Tribological Analysis of Several Coatings under Flood and Cryogenic Cooling Conditions
Abstract
:1. Introduction
2. Materials and Experimental Set-Up
2.1. Materials
2.2. Experimental Set-Up
2.3. Determination of Contact Conditions in Machining of Ti–6Al–4V Alloy
2.3.1. Determination of the Sliding Speeds between the Pin and the Ti–6Al–4V Bar
2.3.2. Determination of the Normal Force Acting in the Pins
Determination of the Contact Pressure in Machining of Ti–6Al–4V Alloy
Determination of the Normal Force Acting in the Pins
2.4. Surface Roughness of the Pins
2.5. Design of Experiments
3. Results and Discussion
3.1. Results of the Tribological Tests
3.2. DoE Analysis and Discussion
- To identify the relevant factors affecting the apparent friction coefficients and the volume of built-up layer of Ti–6Al–4V alloy in the pins;
- To determine the influence of these relevant factors on the apparent friction coefficient and the volume of the built-up layer of Ti–6Al–4V alloy in the pins.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCR | Chip compression ratio |
R | Resultant force (N) |
Fc | Cutting force (N) |
Fn | Normal force (N) |
Ft | Tangential/trust force (N) |
Fx, Fy, Fz | Measured force components (N) |
Fn,pin | Normal force applied to the pin (N) |
Fnγ | Normal force (tool/chip interface) (N) |
Pnγ | Average contact pressure (tool/chip interface) (MPa) |
Pprob | Contact pressure at the pin–workpiece interface |
Vc | Cutting speed (m/min) |
V1 | Chip velocity (m/min) |
Vs | Sliding speed (m/min) |
h | Uncut chip thickness (mm) |
h1 | Chip thickness (mm) |
α, αn | Flank angle (°) |
γ, γn | Rake angle (°) |
rn | Cutting edge radius (µm) |
b | Width of cut (mm) |
Apparent friction coefficient | |
Local friction coefficient | |
Macroscopic friction coefficient | |
Tool–chip contact length (mm) | |
ϕ | Shear angle (deg.) |
A, B, C, m, n | Coefficients of the constitutive model |
Plastic strain | |
Plastic strain rate (s−1) | |
Rpin | Radius of the pin (mm) |
Rwork | Radius of the workpiece (mm) |
Req | Equivalent radius (mm) |
Arithmetical mean roughness (µm) | |
Root mean square roughness (µm) | |
Maximum height of the roughness profile (µm) | |
LN2 | Liquid nitrogen |
MQL | Minimum quantity of lubricant |
References
- van Luttervelt, C.A.; Childs, T.H.C.; Jawahir, I.S.; Klocke, F.; Venuvinod, P.K.; Altintas, Y.; Armarego, E.; Dornfeld, D.; Grabec, I.; Leopold, J.; et al. Present Situation and Future Trends in Modelling of Machining Operations Progress Report of the CIRP Working Group ‘Modelling of Machining Operations’. CIRP Ann. 1998, 47, 587–626. [Google Scholar] [CrossRef]
- Neugebauer, R.; Bouzakis, K.-D.; Denkena, B.; Klocke, F.; Sterzing, A.; Tekkaya, A.E.; Wertheim, R. Velocity effects in metal forming and machining processes. CIRP Ann. 2011, 60, 627–650. [Google Scholar] [CrossRef]
- Rech, J.; Arrazola, P.J.; Claudin, C.; Courbon, C.; Pusavec, F.; Kopac, J. Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting. CIRP Ann. 2013, 62, 79–82. [Google Scholar] [CrossRef]
- Puls, H.; Klocke, F.; Lung, D. A new experimental methodology to analyse the friction behaviour at the tool-chip interface in metal cutting. Prod. Eng. Res. Dev. 2012, 6, 349–354. [Google Scholar] [CrossRef]
- Olsson, M.; Söderberg, S.; Jacobson, S.; Hogmark, S. Simulation of cutting tool wear by a modified pin-on-disc test. Int. J. Mach. Tools Manuf. 1989, 29, 377–390. [Google Scholar] [CrossRef]
- Grzesik, W.; Zalisz, Z.; Nieslony, P. Friction and wear testing of multilayer coatings on carbide substrates for dry machining applications. Surf. Coat. Technol. 2002, 155, 37–45. [Google Scholar] [CrossRef]
- M’Saoubi, R.; Chandrasekaran, H. Innovative Methods for the Investigation of Tool-Chip Adhesion and Layer Formation during Machining. CIRP Ann. 2005, 54, 59–62. [Google Scholar] [CrossRef]
- Kilic, D.S.; Raman, S. Observations of the tool–chip boundary conditions in turning of aluminum alloys. Wear 2007, 262, 889–904. [Google Scholar] [CrossRef]
- Arrazola, P.J.; Ugarte, D.; Domínguez, X. A new approach for the friction identification during machining through the use of finite element modelling. Int. J. Mach. Tools Manuf. 2008, 48, 173–183. [Google Scholar] [CrossRef]
- Grzesik, W.; van Luttervelt, C.A. An Investigation of the Thermal Effects in Orthogonal Cutting Associated with Multilayer Coatings. CIRP Ann. 2001, 50, 53–56. [Google Scholar] [CrossRef]
- Zemzemi, F.; Rech, J.; Salem, W.B.; Dogui, A.; Kapsa, P. Identification of a friction model at tool/chip/workpiece interfaces in dry machining of AISI4142 treated steels. J. Mater. Process. Technol. 2009, 209, 3978–3990. [Google Scholar] [CrossRef]
- Rech, J.; Claudin, C.; D’Eramo, E. Identification of a friction model—Application to the context of dry cutting of an AISI 1045 annealed steel with a TiN-coated carbide tool. Tribol. Int. 2009, 42, 738–744. [Google Scholar] [CrossRef]
- Zemzemi, F.; Bensalem, W.; Rech, J.; Dogui, A.; Kapsa, P. New tribometer designed for the characterisation of the friction properties at the tool/chip/workpiece interfaces in machining. Tribotest 2008, 14, 11–25. [Google Scholar] [CrossRef]
- Ren, J.; Yuan, H. Contact Analysis and Friction Prediction of Non-Gaussian Random Surfaces. Appl. Sci. 2022, 12, 11237. [Google Scholar] [CrossRef]
- Goel, S.; Björklund, S.; Curry, N.; Govindarajan, S.; Wiklund, U.; Gaudiuso, C.; Joshi, S. Axial Plasma Spraying of Mixed Suspensions: A Case Study on Processing, Characteristics, and Tribological Behavior of Al2O3-YSZ Coatings. Appl. Sci. 2020, 10, 5140. [Google Scholar] [CrossRef]
- Wu, N.; Hu, N.; Wu, J.; Zhou, G. Tribology Properties of Synthesized Multiscale Lamellar WS2 and Their Synergistic Effect with Anti-Wear Agent ZDDP. Appl. Sci. 2020, 10, 115. [Google Scholar] [CrossRef]
- Le, V.N.-A.; Lin, J.-W. Tribological Properties of Aluminum Nanoparticles as Additives in an Aqueous Glycerol Solution. Appl. Sci. 2017, 7, 80. [Google Scholar] [CrossRef]
- Istrate, B.; Munteanu, C.; Lupescu, S.; Benchea, M.; Vizureanu, P. Preliminary Microstructural and Microscratch Results of Ni-Cr-Fe and Cr3C2-NiCr Coatings on Magnesium Substrate. IOP Conf. Ser. Mater. Sci. Eng. 2017, 209, 012024. [Google Scholar] [CrossRef]
- Smolenicki, D.; Boos, J.; Kuster, F.; Roelofs, H.; Wyen, C.F. In-process measurement of friction coefficient in orthogonal cutting. CIRP Ann. 2014, 63, 97–100. [Google Scholar] [CrossRef]
- Bonnet, C.; Valiorgue, F.; Rech, J.; Claudin, C.; Hamdi, H.; Bergheau, J.M.; Gilles, P. Identification of a friction model—Application to the context of dry cutting of an AISI 316L austenitic stainless steel with a TiN coated carbide tool. Int. J. Mach. Tools Manuf. 2008, 48, 1211–1223. [Google Scholar] [CrossRef]
- Meier, L.; Schaal, N.; Wegener, K. In-process Measurement of the Coefficient of Friction on Titanium. Procedia CIRP 2017, 58, 163–168. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, F.; Wang, T. Tribological properties of polymers PI, PTFE and PEEK at cryogenic temperature in vacuum. Cryogenics 2016, 75, 19–25. [Google Scholar] [CrossRef]
- Gradt, T.; Schneider, T.; Hübner, W.; Börner, H. Friction and wear at low temperatures. Int. J. Hydrogen Energy 1998, 23, 397–403. [Google Scholar] [CrossRef]
- Ostrovskaya, Y.L.; Strel’nitskij, V.E.; Kuleba, V.I.; Gamulya, G.D. Friction and wear behaviour of hard and superhard coatings at cryogenic temperatures. Tribol. Int. 2001, 34, 255–263. [Google Scholar] [CrossRef]
- Yukhno, T.P.; Vvedensky, Y.V.; Sentyurikhina, L.N. Low temperature investigations on frictional behaviour and wear resistance of solid lubricant coatings. Tribol. Int. 2001, 34, 293–298. [Google Scholar] [CrossRef]
- Ostrovskaya, Y.L.; Yukhno, T.P.; Gamulya, G.D.; Vvedenskij, Y.V.; Kuleba, V.I. Low temperature tribology at the B. Verkin Institute for Low Temperature Physics & Engineering (historical review). Tribol. Int. 2001, 34, 265–276. [Google Scholar] [CrossRef]
- El-Tayeb, N.S.M.; Yap, T.C.; Venkatesh, V.C.; Brevern, P.V. Modeling of cryogenic frictional behaviour of titanium alloys using Response Surface Methodology approach. Mater. Des. 2009, 30, 4023–4034. [Google Scholar] [CrossRef]
- Basmaci, G.; Yoruk, A.S.; Koklu, U.; Morkavuk, S. Impact of Cryogenic Condition and Drill Diameter on Drilling Performance of CFRP. Appl. Sci. 2017, 7, 667. [Google Scholar] [CrossRef]
- Jerold, B.D.; Kumar, M.P. The Influence of Cryogenic Coolants in Machining of Ti–6Al–4V. J. Manuf. Sci. Eng. 2013, 135, 031005. [Google Scholar] [CrossRef]
- Pahlitzsch, G. Gases are good cutting coolants. Am. Mach. 1953, 97, 196. [Google Scholar]
- Klocke, F.; Krämer, A.; Sangermann, H.; Lung, D. Thermo-Mechanical Tool Load during High Performance Cutting of Hard-to-Cut Materials. Procedia CIRP 2012, 1, 295–300. [Google Scholar] [CrossRef]
- Bordin, A.; Sartori, S.; Bruschi, S.; Ghiotti, A. Experimental investigation on the feasibility of dry and cryogenic machining as sustainable strategies when turning Ti6Al4V produced by Additive Manufacturing. J. Clean. Prod. 2017, 142, 4142–4151. [Google Scholar] [CrossRef]
- Bermingham, M.J.; Kirsch, J.; Sun, S.; Palanisamy, S.; Dargusch, M.S. New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti–6Al–4V. Int. J. Mach. Tools Manuf. 2011, 51, 500–511. [Google Scholar] [CrossRef]
- Bermingham, M.J.; Palanisamy, S.; Dargusch, M.S. Understanding the tool wear mechanism during thermally assisted machining Ti–6Al–4V. Int. J. Mach. Tools Manuf. 2012, 62, 76–87. [Google Scholar] [CrossRef]
- Sartori, S.; Moro, L.; Ghiotti, A.; Bruschi, S. On the tool wear mechanisms in dry and cryogenic turning Additive Manufactured titanium alloys. Tribol. Int. 2017, 105, 264–273. [Google Scholar] [CrossRef]
- Strano, M.; Chiappini, E.; Tirelli, S.; Albertelli, P.; Monno, M. Comparison of Ti6Al4V machining forces and tool life for cryogenic versus conventional cooling. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 227, 1403–1408. [Google Scholar] [CrossRef]
- Sun, S.; Brandt, M.; Palanisamy, S.; Dargusch, M.S. Effect of cryogenic compressed air on the evolution of cutting force and tool wear during machining of Ti–6Al–4V alloy. J. Mater. Process. Technol. 2015, 221, 243–254. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Yuan, Y.; Chen, Z.; Wang, Q.; Xiong, W. Tool wear in Ti-6Al-4V alloy turning under oils on water cooling comparing with cryogenic air mixed with minimal quantity lubrication. Int. J. Adv. Manuf. Technol. 2015, 81, 87–101. [Google Scholar] [CrossRef]
- Jawahir, I.S.; Attia, H.; Biermann, D.; Duflou, J.; Klocke, F.; Meyer, D.; Newman, S.T.; Pusavec, F.; Putz, M.; Rech, J.; et al. Cryogenic manufacturing processes. CIRP Ann. 2016, 65, 713–736. [Google Scholar] [CrossRef]
- Gupta, K. A Review On Green Machining Techniques, Procedia Manufacturing. Procedia Manuf. 2020, 51, 1730–1736. [Google Scholar] [CrossRef]
- Pereira, O.; Català, P.; Rodríguez, A.; Ostra, T.; Vivancos, J.; Rivero, A.; López-de-Lacalle, L.N. The Use of Hybrid CO2+MQL in Machining Operations. Procedia Eng. 2015, 132, 492–499. [Google Scholar] [CrossRef]
- Rech, J.; Kusiak, A.; Battaglia, J.L. Tribological and thermal functions of cutting tool coatings. Surf. Coat. Technol. 2004, 186, 364–371. [Google Scholar] [CrossRef]
- Sadik, M.I.; Isakson, S. The role of PVD coating and coolant nature in wear development and tool performance in cryogenic and wet milling of Ti–6Al–4V. Wear 2017, 386–387, 204–210. [Google Scholar] [CrossRef]
- Lequien, P. Fundamental Study of Cryogenic Assistance for Milling Application of Ti6Al4V. Ph.D. Thesis, Ecole Nationale Supérieure d’Arts et Métiers—ENSAM, Paris, France, 2017. Available online: https://pastel.archives-ouvertes.fr/tel-01743850 (accessed on 13 September 2018).
- Zhang, Y. Tool Materials Development for Improved Performance of Cutting Tools in Cryogenic Machining of Aeronautic Alloys. Ph.D. Thesis, Ecole Nationale Supérieure d’Arts et Métiers—ENSAM, Paris, France, 2022. Available online: https://www.theses.fr/2022HESAE009 (accessed on 9 July 2022).
- Challen, J.M.; Oxley, P.L.B. An explanation of the different regimes of friction and wear using asperity deformation models. Wear 1979, 53, 229–243. [Google Scholar] [CrossRef]
- Zvorykin, K.A. On the force and energy necessary to separate the chip from the workpiece. Vetnik Promyslennostie. 1896, 123. [Google Scholar]
- Cheng, W.; Outeiro, J.C. Modelling orthogonal cutting of Ti–6Al–4V titanium alloy using a constitutive model considering the state of stress. Int. J. Adv. Manuf. Technol. 2022, 119, 4329–4347. [Google Scholar] [CrossRef]
- Astakhov, V.P. Tribology of Metal Cutting; Tribology and Intergace Engineering Series, 52; Briscoe, B.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Outeiro, J.C.; Umbrello, D.; M’Saoubi, R.; Jawahir, I.S. Evaluation of Present Numerical Models for Predicting Metal Cutting Performance and Residual Stresses. Mach. Sci. Technol. 2015, 19, 183–216. [Google Scholar] [CrossRef]
- Melkote, S.N.; Grzesik, W.; Outeiro, J.; Rech, J.; Schulze, V.; Attia, H.; Arrazola, P.-J.; M’Saoubi, R.; Saldana, C. Advances in material and friction data for modelling of metal machining. CIRP Ann. 2017, 66, 731–754. [Google Scholar] [CrossRef]
- Cheng, W.; Outeiro, J.; Costes, J.-P.; M’Saoubi, R.; Karaouni, H.; Astakhov, V. A constitutive model for Ti6Al4V considering the state of stress and strain rate effects. Mech. Mater. 2019, 137, 103103. [Google Scholar] [CrossRef]
- Combres, Y. Propriétés du titane et de ses alliages. Tech. Ing. Matér. Mét. 1999, MB5, M557.1–M557.15. [Google Scholar] [CrossRef]
- Upadhyaya, G.S. Materials science of cemented carbides—An overview. Mater. Des. 2001, 22, 483–489. [Google Scholar] [CrossRef]
- Ruoff, A.L.; Wanagel, J. Yield stress of cemented tungsten carbide. J. Appl. Phys. 1975, 46, 4647–4648. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Courbon, C.; Pusavec, F.; Dumont, F.; Rech, J.; Kopac, J. Tribological behaviour of Ti6Al4V and Inconel718 under dry and cryogenic conditions—Application to the context of machining with carbide tools. Tribol. Int. 2013, 66, 72–82. [Google Scholar] [CrossRef]
- Hertz, H. On the contact of elastic solids. Z. Reine Angew. Math. 1881, 92, 156–171. [Google Scholar]
- Hills, D.A.; Nowell, D.; Sackfield, A. Mechanics of Elastic Contacts, 1993; Butterworth-Heinemann: London, UK, 1998; Volume 21, pp. 235–237. [Google Scholar]
- Astakhov, V.P.; Joksch, S. Metalworking Fluids (MWFs) for Cutting and Grinding: Fundamentals and Recent Advances, 1st ed.; Woodhead Publishing: Cambridge, UK; Philadelphia, PA, USA; New Delhi, India, 2012. [Google Scholar]
Effects of Cooling and Lubrication Method | CO2 | LN2 | |
---|---|---|---|
Primary | Cooling | Good | Excellent |
Lubrication | Marginal | Marginal | |
Chip removal | Good | Good | |
Tool life | Good | Excellent | |
Secondary | Machine cooling | Marginal | Marginal |
Workpiece cooling | Good | Good | |
Spray control | Marginal | Marginal | |
Surface integrity | Good | Excellent |
Cutting speed, Vc (m/min) | 15 | 30 | 60 | 90 | 120 | 150 |
Sliding velocity, V1 (m/min) | 10 | 20 | 40 | 60 | 80 | 100 |
Test No. | Cutting Speed, Vc (m/min) | Uncut Layer Thickness, h (mm) | Width of Cut, b (mm) | Rake Angle, γn (°) | Flank Angle, αn (°) | Edge Radius rn (µm) | Cutting Force, Fc (N) | Thrust Force, Ft (N) | Chip Compression Ratio (CCR), ζ |
---|---|---|---|---|---|---|---|---|---|
1 | 55 | 0.15 | 4 | 6 | 7 | 30 | 1125 | 650 | 1.5 |
2 | 90 | 0.15 | 4 | 6 | 7 | 30 | 1100 | 630 | 1.4 |
Test No. | Resultant Force R (N) | Contact Length, lc (mm) | Normal Force, Fnγ (N) | Contact Pressure, P (MPa) |
---|---|---|---|---|
Test 1 | 1299 | 0.276 | 1252 | 1136 |
Test 2 | 1268 | 0.248 | 1233 | 1240 |
Ti–6Al–4V | WC | |
---|---|---|
Density (Kg/m3) | 4420 | 13,967 |
Elastic modulus (GPa) | 114 | 627.5 |
Poisson’s ratio | 0.31 | 0.25 |
Coefficients of the constitutive model | A = 812; B = 844 C = 0.015; n = 0.261 | ----- |
Minimum Element Size (µm) | ||||
---|---|---|---|---|
Mesh 200P-40W | Mesh 100P-20W | Mesh 50P-10W | Mesh 25P-5W | |
Pin | 200 | 100 | 50 | 25 |
Workpiece | 40 | 20 | 10 | 5 |
Workpiece Radius, Rwork (mm) | 40 (Initial) | 28 (Final) |
---|---|---|
Pin radius, Rpin (mm) | 6 | 6 |
Equivalent pin radius, Req (mm) | 5.2 | 5 |
Factors | Levels |
---|---|
Sliding speed (m/min) | 10, 20, 40, 60, 80 and 100 |
Coating Type | No coating (uncoated pin), CrN, AlCrN, M2 and M4 |
MWF Type | LN2 and mixture of oil–water |
No. | Sliding Speed (m/min) | Coating Type |
---|---|---|
1 | 10 | Uncoated |
2 | 20 | Uncoated |
3 | 40 | Uncoated |
4 | 60 | Uncoated |
5 | 80 | Uncoated |
6 | 100 | Uncoated |
7 | 20 | Uncoated |
8 | 60 | Uncoated |
9 | 100 | Uncoated |
10 | 20 | M2 |
11 | 60 | M2 |
12 | 100 | M2 |
MWF | Sliding Speed (m/min) | Adhesion Volume (mm3) | µ | Composite Desirability |
---|---|---|---|---|
Flood | 60 | 0.00507 | 0.259 | 0.864 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Outeiro, J.C.; Nouveau, C.; Marcon, B.; Denguir, L.A. Tribological Analysis of Several Coatings under Flood and Cryogenic Cooling Conditions. Appl. Sci. 2023, 13, 11743. https://doi.org/10.3390/app132111743
Zhang Y, Outeiro JC, Nouveau C, Marcon B, Denguir LA. Tribological Analysis of Several Coatings under Flood and Cryogenic Cooling Conditions. Applied Sciences. 2023; 13(21):11743. https://doi.org/10.3390/app132111743
Chicago/Turabian StyleZhang, Yutao, Jose C. Outeiro, Corinne Nouveau, Bertrand Marcon, and Lamice A. Denguir. 2023. "Tribological Analysis of Several Coatings under Flood and Cryogenic Cooling Conditions" Applied Sciences 13, no. 21: 11743. https://doi.org/10.3390/app132111743
APA StyleZhang, Y., Outeiro, J. C., Nouveau, C., Marcon, B., & Denguir, L. A. (2023). Tribological Analysis of Several Coatings under Flood and Cryogenic Cooling Conditions. Applied Sciences, 13(21), 11743. https://doi.org/10.3390/app132111743