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Abstract: Imbalanced data cause low recognition of wind turbine blade cracking. Existing data-
level augmentation methods, including sampling and generative strategies, may yield lots of high-
confidence but low-value samples, which fail to improve the detection of blade cracking. Therefore,
this paper designs a novel RTAE (roundtrip auto-encoder) method. Based on the idea of the roundtrip
approach, we design two generator networks and two discriminator networks to ensure the cycle
mapping between cracking samples and latent variables. Further, by leveraging cycle consistency
loss, generated samples fit the distribution of historical cracking samples well. Thus, these generated
samples effectively realize data augmentation and improve recognition of blade cracking. Addition-
ally, we apply an auto-encoder method to reduce the dimension of historical samples and thus the
complexity of the generator network and discriminator network. Through the analysis of real wind
turbine blade cracking data, the recognition of cracking samples is improved by 19.8%, 23.8% and
22.7% for precision, recall and F1-score.

Keywords: blade cracking; imbalanced data; roundtrip; auto-encoder

1. Introduction

Due to the insufficient bending strength, tensile strength and other parameters of
wind turbine blade material, as well as their overly large dynamic load, blade crack-
ing is a common cause of failure, accounting for approximately 30% of all downtime
accidents [1–3]. However, due to constantly changing speeds and transient impacts,
modeling the failure mechanism of blade cracking proves very challenging. Further-
more, since blades account for roughly 15–20% of total equipment costs, blade cracking
can lead to potentially enormous maintenance expenses and safety hazards. Given its
importance and costs, timely and accurate approaches to detecting blade cracking are
attracting widespread research attention [4–6].

Data-based detection approaches work independently of the dynamics and kinematics
of physical systems, and are thus effective for blade cracking detection. However, data
are generally imbalanced, with very few cracking samples in real scenarios, leading to
detection approaches that support normal samples and rarely identify cracking samples
in the early stage (theoretical analysis in Section 2.1). Aiming at such problems, current
data-level solutions mainly include sampling and generative strategies.

Sampling strategies, e.g., SMOTE (synthetic minority oversampling technique) and
ADASYN (adaptive synthetic), utilize prior knowledge about the space distribution of
collected cracking samples to synthesize new samples. Ge [7] adopted 29 sensor features as
original input and used SMOTE to synthesize virtual cracking samples via linear interpola-
tion between two random real cracking samples. Meanwhile, the density and concentration
area are introduced to increase the confidence of virtual cracking samples. Jiang [8] de-
signed a synthetic and dependent wild-bootstrapped oversampling technique for wind
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turbine fault diagnosis which is a modification of SMOTE and mimics the temporal depen-
dence of time-series data. In the data analysis part, two datasets collected from two wind
farms of northeast and northwest China are used, with 70 attributes in total, including
wind speed, x-axis nacelle vibration, yaw angle, etc. Cristian [9] dealt with imbalanced
wind turbine data using the random oversampling technique, which directly removed
some random normal samples to achieve amount balance. To verify the proposed method,
19 real variables covering 19 different attributes were used, including generated power,
R-phase voltage, wind speed, etc. Yi [10] designed a minority clustering SMOTE approach
for wind turbine fault detection, which achieved different clusters of minority samples
and solved the problem of the uneven distribution of fault samples. Chen [11] adopted
ADASYN to alleviate the critical imbalance and convolutional LSTM-GRU to recognize
blade icing status. The dataset for verification was collected over 341.88 h with 26 sensor
values, including wind speed, yaw position, vertical acceleration, etc.

Generative strategies estimate the probability density of cracking samples and then
sample new data points to supplement cracking samples. Chen [12] designed a deep
convolutional generative adversarial network (GAN) to produce a threshold for a condition
monitoring scheme of wind turbines. The employed signal was the frequency spectrum
transformed by fast Fourier transform. Liu [13] used a generative adversarial network to
transform normal data into rough fault data, and furthermore, a refiner developed using
a GAN was adopted to make them much similar to real fault data. For verification, the
input data contained 28 variables, such as pitch angle, hub angle and generator torque.
Liu [14] introduced sparse dictionary learning into an adversarial variational auto-encoder
to generate virtual data and determine the posterior distribution from six sensor variables,
including wind speed, active power, generator speed, three-phase current and voltage.
Wang [15] designed a least-square GAN to determine the distribution of health data from
15 selected sensor variables and realize the data augmentation. Yang [16] used wavelet
packet transform to generate time–frequency data of wind turbines and a GAN to compen-
sate for the imbalance level. Ogaili [17] published a wind turbine fault diagnosis dataset
considering vibration under different wind speeds for fault diagnosis under both imbal-
anced and balanced conditions. Jiang [18] took 28 sensor variables (e.g., yaw position, yaw
speed) as input of a GAN to generate virtual blade icing samples. Zou [19] combined a
convolution neural network and GAN to detect wind turbine blade surface damage using
a small number of damage images.

Although plenty of approaches have been developed, there are still two critical prob-
lems that deserve in-depth research based on above studies. (1) Both sampling strategies
and generative strategies easily produce virtual cracking samples with a high confidence
but low usage value. The reason for this is that sampling strategies more often pick samples
in a dense area as a basis, leading to many synthesized samples lying in the middle area.
Similarly, the generator in a GAN yields virtual cracking samples in the middle area (with
high confidence) to easily cheat the discriminator. However, virtual samples near the
decision border rather than the middle area may be more helpful for supporting good
classification results. (2) Generative strategies focus on generating real, similar cracking
samples but ignore the overall space distribution of real samples. Furthermore, if real
samples are distributed over more than one cluster, with some clusters owning many data
points, generative strategies may only produce samples for these clusters. However, these
clusters with few data points may be more important for improving classification accuracy.

Aiming at the above key points, this work designs a novel blade-cracking detection
solution. Considering the case that the amount of redundant features will bring a high
number of weights to be optimized in GAN, we curtail the input dimension using an
unsupervised auto-encoder. Further, a virtual cracking sample generative strategy-based
roundtrip framework is designed to achieve bidirectional mapping between virtual and
real samples. By inverse mapping, it catches the overall space distribution and avoids the
generated virtual samples falling into a dense area. Through verification on the benchmark
dataset and real wind turbine blade cracking, the results show the effectiveness.
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2. Motivation and Preliminary
2.1. Motivation

Wind turbine blade-cracking detection is typically a binary classification problem.
In order to explain the effects of imbalanced data, this section takes two common binary
classification methods for analysis, namely decision tree (C4.5) and support vector machine
(SVM). For the former, a splitting node is selected according to the information gain ratio:

Gain_ratio =
∑N
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D
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−
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where D denotes the total sample amount; D+ denotes the normal sample amount; D−

denotes the blade cracking sample amount. N is the total number of attribute values for a
specific attribute. Di denotes the sample amount for i-th attribute value. D+

i and D−i are
the normal sample amount and cracking sample amount for i-th attribute value.

Since
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Supposing there are very few cracking samples, we can infer that
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From Equation (3), it is clear that gain ratio is irrelevant with cracking samples. That
is, building the decision tree only depends on normal samples, causing a high recognition
uncertainty for cracking samples.

For SVM, we take the linear separable case for explanation. If the data are balanced,
the decision surface is obtained by minimizing Equation (4):

argmin
w

Loss =‖W ‖ +C
D

∑
i=1

ξi, s.t. yi(Wxi + b) ≥ 1− ξi, ξi ≥ 0 (4)

where W decides the position and direction of decision surface; C is a penalty coefficient;
ξi is a relaxation variable; {xi, yi} denotes i-th sample. If some cracking samples are
removed and surface shifts distance d towards cracking samples, the variation in Loss is
computed by Equation (5):

∆Loss = C
D+

∑
i=1

(ξi − dsinθ) + C
D−
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j=1

(
ξ j + dsinθ

)
−
(

C
D+

∑
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ξi + C
D−

∑
j=1

ξ j

)
= Cdsinθ(D− − D+) < 0

(5)

where θ represents the angle between the x-axis and decision surface. Obviously, ∆Loss
is less than zero, implying a better support for normal samples, but it may bring many
misclassifications of these unseen cracking samples near the former decision surface.

From the above analysis, the root cause for low recognition of cracking samples is
the imbalanced sample amount. Current solutions mainly include two aspects, namely
sampling strategies and generative strategies. However, there are still critical problems that
deserve deep research. As illustrated in Figure 1a, sampling strategies (e.g., SMOTE and its
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variants) may pick the basis sample from a middle or dense area, leading to synthesized
samples lying far from border. As shown in Figure 1b,c, generative strategies (such as
GAN) tend to generate highly confident samples for easily cheating the discriminator.
However, samples on the border with low confidence may be better for improving the
decision surface. Additionally, in the case of several clusters (as Figure 1d), generative
strategies may ignore cluster 1 because of less cracking samples, since it mainly fits the
probability distribution of cluster 2. Instead, cluster 1 may be more important for improving
classification accuracy.
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2.2. Preliminary
Roundtrip

Roundtrip is a method based on cycle GAN and its framework is shown in Figure 2 [20].
It contains four parts: generator network G and H, discriminators DX and DZ. Z is a latent

variable drawn from normal distribution; X denotes historical samples;
∼
Z and

∼
X denote

generated latent variables and generated virtual samples. H transforms latent variables to
virtual samples and G transforms historical samples to latent variables. Both of them are
nonlinear transforms. DX is employed to discriminate real and virtual samples. Likewise,
discriminator DZ discriminates real and virtual latent variables. DX and DZ determines
their authenticity (real 0, fake 1). By minimizing the following six objective functions, G, H,
DX, and DZ achieve the optimal configuration.

∼
Z = H(X) (6)
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(8)

where L1 and L2 aim to obtain well-performed discriminators; L3 and L4 supervise G and

H to generate high-quality data, namely
∼
Z and

∼
X; L5 and L6 measure the cycle consistency.

It is noted that when L3 and L4 decrease, the generated data will move away from the
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decision boundary and stay in high-density areas, which will produce data with high
confidence but of low quality.
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3. RTAE Method
3.1. Intrinsic Feature Extracted by Auto-Encoder

The collected wind turbine blade cracking data are usually high dimensional
(75-dimension in the case study). Directly inputting such data into roundtrip will bring big
H and G networks, that is, a large number of hidden layers and hidden neurons. Generally,
it is difficult to design such effective networks and configure them. Therefore, reducing the
dimensionality before inputting into roundtrip is urgently necessary.

Auto-encoder (AE) is an outstanding dimension reduction method and effective for
nonlinear problems [21]. It consists of an encoder and a decoder. The encoder encodes input
into a feature representation and decoder reconstructs the input. Given the observations
Y ∈ Rn, the encoder computes low dimensional representation by

∼
Y = f (WEY + bE) (9)

where f (·) is activation function; WE ∈ Rm×n is an encoder matrix and bE ∈ R is a bias; n
is the dimension of original sample. Decoder reconstructs it by:

Y = f (WD
∼
Y + bD) (10)

where WD ∈ Rn×m is a decoder matrix; bD ∈ R is a bias; m is the low dimension. AE learns
these matrixes and biases by

arg min
θ

1
2K

K

∑
i=1
‖
∼
Yi − Yi ‖

2

2, θ = {WE, bE, WD, bD}, i = 1, 2, . . . , K (11)

where K denotes the sample amount.

3.2. Implementation of Roundtrip Density Estimation

For roundtrip, H, G, DX and DZ are the key components. Based on the dataset used in
the data analysis part (each sample contains 75 attributes), we designed these four models as
listed in Table 1. As shown, all of these four models contain five layers, with an alternating
fully connected layer and batch normalization.
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Table 1. Details of H, G, DX and DZ.

Part Layer Type Input Dimension (IP) Output Dimension (OP)

H

Fully Connected Layer Determined by AE 32
Batch Normalization 32 32

Fully Connected Layer 32 64
Batch Normalization 64 64

Fully Connected Layer 64 Dimension of Latent Variable

G

Fully Connected Layer Dimension of Latent Variable 64
Batch Normalization 64 64

Fully Connected Layer 64 32
Batch Normalization 32 32

Fully Connected Layer 32 Determined by AE

DX

Fully Connected Layer Determined by AE 32
Batch Normalization 32 32

Fully Connected Layer 32 16
Batch Normalization 16 16

Fully Connected Layer 16 2

DZ

Fully Connected Layer Dimension of Latent Variable 20
Batch Normalization 20 20

Fully Connected Layer 20 10
Batch Normalization 10 10

Fully Connected Layer 10 2

For the fully connected layer, the computation formula is as follows:

Xout = WXin + b (12)

where Xin ∈ RIP denotes input for the current layer; Xout ∈ ROP denotes output of the
current layer; W ∈ ROP×IP represents a transformation matrix; b is a bias; IP and OP are
shown in Table 1.

For batch normalization, the computation formula is:

µ← 1
m

K
∑

i=1
Xij

σ2 ← 1
K

K
∑

i=1

(
Xij − µ

)2

∼
Xij ←

Xij−µ√
σ2+ε

X̂ij ← γ
∼
Xij + β

(13)

where X denotes the input batch; Xij denotes the jth dimension of ith sample; µ denotes
the average value of jth dimension over all the samples in a batch; σ2 denotes the variance
for the jth dimension; ε is a small value avoiding denominator to be zero; γ and β are scale
and translation factors. X̂ij is the output of batch normalization for the jth dimension.

3.3. Alternating Gradient Descent-Based Training Process

To train H, G, DX and DZ, we adopt an alternating gradient descent method. First, for
DX and DZ, we train them by the following formula:

θDX = θDX − lr
∂L1

∂θDX

(14)

θDZ = θDZ − lr
∂L2

∂θDZ

(15)

where θDX and θDZ are, respectively, the parameters from the network in Table 1. Specifi-
cally, they are the weights and bias from (12); lr is the learning rate; L1 and L2 are the loss
function in Equation (8).
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Second, to optimize G and H synchronously, we rewrite the loss function in
Equation (8) as:

min
G,H

L = L3 + L4 + α(L5 + L6) (16)

where L is the overall loss function; α is a pre-specified coefficient. Finally, the weights and
bias in G and H are updated by the following equation:

θG,H = θG,H − lr
∂L

∂θG,H
(17)

3.4. Overall Framework

The overall framework of the proposed RTAE method is shown in Figure 3. The
specific steps are:

(1) Obtain normal and cracking samples;
(2) Input both cracking and normal samples into auto-encoder for dimension reduction;
(3) Input low-dimensional representation cracking samples into roundtrip for data

augmentation;
(4) Generate cracking samples and fuse them with these original samples (after dimen-

sion reduction);
(5) Implement classification result analysis.
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The detailed steps are listed in Table 2. It is noted that we can compare the re-
sults ‘before data augmentation’ and ‘after data augmentation’ to verify the effectiveness
of RTAE.

Table 2. Detailed steps of RTAE method.

Input: Original Samples Y={Y1,. . .,YK} Contain Both Normal and Cracking Samples

Step1: Minimize argmin
θ

1
2K ∑K

i=1 ‖
∼
Yi − Yi ‖

2

2 to obtain {WE, bE}

Step2: According to
∼
Y = f (WEY + bE), compute low-dimensional representation.

Step3: For cracking and normal samples, we name them as
∼
Ymin and

∼
Ymaj, respectively.

Step4:
Replace X in Figure 2 by

∼
Ymin. Z is set as the same dimension as X. Each dimension

of Z is a random variable drawn from normal distribution with mean value 0.5,
standard deviation 0.05.
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Table 2. Cont.

Input: Original Samples Y={Y1,. . .,YK} Contain Both Normal and Cracking Samples

Step5: Train H, G, DX and DZ by (14), (15) and (17).
Step6: Compute

∼
X = G(H(X)).

Step7: Implement 5-fold cross-validation and compute the average validation result.

Step8:
Take the result only on

{∼
Ymin,

∼
Ymaj

}
as ‘before data augmentation’. For each fold

train process, adding
∼
X to the train set and take the result as ‘after data

augmentation’.

4. Engineering Applications
4.1. Description of Blading Cracking Dataset

The datasets used for analysis were collected from the CCF Big Data & Computing
Intelligence Contest (https://www.datafountain.cn/competitions/302/datasets (accessed
on 28 June 2018)). These data were collected by supervisory control and data acquisition
system under running status. Samples are collected every 10 min, with each sample
containing 75 attributes, such as blade angle, over-speed sensor value, x-axis vibration,
inverter power voltage, etc. Details can be found in Table 3. There are in total 48,340 samples
collected during approximately one year with a majority of normal samples. To verify
the effectiveness under a different imbalance ratio, we constructed 10 datasets as listed
in Table 4. We randomly selected 2000 normal samples and varying number of cracking
samples. The sign ‘#’ in Table 4 denotes the sample amount. The imbalance ratio varies
from 20:1 to 2:1.

Table 3. Detailed attributes of the used data.

No. Attribute No. Attribute No. Attribute

1 Hub speed 26 Inverter inlet temperature 51 Variable motor 1 Power
estimation

2 Hub angle 27 Converter outlet temperature 52 Variable motor 2 Power
estimation

3 Blade 1 angle 28 Inverter inlet pressure 53 Variable motor 3 Power
estimation

4 Blade 2 angle 29 Converter outlet pressure 54 Current status of the blade
5 Blade 3 angle 30 Generator power limiting value 55 Current hub status value
6 Variable pitch motor1 Current 31 Reactive power set value 56 Yaw status value
7 Variable pitch motor2 Current 32 Rated hub speed 57 Yaw requirement value

8 Variable pitch motor3 Current 33 Ambient temperature of the wind
tower 58 Blade 1 Battery box temperature

9 Detection value of the overspeed
sensor 34 Generator stator temperature 1 59 Blade 2 Battery box temperature

10 Average of 5 s yaw against wind 35 Generator stator temperature 2 60 Blade 3 Battery box temperature

11 Vibration value in x direction 36 Generator stator temperature 3 61 Blade 1 Variable motor
temperature

12 Vibration value in y direction 37 Generator stator temperature 4 62 Blade 2 Variable motor
temperature

13 Hydraulic brake pressure 38 Generator stator temperature 5 63 Blade 3 Variable motor
temperature

14 Cabin weather station wind speed 39 Generator stator temperature 6 64 Blade 1 Inverter box temperature
15 Absolute wind direction 40 Generator air temperature 1 65 Blade 2 Inverter box temperature
16 Atmospheric pressure 41 Generator air temperature 2 66 Blade 3 Inverter box temperature
17 Reactive power control status 42 Main bearing temperature 1 67 Blade 1 Super-capacitor voltage
18 Inverter power grid side current 43 Main bearing temperature 2 68 Blade 2 Super-capacitor voltage

https://www.datafountain.cn/competitions/302/datasets
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Table 3. Cont.

No. Attribute No. Attribute No. Attribute

19 Inverter power grid side voltage 44 Hub temperature 69 Blade 3 Super-capacitor voltage

20 Active power of inverter power
grid side 45 Hub control cabinet temperature 70 Drive 1 Thyristor temperature

21 Inverter grid side reactive power 46 Cabin temperature 71 Drive 2 Thyristor temperature
22 Inverter generator side power 47 Control cabinet temperature 72 Drive 3 Thyristor temperature
23 Generator operating frequency 48 Inverter INU temperature 73 Drive 1 Output torque
24 Generator current 49 Inverter ISU temperature 74 Drive 2 Output torque
25 Generator torque 50 Inverter INU RMIO temperature 75 Drive 3 Output torque

Table 4. Details of 10 datasets.

No. Dataset # Normal # Cracking Imbalance Ratio

1 Wind_5 2000 100 20:1
2 Wind_10 2000 200 10:1
3 Wind_15 2000 300 6.67:1
4 Wind_20 2000 400 5:1
5 Wind_25 2000 500 4:1
6 Wind_30 2000 600 3.33:1
7 Wind_35 2000 700 2.86:1
8 Wind_40 2000 800 2.5:1
9 Wind_45 2000 900 2.22:1
10 Wind_50 2000 1000 2:1

Figure 4 shows two normal samples as well as two cracking samples. For each status,
these two samples are collected from two different time points. Obviously, it is difficult to
distinguish blade status with only one or just a few attributes, since samples from different
time points present different value distributions. From such results, we can infer that
samples from the same class distribute over more than one cluster. Applying SMOTE or
GAN to enhance the cracking sample amount may fail.
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4.2. Sample Balanced by RTAE

Due to different units, the attribute ranges vary significantly. Normalization is used to
scale the range of each attribute to [0, 1]. The normalization method is presented below:

∼
A =

A− Amin
Amax − Amin

(18)
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where
∼
A is the normalized attribute value; Amin and Amax are, respectively, the minimum

and maximum values among all the samples.
Auto-encoder is adopted to extract intrinsic features and reduce the dimension.

Wind_50 dataset is used to train an AE model, with its structure [75, 20, 10]. The en-
coder include two hidden layers, with twenty units for the first layer and ten units for
the second layer. Sigmoid is taken as the activation function. For the decoder, it has the
inverse structure, namely, as shown in [10, 20, 75]. Figure 5 shows four samples and their
reconstructed results. Obviously, the reconstructed data approximate original samples,
implying the intrinsic feature can adequately represent the key information.
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Roundtrip is employed to generate virtual cracking samples. Table 5 lists detailed
hyper-parameter settings. These parameters are determined by trial and error. To observe
the results of roundtrip, loss values during 5000 iterations are shown in Figure 6. L1 and L2
in Equation (8) are relevant to the generator, thus they are added together. Both the losses
of the generator and discriminator go down very fast and converge after 2000 iterations. In
the last 100 iterations (see the inset window), both of them fluctuate to a small extent. When
the red line goes down, blue line will go up, implying adversarial learning. To observe
generated data, TSNE [22] is adopted to map the intrinsic features into two-dimension space.
The results are shown in Figure 7. The generated data well fit the original data distribution
and many samples lie on the border, which is helpful for improving classification accuracy.

Table 5. Details of hyper-parameter values.

Hyper Parameter Symbol Value

Factor in (13) ε 0.001
Scale factor in (13) γ 1

Translation factor in (13) β 0
Learning rate in (14), (15) and (17) lr 0.0002

Weight in (16) α 10
Iteration Number - 5000

4.3. Effectiveness of Data Augmentation

Table 6 lists the comparisons between, with and without data augmentation. Decision
tree is adopted to classify normal and cracking samples [23]. Three metrics are adopted
to evaluate the performance, namely precision, recall and F1-score. Detailed metric com-
putations can be found in the literature [24]. For normal samples, the three metrics with
data augmentation are slightly lower than or equal to those without data augmentation.
However, for cracking samples, these metrics are higher. For instance, ‘Wind_35′ achieves
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precision (0.73), recall (0.76) and F1-score (0.75) with data augmentation, which are slightly
lower than that without data augmentation (precision: 0.74, recall: 0.78, F1-score: 0.76). The
recall value improves from 0.22 to 0.26 and F1-score increases from 0.23 to 0.25, implying
the effectiveness of data augmentation. With the data augmentation approach, the aver-
age value of the cracking samples are 0.133, 0.135 and 0.135, meaning 19.8%, 23.8% and
22.7% improvement on these three metrics.
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Figure 7. Four original samples and their reconstructed results.

We draw the results with data augmentation in histograms, as shown in Figure 8. For
normal samples, these three metrics draw down. This is because too few cracking samples
will be overwhelmed and nearly all these samples are classified into normal samples.
Therefore, from Wind_5 to Wind_35, the recall value is bigger than precision (note that
the F1-score is determined by the former two metrics). With an increase in the amount of
cracking samples, some normal samples are misclassified into cracking samples, causing a
small recall value. For cracking samples, with the imbalance ratio alleviating, all the three
metrics increase. It can be concluded that RTAE is effective for improving the recognition
of wind blade cracking samples.
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Table 6. Comparison between, with and without data augmentation.

Dataset
Without Data Augmentation With Data Augmentation

Precision Recall F1-Score Precision Recall F1-Score

Wind_5
Normal 0.95 0.97 0.96 0.95 0.96 0.96

Cracking 0 0 0 0.02 0.02 0.02

Wind_10
Normal 0.90 0.93 0.91 0.90 0.91 0.91

Cracking 0 0 0 0.02 0.02 0.02

Wind_15
Normal 0.86 0.89 0.87 0.85 0.85 0.85

Cracking 0 0 0 0.02 0.02 0.02

Wind_20
Normal 0.81 0.85 0.83 0.81 0.85 0.83

Cracking 0 0 0 0.04 0.03 0.04

Wind_25
Normal 0.77 0.83 0.80 0.77 0.82 0.79

Cracking 0 0 0 0.05 0.04 0.05

Wind_30
Normal 0.79 0.81 0.78 0.76 0.77 0.76

Cracking 0.21 0.17 0.19 0.18 0.17 0.18

Wind_35
Normal 0.74 0.78 0.76 0.73 0.76 0.75

Cracking 0.25 0.22 0.23 0.24 0.26 0.25

Wind_40
Normal 0.69 0.69 0.69 0.71 0.71 0.71

Cracking 0.21 0.21 0.21 0.27 0.26 0.26

Wind_45
Normal 0.66 0.62 0.64 0.66 0.64 0.65

Cracking 0.25 0.29 0.27 0.26 0.28 0.27

Wind_50
Normal 0.59 0.58 0.58 0.61 0.59 0.60

Cracking 0.19 0.20 0.20 0.23 0.25 0.24
Average Cracking 0.111 0.109 0.11 0.133 0.135 0.135
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4.4. Comparison with Other Imbalance Learning Methods

TRAE is compared to other two representative methods, GAN and SMOTE. Likewise,
three metrics are used to evaluate the performance. For SMOTE, the number of the neighbor
is set as 3, which is a commonly used value. For GAN, generator network and discriminator
network are set as the same structure as in the literature [25]. The comparisons are listed
in Table 7. RTAE outperforms GAN and SMOTE under all the 10 datasets. In particular,
for Wind_35, Wind_40 and Wind_45, RTAE is far better than GAN and SMOTE. The
main reason is that GAN focuses on ‘real’ or ‘fake’, which generates samples with high
confidence, but low usage for improving the recognition of cracking samples. SMOTE
cannot handle multi clusters. Therefore, we use a small neighbor number (i.e., 3) to alleviate
such a situation. However, such a small value may make it pick the basis sample from the
middle or a dense area, leading to many synthesized samples lying far from border.
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Table 7. Comparison with GAN and SOMTE.

Dataset
RTAE GAN SMOTE

Precision Recall F1 Precision Recall F1 Precision Recall F1

Wind_5 Cracking 0.02 0.02 0.02 0 0 0 0 0 0
Wind_10 Cracking 0.02 0.02 0.02 0 0 0 0 0 0
Wind_15 Cracking 0.02 0.02 0.02 0 0 0 0 0 0
Wind_20 Cracking 0.04 0.03 0.04 0 0 0 0 0 0
Wind_25 Cracking 0.05 0.04 0.05 0 0 0 0 0 0
Wind_30 Cracking 0.18 0.17 0.18 0.16 0.17 0.16 0.15 0.17 0.16
Wind_35 Cracking 0.24 0.26 0.25 0.22 0.22 0.22 0.22 0.22 0.22
Wind_40 Cracking 0.27 0.26 0.26 0.21 0.22 0.21 0.21 0.21 0.21
Wind_45 Cracking 0.26 0.28 0.27 0.24 0.27 0.25 0.23 0.25 0.24
Wind_50 Cracking 0.23 0.25 0.24 0.18 0.19 0.18 0.19 0.19 0.19

5. Conclusions and Future Work

Aiming at wind turbine blade cracking recognition under imbalanced data, this pa-
per designs a novel roundtrip auto-encoder method. Two generator networks and two
discriminator networks are designed to ensure the generated samples well fit the dis-
tribution of historical cracking samples. Auto-encoder method is applied to reduce the
dimension of historical samples and thus the complexity of generator and discriminator.
From the reconstructed results, it is concluded that auto-encoder is effective for extracting
low-dimensional intrinsic features. From the results under different imbalance levels, the
detection performance shows significant improvement with the RTAE method. When
the imbalance level is above 4:1, all the cracking samples cannot be identified without
data augmentation, which shows the importance of considering the imbalance problem in
real application.

Analysis of the real wind turbine blade cracking data is carried out, the recognition of
cracking samples improves by 19.8%, 23.8% and 22.7% on precision, recall and F1-score. The
cracking detection under imbalanced data and the comparisons show that: (1) compared to
the popular data-level methods, RTAE is superior under the influence of highly imbalanced
data; (2) through integrating auto-encoder and roundtrip model, the framework provides a
possibility for solving imbalance problem with high dimension data.

As is known, a wind turbine blade contains many types of cracks in real industrial
applications. Currently, subject to roundtrip, RTAE can only deal with the binary-class
imbalanced data problems. Multi-class cracking problems are more complex as they may
contain more than one minority classes. In the future work, we will extend the application
of RTAE and apply it to multi-class problem. Meanwhile, we will explore more effective
roundtrip structures and apply them to high-dimensional time-series data.
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