Analytical Solutions of Water Inflow for Foundation Pit in Confined Water Stratum
Abstract
:1. Introduction
2. Water Inflow Solutions of Circular and Strip Foundation Pits
2.1. Water Inflow Calculation Outside the Foundation Pit
2.2. Water Inflow Calculation in the Foundation Pit
2.3. The Hydraulic Head at the Maximum Drawdown Position of the Aquifer Hw
2.4. The Influence Coefficient α of Seepage Path in Confined Water Stratum
3. Analysis of Water Inflow for the Rectangular Foundation Pits
4. Verification and Analysis
4.1. Supplementary Cases Verification
4.2. Comparison and Analysis between Analytical Solution and Site Measured Data
4.3. The Water Control Effect Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chai, J.-C.; Shen, S.-L.; Zhu, H.-H.; Zhang, X.-L. Land subsidence due to groundwater drawdown in Shanghai. Géotechnique 2004, 54, 143–147. [Google Scholar] [CrossRef]
- Wan, T.; Li, P.; Zheng, H.; Zhang, M. An analytical model of loosening earth pressure in front of tunnel face for deep-buried shield tunnels in sand. Comput. Geotech. 2019, 115, 103170. [Google Scholar] [CrossRef]
- Xue, Y.; Zhou, B.; Ge, S.; Qiu, D.; Gong, H. Optimum design calculation method for the reasonable buried depth: A case study from Hong Kong-Zhuhai-Macao immersed tunnel. Ocean. Eng. 2020, 206, 107275. [Google Scholar] [CrossRef]
- Font-Capó, J.; Vázquez-Suñé, E.; Carrera, J.; Martí, D.; Carbonell, R.; Pérez-Estaun, A. Groundwater inflow prediction in urban tunneling with a tunnel boring machine (TBM). Eng. Geol. 2011, 121, 46–54. [Google Scholar] [CrossRef]
- Xu, Y.-S.; Ma, L.; Shen, S.-L.; Sun, W.-J. Evaluation of land subsidence by considering underground structures that penetrate the aquifers of Shanghai, China. Hydrogeol. J. 2012, 20, 1623–1634. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, J.J. Origin of groundwater salinity and hydrogeochemical processes in the confifined Quaternary aquifer of the Pearl River Delta, China. J. Hydrol. 2012, 438–439, 112–124. [Google Scholar] [CrossRef]
- Wu, Y.-X.; Shen, S.-L.; Wu, H.-N.; Xu, Y.-S.; Yin, Z.-Y.; Sun, W.-J. Environmental protection using dewatering technology in a deep confifined aquifer beneath a shallow aquifer. Eng. Geol. 2015, 196, 59–70. [Google Scholar] [CrossRef]
- Wang, J.-X.; Feng, B.; Liu, Y.; Wu, L.-G.; Zhu, Y.-F.; Zhang, X.-S.; Tang, Y.; Yang, P. Controlling subsidence caused by de-watering in a deep foundation pit. B Eng. Geol. Environ. 2012, 71, 545–555. [Google Scholar] [CrossRef]
- Pujades, E.; Vázquez-Suñé, E.; Carrera, J.; Vilarrasa, V.; De Simone, S.; Jurado, A.; Ledesma, A.; Ramos, G.; Lloret, A. Deep enclosures versus pumping to reduce settlements during shaft excavations. Eng. Geol. 2014, 169, 100–111. [Google Scholar] [CrossRef]
- Pujades, E.; Vàzquez-Suñé, E.; Carrera, J.; Jarado, A. Dewatering of a deep excavation undertaken in a layered soil. Eng. Geol. 2014, 2014, 15–27. [Google Scholar] [CrossRef]
- Ma, L.; Xu, Y.-S.; Shen, S.-L.; Sun, W.-J. Evaluation of the hydraulic conductivity of aquifer with piles. Hydrogeol. J. 2014, 22, 371–382. [Google Scholar] [CrossRef]
- Zeng, C.F.; Song, W.W.; Xue, X.L.; Li, M.K.; Bai, N.; Mei, G.X. Construction dewatering in a metro station incorporating buttress retaining wall to limit ground settlement: Insights from experimental modelling. Tunn. Undergr. Space Technol. 2021, 116, 104124. [Google Scholar] [CrossRef]
- Shen, S.-L.; Wu, Y.-X.; Misra, A. Calculation of head difference at two sides of a cut-off barrier during excavation dewatering. Comput. Geotech. 2017, 91, 192–202. [Google Scholar] [CrossRef]
- Wang, J.-X.; Feng, B.; Yu, H.; Guo, T.-P.; Yang, G.-Y.; Tang, J.-W. Numerical study of dewatering in a large deep foundation pit. Environ. Earth Sci. 2013, 69, 863–872. [Google Scholar] [CrossRef]
- Pujades, E.; López, A.; Carrera, J.; Vázquez-Suñé, E.; Jurado, A. Barrier effect of underground structures on aquifers. Eng. Geol. 2012, 2012, 41–49. [Google Scholar] [CrossRef]
- Wu, Y.-X.; Shen, S.-L.; Yuan, D.-J. Characteristics of dewatering induced drawdown curve under blocking effect of retaining wall in aquifer. J. Hydrol. 2016, 2016, 554–566. [Google Scholar] [CrossRef]
- Luo, Z.-J.; Zhang, Y.-Y.; Wu, Y.-X. Finite element numerical simulation of three-dimensional seepage control for deep foundation pit dewatering. J. Hydrodyn. 2008, 20, 596–602. [Google Scholar] [CrossRef]
- Ying, L.; Chen, D.; Xingwang, L. Simplified calculation method of decompression dewatering for deep excavation with suspended waterproof curtain. Rock Soil Mech. 2021, 42, 862. (In Chinese) [Google Scholar]
- Xu, Y.-S.; Shen, S.-L.; Ma, L.; Sun, W.-J.; Yin, Z.-Y. Evaluation of the blocking effect of retaining walls on groundwater seepage in aquifers with different insertion depths. Eng Geol. 2014, 183, 254–264. [Google Scholar] [CrossRef]
- Wu, Y.-X.; Shen, S.-L.; Xu, Y.-S.; Yin, Z.-Y. Characteristics of groundwater seepage with cutoff wall in gravel aquifer. I: Field observations. Can. Geotech. J. 2015, 52, 1526–1538. [Google Scholar] [CrossRef]
- Wu, Y.-X.; Shen, S.-L.; Yin, Z.-Y.; Xu, Y.-S. Characteristics of groundwater seepage with cutoff wall in gravel aquifer. II: Numerical analysis. Can. Geotech. J. 2015, 52, 1539–1549. [Google Scholar] [CrossRef]
- Wang, J.-X.; Hu, L.-S.; Wu, L.-G.; Tang, Y.-Q.; Zhu, Y.-F.; Yang, P. Hydraulic barrier function of the underground continuous concrete wall in the pit of subway station and its optimization. Environ. Geol. 2009, 57, 447–453. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical Specification for Retaining and Protection of Building Foundation Excavations: JGJ 120—2012; China Architecture & Building Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
Projects | Parameters of the Foundation Pits | Qc1 /(m3/day) | Qc2 /(m3/day) | Qr /(m3/day) | Qj /(m3/day) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M /m | kv /(m3/day) | kr/kv | R /m | H /m | Hd /m | L /m | r0 /m | L/M | r0/M | |||||
1 | 25 | 17.3 | 5 | 900 | 48 | 32 | 4 | 10 | 0.16 | 0.40 | 8190 | 6900 | 6000 | 38,540 |
2 | 32 | 17.3 | 5 | 900 | 52 | 34 | 9 | 10 | 0.28 | 0.31 | 4830 | 5058 | 4440 | 50,145 |
3 | 35 | 17.3 | 5 | 900 | 51 | 39 | 31 | 31 | 0.89 | 0.89 | 8839 | 7680 | 7200 | 55,417 |
4 | 35 | 17.3 | 5 | 900 | 51 | 39 | 31 | 26 | 0.89 | 0.75 | 6493 | 5972 | 4800 | 52,231 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Jiang, Y.; Wu, J.; Li, P. Analytical Solutions of Water Inflow for Foundation Pit in Confined Water Stratum. Appl. Sci. 2023, 13, 11765. https://doi.org/10.3390/app132111765
Shen J, Jiang Y, Wu J, Li P. Analytical Solutions of Water Inflow for Foundation Pit in Confined Water Stratum. Applied Sciences. 2023; 13(21):11765. https://doi.org/10.3390/app132111765
Chicago/Turabian StyleShen, Jingjing, Yue Jiang, Jie Wu, and Pengfei Li. 2023. "Analytical Solutions of Water Inflow for Foundation Pit in Confined Water Stratum" Applied Sciences 13, no. 21: 11765. https://doi.org/10.3390/app132111765
APA StyleShen, J., Jiang, Y., Wu, J., & Li, P. (2023). Analytical Solutions of Water Inflow for Foundation Pit in Confined Water Stratum. Applied Sciences, 13(21), 11765. https://doi.org/10.3390/app132111765