is the diffraction distance between
planes; M and N are the number of samples in the transverse and longitudinal directions
of the photodetector, respectively; and δ represents the pixel size.

R =
8λz2

MN · δ2 (6)

In this section, we investigate whether the current algorithm impacts axial resolution.
Experimental results are presented in Figure 11. Figure 11a,c show the inverse cross-
correlation matrix and its schematic diagram of the rectangular box when two closely
spaced planes are considered (i.e., when the planes are separated by approximately the
thickness of the polyester mask plate). Notably, even when the two planes are in close
proximity, the algorithm can effectively distinguish between them, clearly indicating that
they belong to separate planes. However, it should be noted that the diffraction distance at
this point is 15.7 cm, which—according to Equation (6)—generates an axial resolution of
5.99 mm; this is greater than the mask plate thickness and therefore cannot be resolved.

(a) (b)

(c) (d)

Figure 11. Inverse cross-correlation matrices and their schematic diagram of the rectangular box.
(a) Schematic diagram of the rectangular box at close proximity. (b) Schematic diagram of the
rectangular box at 0.61 cm apart. (c) Inverse cross-correlation matrix at close proximity. (d) Inverse
cross-correlation matrix at 0.61 cm apart.
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When the two planes are positioned with an approximate separation of 6 mm, and the
far plane’s diffraction distance on the CCD remains at 15.7 cm, the precise separation of
the two planes can be achieved. The respective diffraction distances of the two planes are
15.77 cm and 15.16 cm, with a spacing of 0.61 cm, making them resolvable. Figure 11b,d
illustrate their respective inverse cross-correlation matrix and schematic diagram of the
rectangular boxes. The phase distribution is depicted in Figure 12. The color bar values
indicate the phase magnitude.

5

4.5 

4

3.5 

3

 

2.5 

2

Figure 12. Phase distribution.

The experimental results revealed that the proposed algorithm accurately localizes
the object’s position when the two planes are in close proximity. Consequently, its axial
resolution is solely determined by the characteristics of the digital holographic optical path
itself, and the algorithm does not impose any limitations on its size.

6. Conclusions

In this article, an inverse correlation digital holographic reconstruction method was
proposed for the high-quality imaging of multiplanar targets with a large depth of field. Our
method involves calculating the image inverse cross-correlation matrices of reconstructed
images at similar reconstruction distances, as well as identifying the object edge information
when using a clustering algorithm. Then, by combining the depth estimation operator and
the help of an image fusion algorithm, the digital holographic reconstruction of multiplanar
objects with a large depth of field was successfully completed. This method can provide a
valuable reference for numerous application scenarios, such as holographic microscopy, 3D
morphometry, etc.
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