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Abstract: In this research, the design of a robust curved-line path-following control system for fixed-
wing unmanned aerial vehicles (FWUAVs) affected by uncertainties on the latitude plane is studied.
This is undertaken to enhance closed-loop system robustness under unknown uncertainties and
derive the control surface deflection angle directly used to control FWUAVs, which has rarely been
studied in previous works. The system is formed through the mass center position control (MCPC)
and yaw angle control (YAC) subsystems. In the MCPC, the desired yaw angle, which is treated as
the reference signal for the YAC subsystem, is calculated analytically using path-following errors,
current flow angles, and the yaw angle. In the YAC, a disturbance estimator is designed to estimate
uncertainties such as nonlinearities, couplings, time variations, model parameter perturbations, and
unmodeled dynamics. Predictive functional controllers are designed to target nominal systems in the
absence of uncertainties, such that the estimations of the uncertainties can be incorporated through
feedback for closed-loop system robustness enhancement. The simulation results show that higher
path-following precision and stronger robustness for the FWUAVs based on the proposed approach
can be achieved using only rough model parameters compared with the conventional nonlinear
dynamic inversion, which requires detailed model information.

Keywords: fixed-wing unmanned aerial vehicles; path following; disturbance estimator; predictive
functional control; nonlinear dynamic inversion

1. Introduction

Due to the advantages of long endurance, fast flight, and high energy availability, fixed-
wing unmanned aerial vehicles (FWUAVs) have become increasingly attractive in many
areas, such as reconnaissance, patrol inspection, and monitoring. When executing missions,
FWUAVs are required to follow a prescribed reference path. The mission execution effect
relies on the path-following control performance, making the design of the path-following
control system important with engineering significance.

Path-following errors are adjusted via attitude angles. According to the path-following
errors, the mass center position controller generates the desired attitude angles, which are
regarded as the references for the attitude controller so that the control surface deflection
angles as well as the control laws of FWUAVs can be derived.

In the MCPC, establishing a motion model is quite important. By considering aerody-
namic complexities, variable couplings, fast time variations, and high nonlinearities, the
geometric approach and control technique are mainly applied for model establishment.
The two approaches have the advantages of a simple model structure and irrelevant model
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information, such that their superiority is obvious when compared with conventional
modeling methods [1].

The commonly utilized geometric approaches include the line-of-sight (LOS) [2–7],
vector field [8–14], virtual target following [15–21], and L1 guidance approaches [22–28].
Analytical solutions of the desired attitude angles or body rates regarded as reference
signals can be derived through the relationships among the path-following errors, the
current flow angles, and the current attitude angles.

Being different from the geometric approach, the control technique assumes that there
is a virtual target point attached to the prescribed reference path. A natural frame also
named the Frenet frame [21,29–32], whose origin coincides with the virtual target point, is
established; in this case, the Frenet frame overlaps with the body frame if the FWUAV can
strictly follow the path. In the control technique, path-following error kinematic models
whose inputs are the error angles (also called error attitude angles) between the Frenet frame
and the body frame are built without using any plant model information. The advantages
of the control technique are that the error attitude angles can be designed through different
control theories, such as L1 adaptive control [33], L1 state feedback control [34], nested
saturation control [35], linear model-based predictive control [36], optimal control [37], and
nonlinear model predictive control [38], and that the approach has been studied widely.

By considering that FWUAVs are easily influenced via external wind fields, approaches
such as a new guidance law combined with pure pursuit and the LOS [39], a VTP-based
nonlinear guidance law [15], optimal control with the wind amplitude available [16],
feedback control with wind estimation and compensation [37], and adaptive backstepping
control [40] have been presented.

However, the existing path-following control schemes are incomplete since they mainly
focus on the establishment of a path-following error kinematic model and the design of
mass center position controllers. Once the desired attitude angles/body rates have been
obtained, the studies are ceased, meaning that the design of the attitude controllers is
ignored and that the final deflection laws of the control surfaces actually used to steer the
FWUAVs are not given. It is well known that attitude control plays a decisive role not only
in path-following control but also in the field of flight control. Hence, the design of an
attitude control system and control performance enhancement cannot be ignored.

To address these problems, targeting the movement of FWUAVs on the latitude plane,
a robust path-following control approach is presented in this paper. The path-following
control performance can be improved using only a small amount of rough dynamic model
information. The main outcomes and contributions of this paper are twofold:

(1) A path-following control scheme for FWUAVs is perfected.

Being different from most existing studies, this paper aims to improve attitude system
performance via improving path-following control performance. Effective deflection angles
of the control surfaces as well as the control laws are designed;

(2) A robust control approach is proposed for attitude control.

A novel disturbance estimator (DE) [41,42] is applied to estimate uncertainties, such
as nonlinearities, strong couplings, and system unmodeled dynamics, so that, in the design
of controllers, only a small amount of model information is used. As pointed out in the
two literatures, the novel DE has better performance than the commonly used extended
state observer [43–48]. In addition, a predictive functional controller (PFC) is designed
for the nominal system in the absence of uncertainties to improve system input/output
performance. The estimation of the uncertainties is incorporated into the PFC for feedback
compensation so that the closed-loop system’s robustness can be improved.

2. System Modeling

In this section, a movement model based on the latitude plane is established. The
fundamentals of the curved path following the latitude plane are illustrated in Figure 1.
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Figure 1. Path following on the latitude plane.

Here, OxIyI and Pxbyb represent the inertia frame and body frame, respectively. P
represents the current mass center position of the FWUAV, which is denoted as (x, y).
Pp represents the desired position denoted as (xp, yp), which the FWUAV should locate.
u and v are the velocities along Pxb and Pyb, respectively. β = arctan v

u represents the
side-slip angle. Va =

√
u2 + v2 is the air speed. ψ is the yaw angle. xe and ye represent

the components between the current position P and the desired position Pp in the frame
Ppxpyp. ∆ is the look-ahead distance, which is a positive number.

2.1. Computation of Desired Attitude Angles

The prescribed reference path is denoted as Pp = [xp(s), yp(s)]
T , with s representing

the path parameter and xp(s) and yp(s) being the second-order derivatives with respect to
s. Then, the desired path angle can be written as

ψp = arctan2
(
yp(s), xp(s)

)
(1)

where arctan2(∗) represents the quadrant function.
The transformation matrix from OxIyI to Ppxpyp can be given using

Lpg =

[
cos ψp − sin ψp
sin ψp cos ψp

]
(2)

The following errors can be computed using Figure 1:

e = [xe, ye]
T = Lpg

(
P− Pp

)
(3)

Differentiating Formula (3) relative to time yields

·
e =

·
Lpg
(

P− Pp
)
+ Lpg

( ·
P−

·
Pp

)
(4)

One can also have
·
Lpg = SpLpg (5)

Sp =

 0
·
ψp

−
·
ψp 0

 (6)
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The transformation matrix from PxKyK to Ppxpyp can be given using

Lpk =

[
cos ψr sin ψr
− sin ψr cos ψr

]
(7)

By considering the wind velocities along Pxb and Pyb denoted as uw and vw, respectively,

the perturbed airspeed denoted by Vg can be calculated using Vg =
√
(u + uw)

2 + (v + vw)
2.

Since Vkg =
[
Vg, 0

]T , we can have

·
P = LT

pgLpkVkg (8)

The velocity of the desired path in Ppxpyp can be expressed as Vpg = [Vp, 0]T ; then, we
can derive

·
Pp = LT

pgVpg (9)

and ∣∣∣∣ ·Pp

∣∣∣∣ = ∣∣∣LT
pgVpg

∣∣∣ (10)

where |∗| represents the norm of a vector.
It can be determined from Formula (10) that

·
s =

Vp√
x′p

2(s) + y′p
2(s)

(11)

where x′p(s) =
∂xp(s)

∂s and y′p(s) =
∂yp(s)

∂s .
Bringing Formulas (5), (8), and (9) into (4) yields

·
e = SpLpg

(
P− Pp

)
+ Lpg

(
LT

pgLpkVkg − LT
pgVpg

)
= Spe + LpkVkg −Vpg

(12)

Then, the desired yaw angle can be calculated as

ψd = ψr + ψp − β (13)

with ψr defined as

ψr= arctan
(
−ye

∆

)
(14)

Take the following Lyapunov function:

Ve =
1
2

eTe (15)

Differentiating the Lyapunov function relative to time yields

·
Ve = eT ·e

= eT
(

Spe + LpkVkg −Vpg

) (16)

It is easy to prove that eTSpe = 0. Then, via carrying out a simple mathematical
operation, one can derive

·
Ve = xe

(
Vg cos ψr −Vp

)
+ yeVg sin ψr (17)
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To guarantee
·

Ve ≤ 0, we can take

Vp = Vg cos ψr + τxe (18)

where τ > 0 is a tuning variable.
Bringing Formula (18) into (11) yields

·
s =

Vg cos ψr + τxe√
x′p

2(s) + y′p
2(s)

(19)

Bringing Formulas (14) and (18) into (17) yields

·
Ve = −τx2

e −Vg
∆ye

2√
∆2 + ye2

< 0 (20)

It can be seen from the definition that the velocity Vg must be a positive number. ∆
is the look-ahead distance, which is a positive number and has also been defined before.

Thus,Vg > 0 and ∆ > 0 can guarantee −Vg
∆ye

2√
∆2+ye2

< 0, which also implies
·

Ve < 0.

Formula (20) indicates that the real flight path of the FWUAV can converge gradually to
the prescribed reference path under the designed desired yaw angle (14).

The complete curved path-following scheme can be summarized as follows:

·
s = Vg cos ψr+τxe√

x′p
2(s)+y′p

2(s)

ψr= arctan
(
−ye

∆

)
ψd = ψr + ψp − β

(21)

Equation (21) describes the path-following error of the center of mass of the FWUAV.
The first equation

·
s describes the changing rate of the path variable s relative to time so that

the desired path to be followed can be digitalized and programmed in the flight control
hardware. The rest of the two equations afford reference signals to the yaw angle system to
design the deflection laws of the rudder.

2.2. Yaw System Model

In the yaw movement, the force acting on the FWUAV is mainly the yaw torque, which
depends on the rudder. The expression of the yaw torque N is given by [49]:{

N = 1
2 ρV2

a SbCn
Cn = Cn0 + Cnβ

β + Cnr
br

2Va
+ Cnδr

δr
(22)

where ρ, S, b, and δr are the air density, wing area, wing span, and rudder deflection angle,
respectively. r is the yaw rate. Cn0 is the zero yaw moment coefficient. Cnβ

, Cnr , and Cnδr
are derivatives of the yaw moment with respect to the side-slip angle, yaw rate, and rudder,
respectively, which can also be seen in [49].
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Then, by referring to [49] and considering uncertainties, the yaw movement model is
given using 

·
ψ = r

·
r = N

Iz
+ ds

=
Cn0 + Cnβ

β

Iz
+

Cnr br
2Va Iz

+ ds︸ ︷︷ ︸
fr

+
Cnδr

Iz︸︷︷︸
br

δr

= fr + brδr

(23)

where Iz is the moment of inertia. ds represents the uncertainties, including the unmodeled
dynamics and model parameter perturbations.

Then, the remaining task of this paper is to design the deflection angle of the rudder
δr so that the yaw angle of the FWUAV ψ in Formula (23) can track the desired value of ψd
derived from Formula (21) using the dynamic model (23).

2.3. Existing Approaches and Defects

To highlight the approach proposed in the paper, the existing approaches and their
defects are summarized in Table 1.

Table 1. The existing approaches and their defects.

Approach Category Literatures Defects

LOS [2–7] Poor robustness, no attitude control system

vector field [8–14] Complicated theories, Poor robustness, no
attitude control system

virtual target following [15–21] Too many virtual targets, poor robustness, no
attitude control system

L1 guidance [22–28] Poor robustness, no attitude control system
Frenet [21,29–32] Poor robustness, no attitude control system

3. Yaw Angle Control Design

In this section, based on the desired yaw angle derived in Section 2.1, a control scheme
for the yaw movement can be designed.

3.1. Design of DE

By referring to the literature [41], the design of the DE for estimating the nonlinear
term fr can be divided into the following steps:

Step 1: design of the nominal model
In the absence of fr in Formula (23), the nominal model in the continuous-time domain

can be given using
·
rm = brδr (24)

The discrete-time version is written as

rm(k + 1) = rm(k) + Tbrδr(k) (25)

where rm is the state of the nominal model, and T is the sampling period;
Step 2: DE formulation
The DE is designed as follows:

f̂r(k) =
∆εr(k)

T + φ̂(k) · ∆δr(k)

φ̂(k) = φ̂(k− 1) +
η[∆r(k)−φ̂(k−1)∆δr(k−1)]∆δr(k−1)

µ+|∆δr(k−1)|2

(26)
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where f̂r is the estimated value of fr, εr(k) = r(k) − rm(k), ∆εr(k) = εr(k) − εr(k − 1),
∆δr(k) = δr(k)− δr(k− 1), ∆r(k) = r(k)− r(k− 1), µ > 0, η ∈ (0, 2], and φ̂(0) is specified
by users.

A stability analysis of the DE can be seen in Appendix C in [42].

3.2. Controller Design

In Formula (23), the desired yaw rate for manipulating the yaw angle is designed as follows:

rd(k) = ω1[ψd(k)− ψ(k)] (27)

According to the predictive functional control theory [50,51], the system input can be
formulated using {

δr(k + i) = δ1 + i · δ2
∆δr(k + i) = δ2

(28)

Then, in Formula (23), in the absence of fr, a predictive model for the yaw rate model
can be given using 

r(k + 1) = r(k) + Tbrδ1
r(k + 2) = r(k) + Tbr(δ1 + δ2)
r(k + 3) = r(k) + Tbr(δ1 + 2δ2)

...
r(k + n) = r(k) + Tbr[δ1 + (n− 1)δ2]

(29)

The following receding horizon performance index function is selected:

J(k) =
1
2

2

∑
j=1

[
r
(
k + nj

)
− rd

(
k + nj

)]
(30)

where n1 and n2, which are two positive integers, are the lengths of the receding horizon.
Denote u(k) = [δ1, δ2]

T . Then, by letting ∂J(k)
∂u(k) = 0, the optimal rudder deflection angle

can be derived as follows:

δr(k) = [1, 0]
[

Tbr Tbr(n1 − 1)
Tbr Tbr(n2 − 1)

]−1[rd(k + n1)− r(k)
rd(k + n1)− r(k)

]
(31)

Through combing Formulas (26) and (31), the final control law is summarized as

δr(k) = [1, 0]
[

Tbr Tbr(n1 − 1)
Tbr Tbr(n2 − 1)

]−1[rd(k + n1)− r(k)
rd(k + n1)− r(k)

]
− 1

br
f̂r(k) (32)

4. Numerical Simulations

In this section, two groups of numerical simulations are carried out to demonstrate
the effectiveness and superiority of the proposed control scheme via a comparison with the
conventional nonlinear dynamic inversion (NDI) approach [52–54], which is commonly
used in flight control. The conventional nonlinear dynamic inversion controller for the yaw
angle control is designed as follows:{

rd(k) = ρ1[ψd(k)− ψ(k)]
δr(k) = 1

br
{ρ2[rd(k)− r(k)]− fr(k)}

(33)

where ρ1 > 0 and ρ2 > 0 are two tuning parameters.
The geometry and aerodynamic parameters in Formulas (22) and (23) are

Iz = 1.759 kg ·m2, Cn0 = 0, Cnβ
= 0.25, Cnr = −0.35, and Cnδr

= −0.032. The trimmed
conditions of the FWUAV are Va = 30 m/s, xp = yp = 0, ψ = r = 0, and δr = 0. The values
of the controller parameters for the NDI are ρ1 = 5 and ρ2 = 10. The values of the controller
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parameters for the proposed approach are µ = 0.1, η = 0.1, φ̂(0) = 1, ω1 = 2, n1 = 5, and
n2 = 10. The uncertainty term is ds = 4 sin(0.5t) + 3 cos(t) when 45 s ≤ t ≤ 90 s, and the
wind velocities along OxI and OyI are 0 and 3 m/s when 15 s ≤ t ≤ 30 s, respectively.
Actually, the wind disturbances along OxI would not have great effects on the flight path
of the FWUAV since the wind can only decrease the flight speed and prolong the mission
accomplishment time of the path following. However, the wind along OyI has entirely
different effects on the FWUAV since it affects the airplane from the side direction, which
would influence the stability of the FWUAV.

The prescribed reference path (unit: m) is given using{
xd(s) = −450 sin(s)
yd(s) = 450 cos(s) + 450

(34)

4.1. Case Study 1

In this group, wind disturbances along OxI and OyI and the uncertainty of ds regeared
as unmodeled dynamics are considered. The unmodeled dynamics ds would affect the
flight stability of the FWUAV since it can cause unstable poles.

The simulation results are illustrated below.
Figures 2 and 3 clearly prove that the proposed approach is superior to the NDI

approach. The absolute maximum following errors of the proposed scheme along OxI
and OyI are only 0.02 m and 2 m, respectively, compared with the ones based on the
NDI approach, which are up to 0.12 m and 12 m along OxI and OyI , respectively. The
path-following errors of the proposed approach are much smaller than those of the NDI.
Additionally, the two figures also indicate that the NDI approach has a trend of divergence
after 45 s when the unmodeled dynamics are encountered, since the NDI approach does
not have any anti-disturbance mechanisms. However, the situations are different in the
proposed scheme due to the existence of the DE, which has a strong disturbance estimation
capability and superb estimation accuracy.
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Figure 4 shows that, when dealing with wind disturbances, the controllers of the
proposed approach generate more effective control inputs than those of the NDI approach
to guarantee path-following precision. However, to deal with the unknown unmodeled
dynamics, too-frequent deflection for the rudder occurs in the NDI-based closed-loop
system, which places a heavy burden on the actuator of the FWUAV. The reason for this
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is that the closed-loop system based on the proposed control scheme has a disturbance
rejection mechanism that enables the FWUAV’s strong robustness. Figure 5 shows the
accurate estimation capability of the DE, which is the fundamental reason for the proposed
control approach being superior to the conventional NDI approach.

Figures 6–8 show the attitude control performance of the FWUAV during flight. In the
flight control field, attitude maintenance capability plays a decisive role and determines
path-following performance. In Figures 7 and 8, the NDI approach-based path-following
control system is incapable of steering the yaw movement when unmodeled dynamics
are encountered. It can be seen in Figure 7 that the yaw angle of the NDI approach has
frequent fluctuations. In Figure 8, the FWUAV has large changing rates, which reach up to
30 degrees (should be around zero) for the yaw movement. A poor attitude control capabil-
ity would cause large path-following errors for the FWUAV, which results in unsatisfying
control performance in path-following missions. The situations are quite different in the
proposed approach, as shown in Figure 6, due to the disturbance rejection function because
the unmodeled dynamics can be estimated and compensated successfully.
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4.2. Case Study 2

In this group, all uncertainties, including wind disturbances along OxI and OyI , the
model parameter perturbations for br, and uncertainty ds, are considered. To validate
the proposed scheme completely, +30% and −30% perturbations of br are considered.
Furthermore, the results of the two perturbation cases are also combined with those of the
case without any perturbations to show the effectiveness of the proposed scheme.

The simulation results are illustrated below.
It can be determined from Figures 9 and 10 that the proposed approach-based path-

following control system can achieve great flight performance regardless of whether the
important model parameter has perturbations. The absolute maximum following error
of the proposed approach in the two situations along OyI is only 0.02 m, and the mean
path-following errors are all very close to zero. Additionally, when recalling the results in
Section 4.1, it is found that, even when the model parameter perturbs within a wide range,
the control performance of the proposed approach is much better than that of the NDI.
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Figure 11 shows that the control law can be designed requiring only a small amount of
rough model information. In addition, due to the existence of the DE, the dynamics of the
model perturbation can be observed accurately and compensated effectively so that even
slight changes in the characteristics of the closed-loop system would not happen. Thus, the
trends of the rudder deflection angles in the two situations are similar, which means that
even the model parameter undergoes large perturbations, and the rudder deflection angles
similar to those in the case without any perturbations can be used to steer the FWUAV.
Figures 12 and 13 show that the DE can estimate the uncertainties accurately, even when
large perturbations occur in the model parameter. It has an advantage in that the design
of the control system for the FWUAV is mildly correlated with the system modeling and
model parameter measurement.

Figures 14–16 show that similar yaw movements in the two situations can be achieved
during path following. Under the uncertainties induced via the unmodeled dynamics
and the parameter perturbation, the yaw angle changes stably without any jumping or
fluctuation, which proves that the frame stability of the FWUAV can be guaranteed and
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that the closed-loop system’s robustness can be significantly enhanced under large model
parameter perturbations.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 18 
 

Figure 8. Yaw rates. 

4.2. Case Study 2 
In this group, all uncertainties, including wind disturbances along IOx  and IOy , 

the model parameter perturbations for rb , and uncertainty sd , are considered. To vali-
date the proposed scheme completely, +30% and −30% perturbations of rb  are consid-
ered. Furthermore, the results of the two perturbation cases are also combined with those 
of the case without any perturbations to show the effectiveness of the proposed scheme. 

The simulation results are illustrated below. 
It can be determined from Figures 9 and 10 that the proposed approach-based path-

following control system can achieve great flight performance regardless of whether the 
important model parameter has perturbations. The absolute maximum following error of 
the proposed approach in the two situations along IOy   is only 0.02 m, and the mean 
path-following errors are all very close to zero. Additionally, when recalling the results in 
Section 4.1, it is found that, even when the model parameter perturbs within a wide range, 
the control performance of the proposed approach is much better than that of the NDI. 

 
Figure 9. Path−following effects. Figure 9. Path−following effects.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 18 
 

 
Figure 10. Path−following errors. 

Figure 11 shows that the control law can be designed requiring only a small amount 
of rough model information. In addition, due to the existence of the DE, the dynamics of 
the model perturbation can be observed accurately and compensated effectively so that 
even slight changes in the characteristics of the closed-loop system would not happen. 
Thus, the trends of the rudder deflection angles in the two situations are similar, which 
means that even the model parameter undergoes large perturbations, and the rudder de-
flection angles similar to those in the case without any perturbations can be used to steer 
the FWUAV. Figures 12 and 13 show that the DE can estimate the uncertainties accurately, 
even when large perturbations occur in the model parameter. It has an advantage in that 
the design of the control system for the FWUAV is mildly correlated with the system mod-
eling and model parameter measurement. 

 
Figure 11. Control laws. 

Figure 10. Path−following errors.



Appl. Sci. 2023, 13, 11577 13 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 18 
 

 
Figure 10. Path−following errors. 

Figure 11 shows that the control law can be designed requiring only a small amount 
of rough model information. In addition, due to the existence of the DE, the dynamics of 
the model perturbation can be observed accurately and compensated effectively so that 
even slight changes in the characteristics of the closed-loop system would not happen. 
Thus, the trends of the rudder deflection angles in the two situations are similar, which 
means that even the model parameter undergoes large perturbations, and the rudder de-
flection angles similar to those in the case without any perturbations can be used to steer 
the FWUAV. Figures 12 and 13 show that the DE can estimate the uncertainties accurately, 
even when large perturbations occur in the model parameter. It has an advantage in that 
the design of the control system for the FWUAV is mildly correlated with the system mod-
eling and model parameter measurement. 

 
Figure 11. Control laws. 
Figure 11. Control laws.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 18 
 

 

Figure 12. Uncertainty estimation: +30% and estimation error 
r r re f f= − . 

 

Figure 13. Uncertainty estimations: −30% and estimation error 
r r re f f= − . 

Figures 14–16 show that similar yaw movements in the two situations can be 
achieved during path following. Under the uncertainties induced via the unmodeled dy-
namics and the parameter perturbation, the yaw angle changes stably without any jump-
ing or fluctuation, which proves that the frame stability of the FWUAV can be guaranteed 
and that the closed-loop system’s robustness can be significantly enhanced under large 
model parameter perturbations. 

Figure 12. Uncertainty estimation: +30% and estimation error er = fr − f̂r.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 18 
 

 

Figure 12. Uncertainty estimation: +30% and estimation error 
r r re f f= − . 

 

Figure 13. Uncertainty estimations: −30% and estimation error 
r r re f f= − . 

Figures 14–16 show that similar yaw movements in the two situations can be 
achieved during path following. Under the uncertainties induced via the unmodeled dy-
namics and the parameter perturbation, the yaw angle changes stably without any jump-
ing or fluctuation, which proves that the frame stability of the FWUAV can be guaranteed 
and that the closed-loop system’s robustness can be significantly enhanced under large 
model parameter perturbations. 

Figure 13. Uncertainty estimations: −30% and estimation error er = fr − f̂r.



Appl. Sci. 2023, 13, 11577 14 of 17Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 18 
 

 

Figure 14. Yaw angles: +30%. 

 
Figure 15. Yaw angles: −30%. 

 

Figure 14. Yaw angles: +30%.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 18 
 

 

Figure 14. Yaw angles: +30%. 

 
Figure 15. Yaw angles: −30%. 

 

Figure 15. Yaw angles: −30%.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 18 
 

 

Figure 14. Yaw angles: +30%. 

 
Figure 15. Yaw angles: −30%. 

 

Figure 16. Yaw rates.



Appl. Sci. 2023, 13, 11577 15 of 17

5. Conclusions

In this study, a novel, robust flight control system was designed for FWUAVs following
curved paths under uncertainties on the latitude plane. Without using any model infor-
mation, the desired yaw angle can be derived by using path-following errors, flow angles,
and the current yaw angle. The model-free approach for deriving the desired yaw angle is
easy to implement in hardware for engineering applications, and it dramatically reduces
the burden of flight control computers. For the yaw angle control, firstly, though the yaw
movement system is full of nonlinearities, couplings, time variations, and external winds,
which would seriously degrade flight performance, the designed disturbance estimator can
estimate all the uncertainties existing in the yaw movement model accurately for feedback
compensation such that the path-following accuracy can be improved significantly. The
path-following errors for the x and y directions are only 0.02 m and 2 m, respectively,
compared with 0.12 m and 12 m for the NDI approach. Secondly, due to the existence of
the disturbance estimator, the frame parameters of FWUAVs are allowed to perturb within
a wide range between −30% and +30%. Through consuming quite a similar amount of
input power (the deflection angles of the rudder), almost the same path-following control
performance with very small path-following errors can be achieved. The yaw system has
strong robustness in dealing with uncertainties, which allows the desired yaw angle of the
position system to be tracked precisely. The yaw rate has small fluctuations in situations
where external wind fields are encountered. However, the yaw rate can return to a stable
value within a short time period.
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