Internal Flow Prediction in Arbitrary Shaped Channel Using Stream-Wise Bidirectional LSTM
Abstract
:1. Introduction
- An SB-LSTM module is proposed to capture important physical properties of internal flows, whereby model performance is significantly improved by simply connecting the module in the latent space.
- Qualitative and quantitative evaluations conducted on various channel structures demonstrate the excellent performance of the proposed method compared with that of baseline models.
2. Methodology
2.1. Arbitrary Channel Shape Generation
2.2. Target Field Data Generation
2.3. Stream-Wise Bidirectional LSTM
2.4. Network with Stream-Wise Bidirectional LSTM
2.5. Loss Function
3. Experiments
3.1. Dataset and Pre-Processing
3.2. Comparison Methods
3.3. Implementation Details
4. Results and Discussion
4.1. Training History
4.2. Qualitative Evaluations
4.3. Quantitative Evaluations
4.3.1. Mean Relative Error
4.3.2. Mean Absolute Error along Height Axis in Entire Channel
4.4. Computation Time
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Qualitative Evaluation of SB-LSTM Attached Model
Appendix B. Comparison of Learning According to Lateral Connection Direction
References
- Guo, X.; Li, W.; Iorio, F. Convolutional neural networks for steady flow approximation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 481–490. [Google Scholar]
- Ozaki, H.; Aoyagi, T. Prediction of steady flows passing fixed cylinders using deep learning. Sci. Rep. 2022, 12, 447. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Jagtap, A.D.; Karniadakis, G.E. Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech. Eng. 2020, 360, 112789. [Google Scholar] [CrossRef]
- Pfaff, T.; Fortunato, M.; Sanchez-Gonzalez, A.; Battaglia, P.W. Learning mesh-based simulation with graph networks. arXiv 2020, arXiv:2010.03409. [Google Scholar]
- Sanchez-Gonzalez, A.; Godwin, J.; Pfaff, T.; Ying, R.; Leskovec, J.; Battaglia, P. Learning to simulate complex physics with graph networks. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 8459–8468. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Peng, J.Z.; Aubry, N.; Zhu, S.; Chen, Z.; Wu, W.T. Geometry and boundary condition adaptive data-driven model of fluid flow based on deep convolutional neural networks. Phys. Fluids 2021, 33, 123602. [Google Scholar] [CrossRef]
- Zhou, D.X. Universality of deep convolutional neural networks. Appl. Comput. Harmon. Anal. 2020, 48, 787–794. [Google Scholar] [CrossRef]
- Rusch, T.K.; Bronstein, M.M.; Mishra, S. A survey on oversmoothing in graph neural networks. arXiv 2023, arXiv:2303.10993. [Google Scholar]
- Chen, J.; Hachem, E.; Viquerat, J. Graph neural networks for laminar flow prediction around random two-dimensional shapes. Phys. Fluids 2021, 33, 123607. [Google Scholar] [CrossRef]
- Portal-Porras, K.; Fernandez-Gamiz, U.; Ugarte-Anero, A.; Zulueta, E.; Zulueta, A. Alternative artificial neural network structures for turbulent flow velocity field prediction. Mathematics 2021, 9, 1939. [Google Scholar] [CrossRef]
- Gao, H.; Sun, L.; Wang, J.X. PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain. J. Comput. Phys. 2021, 428, 110079. [Google Scholar] [CrossRef]
- Zhang, Y.; Sung, W.J.; Mavris, D.N. Application of convolutional neural network to predict airfoil lift coefficient. In Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 8–12 January 2018; p. 1903. [Google Scholar]
- Viquerat, J.; Hachem, E. A supervised neural network for drag prediction of arbitrary 2D shapes in laminar flows at low Reynolds number. Comput. Fluids 2020, 210, 104645. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Liu, Y.; Lu, Y.; Wang, Y.; Sun, D.; Deng, L.; Wang, F.; Lei, Y. A CNN-based shock detection method in flow visualization. Comput. Fluids 2019, 184, 1–9. [Google Scholar] [CrossRef]
- Deng, L.; Wang, Y.; Liu, Y.; Wang, F.; Li, S.; Liu, J. A CNN-based vortex identification method. J. Vis. 2019, 22, 65–78. [Google Scholar] [CrossRef]
- Haller, G.; Hadjighasem, A.; Farazmand, M.; Huhn, F. Defining coherent vortices objectively from the vorticity. J. Fluid Mech. 2016, 795, 136–173. [Google Scholar] [CrossRef]
- MS, V.M.; Menon, V. Measuring Viscosity of Fluids: A Deep Learning Approach Using a CNN-RNN Architecture. In Proceedings of the First International Conference on AI-ML Systems, Bangalore, India, 21–23 October 2021; pp. 1–5. [Google Scholar]
- Liu, Y.; Lu, Y.; Wang, Y.; Sun, D.; Deng, L.; Wan, Y.; Wang, F. Key time steps selection for CFD data based on deep metric learning. Comput. Fluids 2019, 195, 104318. [Google Scholar] [CrossRef]
- Tompson, J.; Schlachter, K.; Sprechmann, P.; Perlin, K. Accelerating eulerian fluid simulation with convolutional networks. In Proceedings of the International Conference on Machine Learning. PMLR, Sydney, Australia, 6–11 August 2017; pp. 3424–3433. [Google Scholar]
- Xiao, X.; Zhou, Y.; Wang, H.; Yang, X. A novel CNN-based Poisson solver for fluid simulation. IEEE Trans. Vis. Comput. Graph. 2018, 26, 1454–1465. [Google Scholar] [CrossRef]
- Wiewel, S.; Becher, M.; Thuerey, N. Latent space physics: Towards learning the temporal evolution of fluid flow. In Proceedings of the Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2019; Volume 38, pp. 71–82. [Google Scholar]
- Hou, Y.; Li, H.; Chen, H.; Wei, W.; Wang, J.; Huang, Y. A novel deep U-Net-LSTM framework for time-sequenced hydrodynamics prediction of the SUBOFF AFF-8. Eng. Appl. Comput. Fluid Mech. 2022, 16, 630–645. [Google Scholar] [CrossRef]
- Lino, M.; Fotiadis, S.; Bharath, A.A.; Cantwell, C.D. Current and emerging deep-learning methods for the simulation of fluid dynamics. Proc. R. Soc. A 2023, 479, 20230058. [Google Scholar] [CrossRef]
- Hasegawa, K.; Fukami, K.; Murata, T.; Fukagata, K. CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers. Fluid Dyn. Res. 2020, 52, 065501. [Google Scholar] [CrossRef]
- Ribeiro, M.D.; Rehman, A.; Ahmed, S.; Dengel, A. DeepCFD: Efficient steady-state laminar flow approximation with deep convolutional neural networks. arXiv 2020, arXiv:2004.08826. [Google Scholar]
- Bhatnagar, S.; Afshar, Y.; Pan, S.; Duraisamy, K.; Kaushik, S. Prediction of aerodynamic flow fields using convolutional neural networks. Comput. Mech. 2019, 64, 525–545. [Google Scholar] [CrossRef]
- Thuerey, N.; Weißenow, K.; Prantl, L.; Hu, X. Deep learning methods for Reynolds-averaged Navier–Stokes simulations of airfoil flows. AIAA J. 2020, 58, 25–36. [Google Scholar] [CrossRef]
- Zhou, H.; Xie, F.; Ji, T.; Zhang, X.; Zheng, C.; Zheng, Y. Fast transonic flow prediction enables efficient aerodynamic design. Phys. Fluids 2023, 35, 026109. [Google Scholar] [CrossRef]
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
- Patankar, S. Numerical Heat Transfer and Fluid Flow, Series on Computational Methods in Mechanics and Thermal Sciences; Hemisphere Publ.: New York, NY, USA, 1980. [Google Scholar]
- Park, H.; Park, J. Assessment of word-level neural language models for sentence completion. Appl. Sci. 2020, 10, 1340. [Google Scholar] [CrossRef]
- Ding, Y.; Ye, X.W.; Guo, Y. A multistep direct and indirect strategy for predicting wind direction based on the EMD-LSTM model. Struct. Control Health Monit. 2023, 2023, 4950487. [Google Scholar] [CrossRef]
- Shivakumara, P.; Tang, D.; Asadzadehkaljahi, M.; Lu, T.; Pal, U.; Hossein Anisi, M. CNN-RNN based method for license plate recognition. Caai Trans. Intell. Technol. 2018, 3, 169–175. [Google Scholar] [CrossRef]
- Sun, Q.; Lee, S.; Batra, D. Bidirectional beam search: Forward-backward inference in neural sequence models for fill-in-the-blank image captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6961–6969. [Google Scholar]
- Visin, F.; Kastner, K.; Cho, K.; Matteucci, M.; Courville, A.; Bengio, Y. ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks. arXiv 2015, arXiv:cs.CV/1505.00393. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2016, arXiv:cs.LG/1608.03983. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, 8–14 December 2019; Volume 32, pp. 8026–8037. [Google Scholar]
- Hubel, D.H.; Wiesel, T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 1968, 195, 215–243. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36, 193–202. [Google Scholar] [CrossRef] [PubMed]
Method | Number of Model Parameters |
---|---|
ED | 12,540,227 |
U-Net | 14,890,307 |
ED with SB-LSTM | 16,888,419 |
U-Net with SB-LSTM | 19,238,499 |
Method | MRE (All) (↓) | MRE (Corner) (↓) | ||||
---|---|---|---|---|---|---|
ED | 4.099% | 10.200% | 20.524% | 54.007% | 48.999% | 35.241% |
U-Net | 4.056% | 10.102% | 20.962% | 53.675% | 48.794% | 35.183% |
ED with SB-LSTM | 1.370% | 5.591% | 5.019% | 30.738% | 31.814% | 15.831% |
U-Net with SB-LSTM | 1.195% | 5.212% | 4.524% | 30.350% | 29.102% | 13.724% |
Method | Batch Size | Average Computation Time (s) | Inference Speed Acceleration Ratio |
---|---|---|---|
ED | 1 | 493.80 | |
10 | 834.3 | ||
100 | 896.11 | ||
U-Net | 1 | 381.46 | |
10 | 643.58 | ||
100 | 678.25 | ||
ED with SB-LSTM | 1 | 394.93 | |
10 | 757.1 | ||
100 | 876.39 | ||
U-Net with SB-LSTM | 1 | 342.36 | |
10 | 594.78 | ||
100 | 665.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, J.; Choi, W.; Lee, S. Internal Flow Prediction in Arbitrary Shaped Channel Using Stream-Wise Bidirectional LSTM. Appl. Sci. 2023, 13, 11481. https://doi.org/10.3390/app132011481
Ko J, Choi W, Lee S. Internal Flow Prediction in Arbitrary Shaped Channel Using Stream-Wise Bidirectional LSTM. Applied Sciences. 2023; 13(20):11481. https://doi.org/10.3390/app132011481
Chicago/Turabian StyleKo, Jaekyun, Wanuk Choi, and Sanghwan Lee. 2023. "Internal Flow Prediction in Arbitrary Shaped Channel Using Stream-Wise Bidirectional LSTM" Applied Sciences 13, no. 20: 11481. https://doi.org/10.3390/app132011481
APA StyleKo, J., Choi, W., & Lee, S. (2023). Internal Flow Prediction in Arbitrary Shaped Channel Using Stream-Wise Bidirectional LSTM. Applied Sciences, 13(20), 11481. https://doi.org/10.3390/app132011481