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Featured Application: This study concentrates on the field of intelligent nondestructive testing,
presenting a CNN—based method for accurately evaluating the depth of micro–defects on or
near a surface. The innovation in this study lies in several key aspects: (1) The establishment of
a multi–feature correlation between defect depth and ultrasound time–frequency domain char-
acteristics; (2) The full feature extraction via CWT and region of interest delineation of ultra-
sound signals aiming at a high training efficiency; (3) The targeted design and optimization of the
CNN model.

Abstract: This paper proposes a method for the detection and depth assessment of tiny defects in
or near surfaces by combining laser ultrasonics with convolutional neural networks (CNNs). The
innovation in this study lies in several key aspects. Firstly, a comprehensive analysis of changes in
ultrasonic signal characteristics caused by variations in defect depth is conducted in both the time and
frequency domains, based on discrete frequency spectra and original A—scan signals. Continuous
wavelet transform (CWT) is employed to obtain wavelet time–frequency maps, demonstrating the
consistent characteristics of this image with crack depth variations. A crucial innovation in this
research involves the targeted design and optimization of the model based on the characteristics of
ultrasonic signals and dataset size. This includes aspects such as data preparation, CNN architecture
construction, and hyperparameter selection. The model is tested using a random validation set,
which effectively demonstrates the CNN model’s validity and high precision. The proposed method
enables the recognition and depth assessment of tiny defects on or near surfaces.

Keywords: depth evaluation; tiny defect; laser ultrasonics; convolutional neural networks

1. Introduction

Critical components often operate in harsh environments and are subjected to cyclic
stress and strain in specialized applications, such as aerospace engines, offshore platforms,
and other similar scenarios, making them susceptible to the formation of micro–cracks
and other defects on or near the surface [1–3]. If these defects are not detected in a timely
manner, they can rapidly propagate and lead to the sudden catastrophic failure of the
entire structure [4,5]. Therefore, the detection of surface microdefects, such as surface or
near–surface cracks or incomplete fusion, especially through non–destructive evaluation
methods, plays a crucial role in the industrial domain [6,7].

The Rayleigh wave is well suited to the evaluation of surface defects due to its high
sensitivity to surface defects [8–10]. The defects can be detected and evaluated based on
changes in the signal–noise ratio within echo signals, specifically the amplitude variation in
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Rayleigh waves [11]. However, the accuracy of this method can be significantly decreased
when the detected defect size is much smaller than the wavelength of Rayleigh waves [12].
Nonlinear ultrasound methods are more effective in detecting small defects [13], but
their correlation with time–domain features and defect locations is weak [14]. Currently,
there is a paucity of research and limited methods to precisely evaluate the depth of
surface and near–surface tiny defects. The main obstacle is how to extract micro–ultrasonic
features associated with these defects, which can be obscured by noise or other interfering
signals, making it difficult to establish a quantitative relationship between ultrasonic waves
and defects.

In recent years, the integration of artificial neural networks with ultrasonic detection
has undergone significant advancements, which can accurately identify potential features
of signals from different sources and have been widely used in the fields of defective signal
identification and SNR enhancement, especially in high–attenuation, strong–interference
detection scenarios, such as those involving composite materials [15–17]. Artificial neu-
ral networks, represented by BPNN, require the manual feature extraction of ultrasound
signals, and their accuracy is affected by the type of extracted features [18–20]. In con-
trast, CNN, as one of the deep learning neural networks, has proven its superiority over
conventional neural networks in processing SHM signals containing massive numbers
of data, enabling automated signal analysis without further extracting features from raw
signals [21,22]. This superiority empowers CNNs to facilitate comprehensive analyses of
latent features embedded within ultrasound signals, while simultaneously establishing
potential connections. Consequently, CNNs emerge as a suitable choice for the evaluation
of micro–defects.

This paper introduces a novel method for accurately determining the depth of surface
and near–surface micro–defects. The proposed approach leverages convolutional neural
networks (CNNs) to extract and identify crucial features linked with defects, which might
be buried in noise or other disturbance signals, establishing a quantitative relationship
between the evolving characteristics of ultrasound signals and the depth of the defects. A
substantial volume of ultrasound data, essential for the implementation of deep learning
methodologies, is procured through laser ultrasound point–source scanning. The architec-
ture and hyperparameters of the convolutional neural network (CNN) are meticulously
crafted and fine–tuned with precision to yield optimal training outcomes.

2. Materials and Methods
2.1. Materials

The samples used in this study are made from 316 L stainless steel with dimensions
of 30 mm × 30 mm × 5 mm. Additionally, to simulate surface micro–crack defects, test
blocks were fabricated as shown in Figure 1. These test blocks incorporate four identical
defects, each measuring 3 mm × 0.05 mm and positioned at varying depths beneath the
surface. The depths in the direction perpendicular to the scanning surface are 0.1 mm,
0.2 mm, 0.3 mm, and 0.5 mm, respectively.

The test blocks were prepared using the Kre–AM280 powderbed fusion (PBF) metal
additive manufacturing system(Shanghai Aerospace Equipments Manufacturer Co., Ltd.,
Shanghai, China), with a scanning speed of 1200 mm/s, a layer thickness of 30µm, and a
filling gap of 0.1 mm. The overall density of the formed components was no less than 99%,
and the dimensional accuracy of the formed parts was 100 ± 0.1 mm. Defects were pre–set
using machining principles, with size and positional errors not exceeding 0.01 mm.
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Figure 1. Schematic diagram for the sample.

2.2. Experimental System and Methods

The non–contact laser ultrasonic data acquisition system is shown in Figure 2. The
ultrasound is excited by a 1064 nm pulsed laser (WEDGE HB 1064 from Bright Solutions,
Pavia, Italy)) with a pulse duration of 1.5 ns and an operating frequency of 2 kHz. The
max pulse energy is 2.12 mJ. A galvanometer (JD1105 from Sino–Galvo, Beijing, China)
with a dynamic focal lens is used for pulsed laser beam scanning with a maximum angle
of ±15◦ and scanning speed of 7 m/s. The laser beam is focused to a spot beam, and the
spot size is 100 µm. A two–wave mixing interferometer (QUARTET—1500 from Bossa
Nova Technologies, Culver City, CA, USA) with bandwidth of 100 MHz is used for the
reception of the ultrasound on the sample surface. The laser used for the interferometer is
a 532 nm continuous–wave laser. The power of the laser is 1 W, and the spot size is
50 µm. When a trigger signal is transmitted from the galvanometer, the pulse laser
emits, and the acquisition card (NI PXIe—5260 from National Instruments, State of Texas,
USA)) receives an ultrasonic A—scan signal with a sampling frequency of 1.25 GHz and a
16–bit resolution.

Figure 2. The testing system: (a) schematic diagram; (b) photograph of the real product.
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The different functional modules of the testing system are shown in Figure 3a, and the
C–scan mode is used for data acquisition (Figure 3b). The excitation laser and receiver laser
scan simultaneously with a fixed distance of 2 mm during scanning. The scanning range
should cover the target area. The scanning step is set to be comparable to the size of target
defect. The raw data are stored in a three–dimensional matrix, which provides abundant
ultrasonic data for further signal processing (Figure 3c). The C–scan image could be plotted
if the two–dimensional amplitude matrix at a specific time is extracted from the raw data
matrix, and the A—scan can be extracted from each collection point of the data matrix.

Figure 3. The laser ultrasonic data acquisition system: (a) schematic diagram, (b) scanning strategy,
(c) 3D data storage.

2.3. Signal Processing Methods

The A—scan signals corresponding to defects at various depths were extracted from
the raw data matrix. These signals were then transformed into frequency spectra using
the fast Fourier transform (FFT). The frequency spectra were overlaid with the original
time–domain signals, as depicted in Figure 4. In this figure, the black curve represents the
time–domain signal, while the blue curve represents the frequency–domain signal. The
superposition of defect echoes with the surface–direct wave signal results in a distortion of
the surface wave signal in the time domain and a shift in the peak position. The impact of
defect echoes becomes more pronounced as the defect depth decreases. In the frequency
domain, the surface wave signal with a central frequency of 5 MHz is effectively suppressed
by the defect signal with a central frequency of 2 MHz. Consequently, as the defect depth
increases, the spectrum gradually shifts from being dominated by a 2 MHz signal to
a dual–peak signal with 2 MHz and 5 MHz as the primary components. In summary,
changes in defect depth have a noticeable impact on both the time and frequency domain
characteristics of the signal. Therefore, a comprehensive analysis based on the signal’s
time–frequency features allows for a better assessment of defect depth.



Appl. Sci. 2023, 13, 11559 5 of 14

Figure 4. The ultrasonic A—scan signal and its spectra of different defect depths: (a) 0.1 mm,
(b) 0.2 mm, (c) 0.3 mm, and (d) 0.5 mm.

Wavelet transform is currently one of the prevailing signal processing methods for
time–frequency analysis. It builds upon and extends the localization concept of the short–
time Fourier transform (STFT). The continuous wavelet transform (CWT) is particularly
noteworthy for its ability to adapt the size of the time–frequency window, which outper-
forms the STFT’s constant window size. CWT has the capability to decompose signals of
complex modes into fundamental forms, allowing for effective feature identification within
the signal. It can also emphasize critical features of the signal and highlight variations in
sensitive parameters. Within the realm of CWT, various wavelet basis functions are avail-
able, including the Coiflet, Cmor, Haar, and Morlet wavelets, among others. In this research,
the Morlet wavelet was chosen as the basis function for CWT due to its superior capacity
to capture the time–frequency characteristics of the wave signal. For a one–dimensional
signal f (t), CWT can be expressed as follows, where ψ(t) represents the wavelet basis, and a
and b denote the scale and translation factors, respectively:

(
ωψ f

)
(a, b) =

1√
a

∫ +∞

−∞
f (t)ψ(

t− b
a

)dt (1)

ψa,b(t) =
1√
|a|

ψ

(
t− b

a

)
a, b ε R.a 6= 0 (2)

The original A—scan signals corresponding to different defects were subjected to con-
tinuous wavelet transform (CWT), and the results are shown as RGB images, as illustrated
in Figure 5. This graphical representation allows for the simultaneous observation of both
the time and frequency domain characteristics of the signal. The region outlined in red
is the focal area of interest within the time–frequency plot. It displays crucial parameters
such as the peak amplitude and time coordinates in the time domain, as well as variations
in different frequency components in the spectrum.
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Figure 5. The wavelet time–frequency plots of different defect depths: (a) 0.1 mm, (b) 0.2 mm,
(c) 0.3 mm, and (d) 0.5 mm.

Figure 6a displays an ultrasound B—scan signal corresponding to a specific moment in
time. The red box within the image outlines the location of the pre–embedded defect. Based
on the signal amplitude, a traversal and a preliminary screening of the ultrasound data
within the red box were conducted to obtain the central region of the defect (highlighted in
the black box within the image). Defective signals were extracted from this region in the
original dataset, while non–defective signals were extracted from other regions (outside the
red box). Each depth–specific defect corresponds to one category, and non–defective signals
form another category, with each category consisting of 200 ultrasound A—scan signals.
The batch processing of the signals using continuous wavelet transform (CWT) resulted in
the generation of the original wavelet time–frequency images, as shown in Figure 6b. To
improve the proportion of useful information in the time–frequency images and enhance
subsequent model accuracy and training speed, an area of interest was selected within the
image. Portions outside this area were excluded. The data format used for model training
is illustrated in Figure 6c.

Figure 6. The dataset preprocessing process: (a) the B—scan extracted from the raw data, (b) the
wavelet transform of the A—scan, (c) an interesting region of the time–frequency image.
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The dataset was subjected to normalization to enhance the convergence speed of the
model. The dataset was divided according to the following rules: 80% of the data were
selected as the training set, while the remaining 20% were allocated as the validation set.
Additionally, to facilitate real–time model evaluation and fine–tuning of hyperparameters
to prevent overfitting, 20% of the training set was randomly partitioned into a validation
subset. The final data partitioning is summarized in Table 1.

Table 1. Dataset partitioning.

Type 0.1 mm 0.2 mm 0.3 mm 0.5 mm No Defect

Training set 140 140 140 140 140

Test set 40 40 40 40 40

Validation set 20 20 20 20 20

3. Results and Discussion
3.1. Neural Network Architecture

The CNN (convolutional neural network) is one of the most extensively employed
deep learning neural networks in signal analysis, with remarkable achievements in image
processing and speech recognition [23,24]. It predominantly comprises three components:
the input layer, feature extraction layer, and fully connected layer, as depicted in Figure 7.
The input layer is utilized for inputting the training and testing data. The feature extraction
layer constitutes the core of the CNN, encompassing both the convolutional and pooling
layers, which collaboratively capture pivotal features from the data and learn potential
patterns from the constructed datasets.

Figure 7. The typical architecture of a CNN.

The convolutional layer filters the input data through a specified number of convolu-
tional kernels, generating complete feature maps. This process simplifies the input data and
extends them in depth. To introduce non–linearity into the model and address the issue of
insufficient expressive power in linear models, enhancing the neural network’s ability to
linearly separate complex features, it is common practice to incorporate activation functions
following the convolution operation [25]. Commonly used activation functions include
the sigmoid function, the tanh function, and the rectified linear unit (ReLU) function. The
sigmoid function is primarily used in binary classification neural network structures. Tanh
suffers from issues like gradient vanishing and power operations. On the other hand, the
ReLU function only requires a simple check on whether the input is greater than zero,
leading to faster convergence and addressing the problem of gradient vanishing. Therefore,
in this study, the ReLU function is selected as the activation function. The representation of
the mth feature map output from the Nth convolutional layer can be expressed as follows:

xN
m = ReLU

(
∑M

i=1

(
xN−1

i × kN−1
im

)
+ bN

m

)
(3)

where kN−1
im is the kernel of the Nth filter, bN

m is the corresponding bias matrix, and M
signifies the number of feature maps inputted from the (N−1)–th layer.
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Directly using the feature map output from the convolutional layers without any
processing can lead to increased computational complexity and a higher risk of overfitting
during the model’s learning process. Therefore, to simplify the computational process,
pooling layers are typically placed after each convolutional layer. These pooling layers
down–sample the input feature maps, replacing feature information from neighboring
regions with single–point data. Depending on the pooling function used, pooling can be
divided into max pooling and average pooling. Average pooling computes the average of
the values within the pooling range, while max pooling selects the maximum value within
that range.

At the end of the CNN network, there are fully connected layers responsible for
transforming the output feature maps from the previous pooling layer into feature vectors.
For non–linear problems, multiple fully connected layers are often used. In a study that
involves multi–classification, the output layer after the fully connected layers uses the
SoftMax function to output classification labels.

The complete structure of the 2D CNN for processing ultrasonic signals is depicted
in Figure 8. The input data consist of wavelet time–frequency images that have under-
gone crucial feature extraction and normalization. The parameters for the convolutional
layers, pooling layers, and fully connected layers were optimized in accordance with
the dataset size and image characteristics. The input image size used in this study is
200 × 200 × 1. Therefore, a relatively deep network is required to fully learn the data
features. However, a contradiction arises as the dataset size is insufficient to support an
excessively deep network structure, which could lead to overfitting and lower the model’s
generalization performance.

Figure 8. The principles of feature extraction: (a) convolutional layer, (b) pooling layer.

To address this challenge, the study initially employed larger convolutional kernels
and larger strides for feature extraction from the input layer. This approach allowed for
rapid feature extraction while retaining image features. To mitigate overfitting, non–zero
padding was used during pooling to discard certain features. Subsequent convolution
was applied to the pooled feature maps using (7 × 7) convolutional kernels, which are
smaller than those used in the first convolutional layer, and the number of feature maps
was doubled. The resulting feature maps from the second pooling layer were further
flattened, and smaller convolutional kernels with smaller strides were applied to preserve
more image features. Finally, another round of pooling yielded a 256 tensor.



Appl. Sci. 2023, 13, 11559 9 of 14

Two fully connected layers with 1024 neurons each were introduced to effectively
address non–linear image classification. The data were ultimately transformed into proba-
bility outputs in the output layer at the bottom of the neural network, and predictions for
different categories were made using the SoftMax function. The whole 2D CNN structure
is shown in Figure 9, and related parameter settings is listed in Table 2.

Figure 9. The 2D CNN structure incorporated with inputted CWT spectra from raw signals.

Table 2. The parameter settings of 2D CNN.

Layer Type Parameter Settings

L1 Conv Filter number = 64, kernel size = 11 × 11, stride = 4,
activation = ’ReLU’, padding = ’same’

L2 Max-pooling Kernel size = 3 × 3, stride = 4, padding = ’invalid’

L3 Conv Filter number = 128, kernel size = 7 × 7, stride = 4,
activation = ’ReLU’, padding = ’same’

L4 Max-pooling Kernel size = 3 × 3, stride = 2, padding = ’valid’

L5 Conv Filter number = 256, kernel size = 3 × 3, stride = 1,
activation = ’ReLU’, padding = ’same’

L6 Max-pooling Kernel size = 3 × 3, stride = 2, padding = ’valid’
L7 FC Units = 1024, activation = ’ReLU’
L8 FC Units = 1024, activation = ’ReLU’
L9 FC Units = 5, activation = ’Softmax’

3.2. Neural Network Optimization

To enhance the model’s generalization ability and prevent overfitting, regularization
techniques were introduced to incorporate additional information into the original model.
One such method is dropout, which was proposed in 2012 as an optimization technique for
deep neural networks [26]. Its principle involves randomly setting a fraction of weights or
outputs in hidden layers to zero during training, reducing the interdependence between
nodes and, thereby, achieving the regularization of the neural network. In this study,
dropout was applied before both of the two convolutional neural network layers. This
process involved randomly dropping out 50% of the neurons to prevent overfitting and
simultaneously improve the model’s generalization capacity. L2 regularization can be
viewed as a penalty term added to the loss function, restricting certain parameters within
the loss function. Given the small size of the dataset in this study, a regularization parameter
was included in the loss function to further mitigate overfitting.

The selection of hyperparameters in a convolutional neural network (CNN) frequently
affects the training outcomes of the model, particularly regarding the initial learning rate
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and batch size. Both parameters are crucial. An epoch represents the complete dataset’s
single–round forward and backward propagation through the neural network. The number
of samples per period might be excessive, and the computation time required for a period
calculation might be too long. As a result, the data are often subdivided into several batches
for training purposes.

The batch size refers to the number of samples in each batch of data. Completing one
batch of sample training constitutes one iteration. Therefore, the batch size determines
the direction of gradient descent in the model. When the batch size is small, the gradient
direction is frequently adjusted, making it challenging to converge due to greater variability
among the samples. Conversely, an excessively large batch size can result in a relatively
stable gradient direction, potentially causing the model to get trapped in local optima and
reducing the model accuracy.

The learning rate, on the other hand, is a hyperparameter that determines the step
size during the gradient descent process, essentially dictating the size of each step during
optimization. If a large initial learning rate is chosen, the optimization process may linger
near the global optimum without converging to it, making it difficult to find the global
optimum. Conversely, a too–small initial learning rate can slow down the rate of change of
the loss function, potentially leading to overfitting and requiring more time to converge.

These considerations highlight the delicate balance required in choosing appropriate
batch sizes and learning rates during the training of deep learning models to achieve effec-
tive convergence and optimal performance. In this study, the neural network preparation
was conducted using TensorFlow, training was conducted with various hyperparameters,
and the determination of whether the model achieved the global optimum was based on
the loss function values of the training set, as illustrated in Figure 10.

Figure 10. The train loss for different batch sizes and learning rates: (a) batch size 16, (b) batch size
32, and (c) batch size 64.

From the graph, it can be observed that the three batch sizes selected in this study
(16, 32, and 64) had minimal impact on the loss function. Even when the initial learning
rates were set to 0.0001, 0.0002, and 0.0004, the loss function did not reach its minimum
value even after 100 epochs, indicating that the model did not converge to the global
optimum. However, when the initial learning rates were set to 0.001, 0.002, and 0.005, the
loss function converged to its minimum value by epoch 15. Nevertheless, it is important to
note that determining whether the model converges to a local or global optimum based
solely on the loss function can be challenging. Therefore, further evaluation was conducted
using a test set, and model performance was assessed based on the test set accuracy, as is
shown in Table 3. The optimal batch size was found to be 32, and the optimal learning rate
was determined to be 0.002 through a combination of loss function analysis and test set
accuracy evaluation.
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Table 3. The test set accuracy for different batch sizes and learning rates.

Batch Size

Learning Rate
0.01 0.005 0.001 0.002 0.0004 0.0002 0.0001

64 88.7% 87.8% 88.2% 90.5% 81.9% 77.8% 86.0%
32 88.7% 86.9% 88.7% 91.9% 83.7% 83.7% 82.8%
16 87.8% 83.7% 88.7% 86.0% 73.8% 84.2% 80.1%

3.3. Depth Measurement Results

Based on the optimized hyperparameters, the convolutional neural network model
was trained, and the resulting training and validation loss curves are shown in Figure 11.
From the graph, it is apparent that, initially, the training loss was higher than the validation
loss. Subsequently, there was a rapid gradient–descent phase, where the training loss
decreased faster than the validation loss, indicating that the model converged rapidly. On
the validation side, the validation loss also exhibited a descent pattern and quickly reached
its minimum value.

Figure 11. The training loss of the test set and validation set.

In the end, both the validation and training sets converged to their respective minimum
values, and the epochs for convergence were around 25. This suggests that, at approx-
imately epoch 25, the model had found a local minimum during the gradient descent
process. To make a further assessment, the model accuracy needs to be considered.

Figure 12 illustrates the accuracy curves for both the training and validation sets. The
accuracy reached its peak at around epoch 25, reaching approximately 99.8% for the training
set and around 91.4% for the validation set; compared to the ANN regression model [16]
and similar CNN models [23] in the same field, the accuracy of our model is competitive.
This confirms that, at epoch 25, the model, indeed, achieved global optimization. It is clear
that our model achieves a better convergence effect in the early stage of training. Compared
to similar models [15–18], the training efficiency of the model is improved after the feature
extraction of the data via CWT. Early stopping was employed to terminate training when
the validation accuracy ceased to improve. Continuing training beyond this point would
increase the computational load and potentially lead to higher error rates in the test set.

The validation results of the model demonstrate that, at epoch 25, the loss function
had reached its lowest gradient, and the model accuracy had peaked. At this stage, the
convolutional neural network model was trained optimally, achieving an accuracy of 91.9%
in recognizing signals from different depths of defects: 0.1 mm, 0.2 mm, 0.3 mm, 0.5 mm,
and the comparisons of the depths measured using the proposed method and the designed
values is shown in Figure 13; the deviation from the designed values is between−0.042 mm
and +0.025 mm, and the mean deviation is ±0.037 mm.
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Figure 12. The accuracy of the test set and validation set.

Figure 13. The comparison of the depths measured using the proposed method and the designed
values: (a) the comparison results, (b) the deviations from the designed values.

4. Conclusions

This study aims to integrate laser ultrasonic testing methods with deep learning
algorithms for the in–depth assessment of small fatigue cracks. The key innovation lies
in the establishment of a 2D CNN model that incorporates input CWT spectra, enabling
the intelligent monitoring and high–precision depth estimation of surface or near–surface
small fatigue cracks. Through the definition of regions of interest in the original wavelet
time–frequency maps based on the temporal coordinates of critical ultrasonic waveforms,
the information content is enhanced. Additionally, targeted optimizations were applied
to the convolutional layers, pooling layers, and fully connected layers within the neural
network structure. The model’s two critical parameters, the batch size and learning rate,
were further optimized through testing sets and loss functions, facilitating high–precision
training under the constraints of a small dataset and effectively mitigating overfitting.

Random validation sets were employed to assess the model’s accuracy. For small
cracks with a minimum depth difference of 0.1 mm, the recognition accuracy reached 91.9%,
and the mean deviation of depth measured using the proposed method is ±0.037 mm. This
method demonstrates the capability to assess the depth of small defects on or near surfaces
effectively. Furthermore, due to the non–contact nature of laser ultrasonics, this approach
holds significant potential for application in extreme environments, including the additive
manufacturing, marine, and nuclear power industries.

Future Research Directions

Currently, the size of the laser ultrasonic detection system may limit the application of
the present method in some scenarios with restricted detection space; we aim to design a
scanning mechanism that aligns with varied detection scenarios in the future, catering to
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diverse detection needs. Moreover, the accuracy of our model may be enhanced through
physics–based models, transfer learning, and other special optimizations, which should be
further researched in the future.
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