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Abstract: The increasing exploration and development of complex oil and gas fields pose challenges to
drilling efficiency and safety due to the presence of formations with varying hardness, abrasiveness,
and rigidity. Consequently, there is a growing demand for drilling parameter optimization and
speed-up technologies. However, existing models based on expert experience can only achieve
single-objective optimization with limited accuracy, making real-time adaptation to changing drilling
conditions and formation environments challenging. The emergence of artificial intelligence provides
a new approach for optimizing drilling parameters. In this study, we introduce the Bi-directional Long
Short-Term Memory (Bi-LSTM) deep learning algorithm with the attention mechanism to predict the
rate of penetration (ROP). This algorithm improves the ROP prediction accuracy to 98.33%, ensuring
reliable subsequent optimization results. Additionally, we propose a coupling optimization algorithm
that combines Bi-LSTM with the particle swarm optimization algorithm (PSO) to enhance drilling
efficiency through parameter optimization. Our approach aims to maximize drilling footage while
maintaining the highest ROP. The optimal solutions obtained are verified through multi-parameter
cloud image analysis, yielding consistent results. The application of our approach demonstrates an
81% increase in drilling speed and a 28% reduction in drill bit energy losses. Moreover, the real-time
optimization results effectively guide field operations.

Keywords: ROP prediction; drilling parameters optimization; multi-objective optimization; bi-LSTM;
PSO

1. Introduction

In the current oil market, with increasing exploration and production, shallow and
easily accessible formations that contain oil resources are diminishing. They are gradually
being replaced by deeper and more unconventional formations. As drilling depth and diffi-
culty increase, construction becomes more challenging, resulting in slower drilling, longer
drilling cycles, and higher costs. Therefore, the global optimization of drilling parameters
with the lowest cost and shortest drilling time is becoming increasingly important. Among
them, the accurate prediction of ROP can effectively help calculate drilling costs and time,
optimize drilling parameters, rationalize personnel arrangements, and provide a working
basis for the drilling process. By optimizing drilling parameters and improving drilling
speed, operators can reduce drilling time, which directly translates into cost savings. Faster
drilling means less time spent on the rig, reduced labor expenses, and lower overall drilling
costs. This is of great significance in improving drilling efficiency and reducing costs.

Expert-based models may struggle to adapt to dynamic drilling conditions and chang-
ing operational requirements. They often rely on fixed rules or heuristics derived from
historical data or expert knowledge. As drilling technologies evolve and new challenges
emerge, these models may not effectively capture the optimal drilling parameters for
novel situations or unconventional drilling scenarios. Artificial intelligence technology
has achieved rapid development in the past 30 years, and it has been widely applied in
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many fields of study such as materials science, the biomedical industry, and finance [1–3],
resulting in fruitful outcomes. Gradually, artificial intelligence has become an independent
branch that possesses its own theoretical framework and practical system. Since the birth
of artificial intelligence, the theory and technology have increasingly matured, and the
application field is constantly expanding. Intelligent algorithms are gradually being applied
in the fields of oil drilling and development and have achieved good results [4,5].

In terms of the ROP prediction model, researchers such as Mingze Xu, Abdulmalek,
Omogbolahan [6–9], etc., established an ROP prediction model based on KNN, Decision
Tree, SVM, and other algorithms by using an integrated algorithm and took the goodness
of fit as an evaluation index of ROP prediction. Ensemble machine learning [10,11] has
been widely used in ROP modeling and has achieved results beyond conventional machine
learning. Shengwa Liu and Melvin [12,13] used ANN to establish the ROP of directional
wells. Under the condition of sufficient data quantity and high data quality, the ROP
prediction accuracy can meet users’ needs. Omid [14] and Abiodun [15] use a variety of
genetic algorithms to optimize the neural network algorithm and compare and analyze
the effect of the algorithm from the relative error R square, mean square error, and other
aspects. Husam [16] used a recurrent neural network algorithm based on logging and
path data to predict the ROP with an accuracy of up to 85%. Hundman [17] designed a
spacecraft telemetry signal anomaly detection model based on LSTM, which determines
anomalies through prediction errors, and proposed a non-parametric dynamic anomaly
detection threshold determination method, which can achieve a balance between false
alarm rate and missing alarm rate. Malhotra [18] et al. proposed an auto-encoder model
based on LSTM, which aims to reconstruct regular time series, and used reconstruction
errors for anomaly detection.

Regarding parameter optimization, in biomedical material science, the ridge regres-
sion method is used to optimize the thermal conductivity of MWCNTs-SiO2/Water-EG
nanofluid [19]. The orthogonal distance regression (ODR) algorithm in ANN modeling is
used to optimize synthesized hydroxyapatite/ethanolamine for bone tissue [20].

Heidari Varnamkhasti [21] uses MSE and downhole vibration analysis for drilling
optimization. The MSE method is used to identify drilling dysfunction. It also combines
additional information, such as downhole drilling performance and borehole quality,
to help find the source of abnormal drilling conditions. Mohammad Anemangely [22]
used artificial intelligence to estimate age-mechanical parameters from mechanical-specific
energy, and the results showed that intelligent models have higher accuracy and reliability
than regression models in estimating geomechanical parameters. The comparison of the
results of the MLP-COA and MLP-PSO models shows that COA outperforms the PSO
algorithm in terms of model accuracy and reliability. The results of the three models show
that the method proposed in this study has great potential in estimating CCS, UCS, and ϕ

parameters. The attention mechanism [23], as a novel deep learning mechanism, has been
widely used in time series prediction in recent years, and it is thus reasonable to apply it to
drilling time series prediction.

The paper presents a deep learning algorithm based on Bi-LSTM and the attention
mechanism for predicting ROP. It introduces a particle swarm optimization algorithm
(PSO) to create the PSO-Bi-LSTM method for optimizing drilling parameters. Using this
method, the model optimizes multi-objective parameters to enhance drilling efficiency. By
combining Bi-LSTM and attention mechanical mechanisms for intelligent ROP prediction,
the PSO is integrated to quickly and accurately optimize high-dimensional spatial drilling
parameters. At the same time, the excellent real-time model provides the foundation of
a deep learning model for drilling efficiency analysis and optimization, expanding the
application scope of deep learning in petroleum engineering.
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2. Materials and Methods
2.1. Long Short-Term Memory Model

Long Short-Term Memory (LSTM) [24], a neural network architecture introduced by
Hochreiter and Schmidhuber in 1997, has become a prominent solution for retaining and
utilizing both short- and long-term information. Over the years, LSTM has undergone
significant modifications and refinements by researchers such as Felix Gers, Fred Cummins,
and others, resulting in a more comprehensive and robust algorithm. These advancements
have propelled LSTM to be widely adopted across diverse domains.

LSTM addresses a fundamental challenge in recurrent neural networks (RNNs) by
effectively capturing dependencies between short-term and long-term information. Unlike
traditional RNNs that often struggle with the vanishing gradient problem, LSTM offers
a solution that enables the network to learn and propagate information over extended
sequences. The key components of LSTM are the cell state (ct) and the hidden state (ht).
The cell state evolves relatively slowly throughout the computation process, while the
hidden state exhibits dynamic changes. Each node’s output, denoted as ct, is computed by
combining the previous cell state, ct−1, with various input signals. In contrast, the hidden
state, ht, encapsulates the network’s output and undergoes substantial transformations.

To facilitate effective information flow and memory management, LSTM employs
a specialized structure known as a memory cell. This memory cell incorporates three
essential gates: the forgetting gate, the input gate, and the output gate. The forget gate
determines which information to discard from the cell state at the current time step. It
takes the current input and the previous hidden state as inputs and produces a forget
gate activation between 0 and 1. This activation determines what information should
be selectively forgotten from the cell state. The input gate controls the addition of new
information to the cell state at the current time step. It takes the current input and the
previous hidden state as inputs and produces an input gate activation between 0 and 1.
This activation determines which new information should be added to the cell state. The
output gate regulates how much information should be revealed from the cell state at the
current time step. It takes the current input and the previous hidden state as inputs and
produces an output gate activation between 0 and 1. This activation determines which
information from the cell state should be output to the current time step’s hidden state
for further computations or predictions. The forget gate, input gate, and output gate are
implemented using neural network layers with learnable weights. The gate activations
are obtained through a series of computations and activation functions applied to the
inputs and hidden states. By adjusting the activations of these gates, LSTM can selectively
retain, forget, and output information, allowing the network to better capture and utilize
important contextual information in long sequences. Figure 1 depicts the specific structural
diagram of LSTM, illustrating the arrangement of gates and connections.
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In the field of petroleum drilling parameter optimization, traditional RNN methods
fail to capture the long-term mapping relationships among drilling parameters. During
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backpropagation, the gradients continuously diminish, leading to the loss of drilling infor-
mation in long sequences and making the model difficult to train. The gated mechanism of
LSTM effectively addresses this issue by enabling the network to better utilize gradient
information during training. Additionally, due to the progressive nature of drilling infor-
mation as a temporal and depth-dependent sequence, the performance of traditional RNNs
declines as the sequence length increases. In contrast, LSTM, through its controlled gated
mechanism, can adapt more effectively to sequences of varying lengths while maintain-
ing satisfactory performance. Therefore, the LSTM approach exhibits unique advantages
in optimizing petroleum drilling parameters, as it is capable of handling the long-term
relationships among drilling information and addressing the weak generalization ability
of models during the drilling process. This is beneficial for improving the subsequent
performance of drilling parameter optimization.

This distinctive architecture of LSTM, with its integrated memory cell and gate mecha-
nisms, empowers the network to capture and leverage both short- and long-term dependen-
cies. Consequently, LSTM has demonstrated remarkable efficacy in various applications,
ranging from natural language processing and speech recognition to time series analysis
and robotics. Its ability to effectively model sequential data and mitigate the vanishing
gradient problem has cemented LSTM as a valuable and widely adopted solution in the
field of deep learning.

2.2. Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary computing technique that has
gained significant attention in the field of optimization due to its remarkable features.
Inspired by bird foraging behavior [25], PSO stands out for its collaborative nature and the
exchange of information among individuals, making it a powerful tool for solving complex
optimization problems. One of the notable advantages of PSO is its simplicity, which
makes it easily implementable and accessible to researchers and practitioners from diverse
backgrounds. Unlike other optimization algorithms that require intricate adjustments, PSO
requires minimal parameter tuning, further enhancing its appeal. This simplicity, coupled
with its effectiveness, has made PSO a preferred choice for achieving efficient optimization
solutions in various domains.

In PSO, the dynamics of bird flocks are simulated, where each particle represents
a potential solution and possesses attributes of velocity and position. Through iterative
updates, particles navigate the search space based on their individual experiences and the
shared information within the swarm. During this optimization process, particles retain
their individual best solutions, reflecting the best objective function values encountered thus
far. Additionally, they engage in communication with neighboring particles to determine
the global best solution, which represents the overall best objective function value found
within the swarm. The update of particle velocities and positions is guided by mathematical
equations that strike a balance between exploration and exploitation. These equations
consider both the particle’s individual experience and the influence of the global best
solution, allowing particles to adapt their movements accordingly. This iterative process
continues until a termination condition is met, typically defined by a maximum number of
iterations or the achievement of a desired solution accuracy.

The effectiveness of PSO is evident through its successful applications in various
domains. In function optimization, PSO has been employed to find optimal values for
complex mathematical functions, often outperforming traditional optimization techniques.
Moreover, PSO has proven to be highly effective in neural network training, where it
aids in optimizing the weights and biases of the network to improve its performance.
Additionally, PSO has been applied to fuzzy system control, enhancing the ability to tune
fuzzy rule bases for better control system performance. The simplicity and efficiency of PSO
have made it a popular choice among researchers and practitioners. Its ability to quickly
converge to near-optimal solutions with minimal parameter tuning is highly advantageous,
especially in scenarios where computational resources or time constraints are significant
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factors. Furthermore, the collaborative nature of PSO allows for the exploration of diverse
solutions and the potential discovery of novel and unconventional solutions that would be
challenging to find using traditional optimization methods.

In summary, PSO is an evolutionary computing technique that harnesses collaboration
and information exchange to search for optimal solutions. Its simplicity and effectiveness
have led to successful applications across diverse domains, including function optimization,
neural network training, and fuzzy system control. Ongoing research and exploration of
PSO’s capabilities continue to contribute to the field of optimization, opening new avenues
for its application and advancement. As researchers delve deeper into the intricacies of
PSO and explore its potential in combination with other optimization techniques, the field
of optimization stands to benefit from further advancements and improvements in solving
complex problems.

3. Results and Discussion
3.1. Data Processing

In this experiment, we selected 48,321 pieces of drilling data from eight wells in
Xinjiang, China, as the model training data. We needed to process these data before
applying them to the training model. Data processing mainly includes data preprocessing,
cleaning, standardization, and other processes.

The first step is preprocessing and cleaning the data. Data cleaning refers to using data
analysis to change incorrect data into data that meets the requirements. The cleaning process
of drilling data mainly includes detecting and deleting erroneous data and removing and
completing missing data. We found that some of the data collected from the well had errors
or missing data, so they were judged as invalid. After deleting these data, there were 41,242
pieces of data left, which were used to train the model.

The second step is the standardization of data. The large data dimension gap between
the parameters of data will cause hidden trouble for the subsequent machine learning mod-
eling. So, we need to standardize the data to close the dimensional gap. The standardized
formula is shown in Equation (1).

y =
X − Xmin

Xmax − Xmin
(1)

where Xmin is the minimum value in the dataset, Xmax is the maximum value in the dataset,
and y is the normalization result.

The third and the last step is the segmentation of the data. In this experiment, we need
to use the sliding window to train the timing model, so we need to divide the data to the
same length. In this experiment, we took every 50 pieces of data as a new array, divided
the data, and calibrated the corresponding ROP results.

3.2. Construction of ROP Prediction Model

The drilling parameter optimization model is built upon the foundation of the rate of
penetration (ROP) prediction model, aiming to achieve optimization objectives through
the optimization of drilling parameters. As ROP serves as one of the objectives in drilling
parameter optimization, it is essential to ensure the accuracy of the optimized ROP to
guarantee the credibility of the optimization results. In this experiment, based on the LSTM,
we introduced the bi-directional mechanism and bi-directional attention mechanism. We
proposed the sliding window dynamic updating mechanism aiming at the specificity of
predicting the time series of ROP. Finally, we implemented a prediction model of time series
of high-frequency ROP based on Bi-LSTM. The overall structure of the model is shown in
the following Figure 2.

For this model, we also introduced the sliding window method to optimize parameters
and update the model. The sliding window method takes a given sub-experimental window
size and slides the window towards the future in time order with a fixed step size. The
size of this window is generally much smaller than the total data size, and each window
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contains its own training data and label values. After training all the sub-experimental
data, we predicted and calculated the total evaluation index on the test set.
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Based on the above, this experiment uses the sliding window method to divide the
data set, using drilling data from wells in Xinjiang, China.

By moving a fixed size window, sliding window technology can analyze and process
input data, enabling various tasks such as feature extraction, object detection, and text
segmentation. Although sliding window technology has advantages such as flexibility,
multi-scale processing, and real-time performance, sliding windows require repeated
calculations of data, which can lead to a decrease in computational efficiency. The length of
the window size is very important, Inappropriate window size can lead to low efficiency
and information loss. Therefore, this article designed a comparative experiment. From
Table 1, it can be seen that when the window size is 50, the prediction effect is best, and
compared to the fastest model, it only increases the calculation time by 30 s.

Table 1. Comparison of effects of different sliding window lengths.

Number The Length of
Sliding Windows (m) RMSE MAE Time (s)

1 10 3.0218 1.9837 286 s
2 30 2.4256 2.0568 302 s
3 50 1.5169 0.9921 316 s
4 70 1.7894 1.2387 351 s
5 90 1.5474 0.9732 381 s

So, the paper sets the slide window length to 50 and the step size to 1. That mean,
because we have 1242 pieces of test data, and, starting from the first one, every 50 pieces
of data is taken as one data window, there are 1242 data windows in total. We input the
segmented ROP data into the established Bi-LSTM model.

We input the drilling data of the wells in Xinjiang, China into the Bi-LSTM model. The
iteration times set by this model is 100 times, the batch size is 64, and the initial learning
rate is 0.001. The neural network optimization algorithm adopts the momentum batch
gradient descent algorithm, namely the Adam algorithm.

At the same time, we compared several common machine learning ROP prediction
methods. The prediction results in test data are shown in Figure 3, and the prediction
accuracy is shown in Table 2.
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Table 2. Predictive accuracy of different models.

Data Source Number Model RMSE MSE MAE

Train Data 40,000 Bi-LSTM 0.9231 1.4235 0.5483

Test Data 1242

Bi-LSTM 1.5169 2.3013 0.9921
RNN 2.2135 4.3058 1.3257

XGBoost 2.5521 6.5135 1.7114
GPy 2.8822 8.3074 1.9582

It can be seen that the trend of the predicted value of the Bi-LSTM method in this
experiment is roughly consistent with the actual value, and the prediction accuracy is
the highest, which means that Bi-LSTM can accurately predict the ROP. Therefore, after
optimization, the Bi-LSTM method is selected as the ROP prediction model in the process
of multi-objective parameter optimization.
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3.3. Construction of the PSO-Bi-LSTM Model

This study is based on the Bi-LSTM ROP prediction algorithm and PSO algorithm,
combining the advantages of the high ROP prediction accuracy of Bi-LSTM and accurate
and the fast search of high latitude spatial targets of the PSO algorithm. By designing a
coupling relationship between the two, a PSO-Bi-LSTM drilling parameter optimization
method is established.

The design flow chart of the PSO-Bi-LSTM algorithm is shown in Figure 4. First, data
selection and normalization are performed, and the data set’s standard is unified. Then,
the PSO particle swarm initialization is performed to optimize the drilling parameters.
The PSO algorithm is employed to search for drilling parameter combinations, with the
objective of maximizing ROP predicted by the LSTM prediction model and minimizing
MSE associated with that particular drilling parameter combination. After selecting the
kernel function, the kernel parameters are input into the Bi-LSTM ROP prediction model
and the MSE calculation model. The PSO drilling parameter optimization iteration is
performed with the maximum ROP and the minimum MSE, and the algorithm process is
completed by obtaining the optimal parameters at the end of the iteration. The goal of this
model is to maximize drilling footage while maintaining the highest ROP, which means that
the drilling tool works longer underground while increasing drilling speed. This reduces
the non-operating time of the drilling tool while increasing drilling efficiency. The on-site
personnel can directly apply the drilling parameters guided by this model to achieve the
actual on-site effect of reducing non-operating time and improving drilling speed.
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3.4. The PSO-Bi-LSTM Model Drilling Parameters Optimization

In the experiment, we used a dataset from a well in Xinjiang, China. The input
and target parameters selected are shown in Table 3. The statistical information of this
dataset is shown in Table 4. The ROP prediction model inputs weight on bit (WOB),
rotary speed, flow rate, uniaxial compressive strength (UCS), and volume content of sandy
particles (Vsand) and outputs ROP. The PSO-Bi-LSTM algorithm optimizes the three onsite
controllable engineering parameters of weight on bit (WOB), rotation speed, and flow rate.
The optimization space ranges of weight on bit (WOB), rotation speed, and flow rate are
25 KN to 230 KN, 11 r/min to 63 r/min, and 25 L/s to 39 L/s, respectively. The goal is to
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achieve a dual objective optimization effect of maximum ROP and minimum MSE while
maximizing drilling speed and drill bit footage.

Table 3. Model input and output parameters.

Input Parameters Target Parameters

WOB, Surface RPM, Flow Rate, UCS, Vsand ROP

Table 4. Data statistic results.

WOB Surface RPM Flow Rate UCS Vsand ROP

(kN) (r/min) (L/s) (MPa) (m/h)

Mean 109.6 44.7 27.9 38.0 0.67 6.0
Standard
Deviation 30.4 7.0 0.67 6.3 0.14 3.4

Min 25.4 11.0 25.4 11.3 0.01 0.5
25% 87.0 42.0 27.5 35.0 0.58 3.8
50% 109.6 49.0 27.9 38.3 0.68 5.0
75% 130.8 50.0 28.3 40.8 0.77 7.5
Max 231.5 63.0 38.6 70.0 1.0 30.0

The Pareto optimal solution set is shown in Figure 5. It can be observed that as the
ROP increases, the MSE slightly increases, and there is a parameter combination set that
has a significant acceleration effect and almost does not affect the drill bit footage.
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The parallel representation of this optimal parameter combination set is shown in
Figure 6. It can be seen that the preferred WOB is concentrated between 92.38 KN and
113 KN; the preferred flow rate is concentrated between 29 L/s and 30.35 L/s; the preferred
rotational speed is concentrated between 25 r/min and 34 r/min.

Within the optimal WOB range, WOB is taken to be 98 KN, 103 KN, and 108 KN,
respectively. At this time, the distribution of rotational speed and the flow rate has an
impact on ROP, as shown in Figure 7, and on MSE as shown in Figure 8. It can be seen
that the highest ROP and lower MSE are both within the optimal range. We determined
the optimized range of drilling parameter combinations through Figure 6 and drew two-
dimensional cloud maps of all parameter combinations of rotational speed and flow rate
based on randomly selected drilling pressures within this range, with respect to ROP
and MSE. As shown in the two-dimensional cloud map, the optimized drilling parameter
combination obtained within the range of drilling parameter combinations has the best
performance among all parameter combinations. The validation results are consistent with
the PSO experimental results, proving that the algorithm model has a good optimization
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effect and can achieve the dual objective optimization effect of maximum mechanical
drilling speed and minimum MSE.
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The effect of the optimized parameter solution in practical application is shown in
Figures 9 and 10. It can be seen that, after the optimized parameter solution is applied,
the average ROP is increased from 6.05 m/h to 10.95 m/h and the ROP is increased by
81%. The average MSE is reduced from 464.05 MPa to 333.87 MPa, and the energy loss
of the bit is reduced by 28%. The practical application effect is good, which can meet the
requirements of practical field application and achieve the dual-objective optimization goal.
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4. Conclusions

In summary, we successfully established an efficient and accurate multi-objective
optimization model and applied it to actual drilling operations. We established the PSO-
Bi-LSTM algorithm to optimize the controllable parameters in the drilling process. The
optimization goal of this algorithm is to maximize ROP and minimize MSE, aiming at
minimizing the energy loss of the bit while ensuring the maximum drilling speed.

In the experiment of optimizing the drilling parameters of a well in Xinjiang, the
optimized result is that the optimized WOB is between 92.38 KN and 113 KN, the optimized
flow rate is between 29 L/s and 30.35 L/s, and the optimized rotation speed is between
25 r/min and 34 r/min. The optimization results show that the drilling speed is increased
by 81% and the energy loss of the bit is reduced by 28%. The optimization effect is good,
achieving the goal of multi-objective controllable parameter optimization.

This work provides an intelligent model basis for multi-objective optimization of
drilling parameters, expands the application of the combination of multi-parameter search
algorithms in high dimensional space and neural network models in the field of oil drilling,
and provides new ideas and methods for reducing costs and increasing efficiency in
drilling operations.
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