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Abstract: This paper proposes a field probe to measure the power density (PD) at a millimeter-wave
(mmWave) frequency band. The proposed probe is composed of a loop antenna in which one end is
terminated with a load resistor. Such a structure enables the simultaneous measurement of electric
(E)- and magnetic (H)-fields: the E-field is measured at a gap where the load resistor is placed, and the
H-field is measured through the loop antenna. The simultaneous measurement makes it possible to
measure PD for an incident wave even in the near field region where the E- and H-fields have different
phases from each other. The proposed probe is fabricated and evaluated for its PD measurement
performance. The measurement results show that the probe measures PD with an error less than
1.3 dB. Owing to the near field measurement, the proposed probe is useful in measuring the human
body exposure to electromagnetic fields (EMFs) that are generated by 5G mmWave base stations.

Keywords: radiofrequency exposure; 5G; base stations; millimeter-wave measurements

1. Introduction

Many studies are being carried out to investigate effects of the fifth generation
(5G) wireless communication on the human body since the 5G commercial service has
started [1–7]. Especially for the 5G service using mmWave, human body exposure to elec-
tromagnetic fields (EMFs) from a base station is one of major concerns because base stations
generate sharp beams and steer beams directly to 5G service users. The sharp beam results
in a high power density (PD) to be exposed to the human body while the beam steering
increases the possibility of such high-PD exposure. In [5], the mmWave exposure is studied
in a cell level by exposing the cultured cells to the mmWave EMF. Refs. [6,7] investigated
the EMF exposure in real environments by measuring PD from mmWave base stations.

5G mmWave base stations use millimeter waves in which the wavelength is very
short. Due to this reason, the volume of the near field region is wide compared with
that of the other base stations under 6 GHz. When the PD is measured in the near-field
region, the E- and H-fields should be measured simultaneously because the two fields have
different phase, which is a typical property of the near field. In this condition, the PD can
be measured only when the E- and H-fields are measure simultaneously.

The PD is limited to be less than 20 W/m2 over the mmWave band to protect the
general public from EMF exposure [8]. The PD to be compared with the limitation is an
average PD that is obtained by averaging PD samples within a 4 cm2 area. Such spatial
averaging is reasonable considering that a mmWave base station generates a sharp beam,
and consequently, the PD can change sharply within a 4 cm2 area. Previous studies used
a horn or monopole antenna to measure PD generated from mmWave base stations [6,7].
Those studies measured the PD at a long distance of several dozens meters from base
stations. Such a long distance makes the antenna beam spread widely, so the PD does
not change much at adjacent measurement points in a 4 cm2 area. General antennas are
suitable to measure PD at a long distance from a base station. Within a short distance,
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however, the antenna beam spreads less, and PD changes sharply within a 4 cm2 area.
In mmWaves, the field intensity changes significantly even with a small distance difference
of several millimeters, so an array-type antenna is needed to measure PD [9,10]. Instead
of antennas, a small-sized field probe having high spatial resolution is required for the
exposure measurement of a 5G mmWave base station.

This paper proposes a small-sized probe to measure the mmWave exposure from a 5G
base station. It provides high spatial resolution to measure PDs at a short distance from
the base station. A probe structure and a processing circuit are designed and fabricated in
a single printed circuit board (PCB). The fabricated probe is evaluated using a reference
mmWave source that is defined in [11]. The proposed probe includes a loop antenna to
measure PD. The utilization of the loop antenna is advantageous in that PD measurement
is not affected by a feeding line connected to the antenna. The proposed probes can be
arrayed within a 4 cm2 area, so PDs can be measured at multiple points with a single
measurement. Finally, the proposed probe is advantageous in measuring E- and H-fields at
the same time and, consequently, can measure PD even in the near-field region.

2. Probe Design
2.1. Probe Structure

In [6,7], horn and monopole antennas were, respectively, used to measure PD from
the 5G mmWave base station. Those antennas, however, have the disadvantage of a low
spatial resolution because of the large antenna size. High spatial resolution is essential,
especially for the exposure measurement of a mmWave whose wavelength is very small.
A line antenna has been used for a field probe measuring exposure at radio frequencies
much smaller than the mmWave. A typical example for the line antenna is the dipole or
monopole one in [12,13]. Those line antennas have a short length much smaller than one
wavelength at the measurement frequencies. Such a short-line structure suppresses any
resonance, so the field probe has a flat frequency response over measurement frequencies.
Also, it is possible to achieve a high spatial resolution for the exposure measurement.

When the line antenna is used to measure the mmWave exposure, its length is reduced
to a few millimeters owing to its small wavelength. In this case, the antenna performance is
affected by a feeding line that is connected to the line antenna. E-fields are coupled to a part
of the feeding line in addition to the line antenna, so its effective length becomes larger than
the original one. Such a length increase becomes critical at mmWave frequencies where
the line antenna has is a length of only a few millimeters. The coupling to the feeding
line is dependent on the length and the shape of the feeding line, so a different strength
is measured depending on the feeding line even for the same E-field. Such unintended
coupling increases the measurement uncertainty in an exposure measurement.

To resolve this problem, we propose a field probe with a loop antenna like in [14].
Figure 1 shows the loop antenna that is proposed in our study. Unlike the line antenna,
the loop antenna experiences less coupling with the feeding line. This is because a closed
loop is formed by the load resistor, as shown in Figure 1, while the feeding line makes no
loop near the loop antenna. The incident H-field is coupled only with the loop antenna and
induces a voltage at the load resistor. Such a coupling structure leads to less measurement
uncertainty than a line antenna. The load resistor reduces the quality (Q) factor of the loop
antenna and, consequently, suppresses any resonance resulting in a wideband operation of
the probe.
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Figure 1. Structure of the 5G mmWave field probe.

As shown in Figure 2, the loop antenna is followed by the low-noise amplifier (LNA).
Such a structure makes it easy to enhance the dynamic range of the field probe. The LNA
amplifies the dissipating power at the load resistor, RA, so the weak H-field causing low-
power dissipation can be measured, resulting in a wide dynamic range. Our study used a
commercial off-the-shelf (OTS) LNA for easy implementation [15]. Currently, no OTS LNA
operating at mmWave frequencies supports a differential input. A passive-type balun can
be used to transform the loop antenna output into the single-ended input for LNA. Such a
balun, however, causes an additional signal loss in the signal path after the loop antenna.
As shown in Figures 1 and 2, the loop antenna in our study has a single-ended output,
so its output can be directly connected to the single-ended input of LNA. Like the LNA,
a commercial OTS was used for a root mean square (RMS) power detector. As shown in
Figure 2, the LNA is followed by the RMS power detector [16]. The RMS detector outputs
a dc voltage, VPD, proportional to PD of an incident wave, which will be explained later
in this paper. The loop antenna is not a resonant one, so the operating bandwidth of the
probe is determined by the LNA in which the bandwidth is about 13.5 GHz [15].
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Figure 2. RF circuit after the loop antenna.

2.2. Probe Design

As shown in Figures 1 and 2, the loop antenna in the proposed has a singled-ended
structure. The size of the loop antenna determines the resolution of the PD measurement.
A smaller loop results in a high resolution of the PD measurement, but the coupling of
the incident field with the loop decreases accordingly. The loop antenna is designed to
have the resolution of a half wavelength at 28 GHz, so the loop has the longest length of
about 5 mm.

The load resistor, RA, in Figure 2 determines the receiving voltage of the probe.
The load resistor also determines the resonance of the loop antenna. The load resistor
is designed to avoid the resonance, so the frequency response of the loop antenna is close
to being flat over a wide frequency band. Figure 3 shows the simulation results on the
frequency response of the voltage at RA for the increasing RA. In the simulation, an elec-
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tromagnetic wave having a PD of 10 W/m2 is incident on the loop antenna. The voltage
increases for the increasing RA, so the LNA following the loop antenna generates a higher
voltage at its output, resulting in high sensitivity of the probe. As shown in Figure 3, how-
ever, the increasing RA results in fluctuation in the frequency response due to resonance.
To avoid the resonance and to obtain a flat response, RA is set to be 50 Ω.
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2.3. Probe Operation

The single-ended loop shown in Figure 1 enables simultaneous measurement of the
E- and H-fields. The H-field perpendicular to the antenna substrate is coupled to the loop
antenna, and this coupling generates a current flowing through the load resistor. As shown
in Figure 1, the loop antenna has a gap between the loop end and the ground plane.
The E-field parallel to the antenna substrate is coupled to this gap, generating a voltage
across the load resistor. The current and voltage then generate power that is dissipated at
the load resistor. The load resistor also prevents the LNA from oscillating by creating a
leakage path that avoids the radiation leakage [17]. Parallel distribution of the two resistors
makes the input power to LNA equal to the dissipating power. Such an operation can be
expressed as

Pin,LNA = CEEx,RMS · CH Hy,RMS cos(θE − θH) (1)

In (1), all coefficients have a phasor form. Pin,LNA represents the input power to LNA,
while Ex,RMS and Hy,RMS are the magnitude of the incident x-axis E- and y-axis H-fields,
respectively, in the RMS unit. CE is the coupling coefficient between the gap voltage end
and the incident E-field, while CH is that between the loop current and the incident H-field.
The E- and H-fields can have different phases in the near field region. For increasing the
difference between the phases, the power has a real component decreasing. In (1), θE and
θH represent the phase of the E- and H-fields, respectively, and the cosine term, including
the phase results in the real power component.

In Figure 2, LNA amplifies the input power in (1) with a gain of GLNA. The amplified
power is then applied to the RMS power detector. The detector converts the amplified
power into a dc voltage that is proportional to the input power. This proportional relation is
represented by another coefficient CPD. The output voltage in a linear scale is proportional
to the input power in dB units [16]. As a result, the output voltage VPD is expressed
using (1) as

VPD = 10 log[CPDGLNACECH · Ex,RMSHy,RMS · cos(θE − θH)] (2)

In (2), Ex,RMSHy,RMS · cos(θE − θH) corresponds to PD of the incident field, so PD can
be obtained by measuring VPD and calculating PD from (2). The product of the coefficients
in (2) can be obtained via measurement, which will be described later in this paper.



Appl. Sci. 2023, 13, 11777 5 of 10

3. Probe Fabrication and Measurement

The proposed probe was fabricated in a single multi-layered PCB where the loop
antenna was integrated with the LNA and the RMS power detector. After the fabrica-
tion, the probe performance was measured using a horn antenna as a reference source.
The measured performance was compared with the simulated one.

3.1. Fabricated Probe and Measurement Setup

Figure 4 shows the fabricated probe for the 5G mmWave exposure measurement.
The loop antenna has a size of 5.1 × 1.9 mm2. The maximum length of the loop antenna is
about half of a wavelength at 28 GHz; hence, the probe provides the spatial resolution of
two points within one wavelength in the free space. The antenna substrate is composed of
three layers, the total thickness of which is 800 µm. Each layer of the antenna substrate has
a low tangent loss of 0.0024 at 10 GHz. The OTS LNA and the RMS power detector were
attached on the substrate surface with resistor and capacitor components. As shown in
Figure 4, the fabricated probe is terminated with the connector. This connector is to connect
the probe to an interface board that reads the output voltage of the RMS power detector
and controls the probe operation.
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Figure 5 shows the measurement setup to measure the performance of the fabricated
field probe. The measurement setup includes the EMF radiator operating at 28 GHz. Our
study used the reference antenna in [11] as the EMF radiator. As shown in Figure 5, the EMF
radiator is the horn antenna in which the aperture has a slot array. EMFs radiated from
the horn antenna with the slots are well analyzed in [11]. Numerical simulations can be
performed to obtain PD in the free space, and the simulated PD is then compared with the
measured one to evaluate the probe performance. The horn antenna with the slots in [11] is
an EMF radiator to test the performances of a field probe that are used to measure PD on
a surface of a mobile unit operating at 28 GHz. Such a test locates a field probe close to a
mobile unit within several millimeters. In our study, however, the proposed field probe is
used to measure PD from a base station at 28 GHz and, consequently, located at a longer
distance from the EMF radiator, i.e., a 28 GHz base station. The horn antenna with the
slots represents a 28 GHz base station well because it includes an array antenna which
is composed of many dipoles or slots. Considering this point, the utilization of the horn
antenna with the slot array is suitable to evaluate the probe for a 5G mmWave base station.

Figure 6 shows the measurement setup to measure the coefficients in (2) and probe
performance, respectively. The coefficients include the effects of the radiation pattern of the
loop antenna in the probe. The probe was horizontally aligned with the center of the horn
aperture. As shown in Figure 5, the horn antenna was moved toward or away from the
probe with the alignment condition maintained. The dc power supply provides dc voltages
to operate the LNA and the RMS power detector composing the field probe. Figure 5
also shows the columns to place the field probe and the horn antenna, both of which are
50 cm above the bottom. The column for the horn antenna was clamped by the rail on the
bottom and moved forward or backward along the rail to control the distance with the
probe. The mmWave absorbers were placed at the bottom and all around to reduce any
unintended reflections.
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the probe.

The product of the coefficients in (2) should be determined prior to the PD measure-
ment. The product GLNACPD can be measured directly by measuring a response of the
active-circuit path. For this, another PCB is fabricated by removing only the loop antenna
and leaving the LNA and the RMS power detector. The active-circuit response can be mea-
sured by measuring the circuit output, i.e., the output voltage of the RMS power detector,
by driving the circuit input with a 28 GHz signal with the power known. The active-circuit
response is obtained by calculating the ratio between the input power and the output volt-
age. The calculated ratio corresponds to the product GLNACPD. The calculated GLNACPD
also includes any signal loss that occurs between the LNA and the RMS power detector.

Another product CECH in (2) can be measured by applying a radiating field to the
probe. The numerical simulation on the horn antenna calculates PD at a long distance from
the antenna in the free space. Such a long distance makes PD able to be calculated in the far
field, in which the E- and H-fields have the same phase: θE = θH. The radiating field with
PD known from the simulation is applied to the probe, and the output of the RMS power
detector is measured. In (2), the PD corresponding to the product of E and H is known from
the simulation, while the product of GLNACPD is known from the previous active-circuit
response. All other terms except CECH in (2) are known, so CECH can finally be calculated.

3.2. Measurement Results

The PD was measured at 28 GHz using the fabricated probe. Prior to the PD measure-
ment, the coefficient product GLNACPD in (2) was measured using the probe with the loop
antenna removed. The far-field measurement was then conducted to measure the coeffi-
cient product CECH in (2). The coefficient product was measured using the horn antenna
without the slot array. As shown in Figure 5, the front panel includes the slots. This front
panel was temporally removed for the coefficient measurement. The panel removal ex-
panded the far field region around the antenna [11]; hence, the coefficient measurement
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could be conducted in the far-field region. Such a measurement generalizes the measured
coefficient because the far field has a constant wave impedance and no difference in the
phases of the E- and H-fields. The probe was placed about 1 m away from the horn antenna
without the slot array. After driving the horn antenna with the signal generator in Figure 5,
the output voltage VPD was measured at the probe output. In (2), the PD corresponding
to Ex,RMSHy,RMS was calculated from the simulation on the horn antenna in the free space.
(θE − θH) in (2) is equal to zero according to the measurement and the simulation in the far-
field region. Finally, the coefficient product CECH in (2) was calculated using the measured
GLNACPD and VPD along with the simulated Ex,RMSHy,RMS.

After calculating all the coefficients, the EMF was generated using the horn antenna
with the slot array installed and the output voltage VPD was measured at each distance.
The PD was then calculated using (2). Figure 7 shows the measured PD for the distance
increasing from the horn antenna with the slot array. The simulated PD is also shown in the
same figure for the comparison with the measured PD. The PD was simulated in the free
space at the same distance from the horn antenna with the slot array. As shown in Figure 7,
the single probe measures PD close to the simulated one with the maximum error of about
3 dB. For the increasing distance, the decreasing rate is almost the same in the simulation
and the measurement. Figure 7 shows the measured PD after rotating the probe by 90◦ on
the axis that passes through the probe center in the longitudinal direction. As shown in
Figure 7, the proposed probe has a polarization discrimination over 10 dB.
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3.3. Expansion to Probe Array

Owing to its small size, the single probe can be easily arrayed to measure PD at
multiple points in the free space. Figure 8 shows the array probe in which a total of five
single probes are assembled. Each probe is connected to the interface board through a
right-angle PCB. As shown in Figure 8, the right-angle PCBs place the probes such that they
have the same distance between them to transmit the output voltage of the RMS power
detector to the interface board. The interface board displays PDs measured at each probe,
in which PD is calculated using (2). The interface board also displays PD after averaging all
measured PDs. As shown in Figure 8, all the loop antennas are inside the circular area that
has 4 cm2. According to [8], the PD limitation over 6 GHz should be compared with a PD
that is averaged over 4 cm2 area. For this, the PD should be repeatedly measured at multiple
points to average all measured PDs. No other measurements, however, are required for the
proposed array probe. Instead, a single measurement is enough to obtain the averaged PD.



Appl. Sci. 2023, 13, 11777 8 of 10

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 11 
 

3.3. Expansion to Probe Array 

Owing to its small size, the single probe can be easily arrayed to measure PD at mul-

tiple points in the free space. Figure 8 shows the array probe in which a total of five single 

probes are assembled. Each probe is connected to the interface board through a right-an-

gle PCB. As shown in Figure 8, the right-angle PCBs place the probes such that they have 

the same distance between them to transmit the output voltage of the RMS power detector 

to the interface board. The interface board displays PDs measured at each probe, in which 

PD is calculated using (2). The interface board also displays PD after averaging all meas-

ured PDs. As shown in Figure 8, all the loop antennas are inside the circular area that has 

4 cm2. According to [8], the PD limitation over 6 GHz should be compared with a PD that 

is averaged over 4 cm2 area. For this, the PD should be repeatedly measured at multiple 

points to average all measured PDs. No other measurements, however, are required for 

the proposed array probe. Instead, a single measurement is enough to obtain the averaged 

PD. 

 

Figure 8. Probe assembled into array type. 

Figure 9 shows the averaged PD for the same horn antenna with the slot array that 

radiates the accepted power of −16 dBm. For comparison, it also shows the simulated PD. 

The simulated PD was obtained by averaging PDs that were simulated at the same posi-

tions where each probe composing the array probe is located. As before, the proposed 

probe measures PD close to the simulated one with a maximum error of about 1.3 dB. 

 

Figure 9. Power density measurement results of the probe array. 

Figure 8. Probe assembled into array type.

Figure 9 shows the averaged PD for the same horn antenna with the slot array that
radiates the accepted power of −16 dBm. For comparison, it also shows the simulated
PD. The simulated PD was obtained by averaging PDs that were simulated at the same
positions where each probe composing the array probe is located. As before, the proposed
probe measures PD close to the simulated one with a maximum error of about 1.3 dB.
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Figure 10 shows the measured frequency-dependent characteristics of the proposed
probe array. We analyzed the changes in the probe output value when the proposed probe
array receives frequency components other than 28 GHz. The proposed loop-type antenna
is a non-resonant antenna that receives all frequency bands without impedance matching.
Instead, the main factor causing the change is the probe output in the frequency response
of the LNA gain of the processing circuit. The LNA used in the processing circuit has
a flat gain in the mmWave band, so the change with frequencies at the same distance is
insignificant [15]. However, in the near-field region close to the reference source, differences
in the PD can occur due to the change in the length of the wavelength.
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4. Discussion on Reactive near Field Measurement

According to [11], the region where EMF is radiated from a source is divided into
three regions: source regions I, II, and III. Source region III corresponds to the far-field
region, while source regions I and II correspond to the near-field region. Source regions I
and II have a different property with respect to the radiation characteristic: source region I
is the reactive near-field region, while region II is the radiative near-field region. Ref. [11]
provides equations to calculate the distances from a source to each region when the source
is a linear array antenna. The horn antenna with the slot array corresponds to a linear
array antenna, so the distances for the source regions can be calculated using the equations
in [11]. According to those equations, the boundary distance between source regions I and
II is about 2 mm from the horn antenna while the distance between source regions II and
III is about 470 mm.

Considering this point, the measurement regions in Figures 7 and 9 are included in
the radiative near field region. The measurement results in Figures 7 and 9 show that
the proposed probe accurately measures the radiative near-field region. This is owing
to the function of the proposed probe that measures the phase difference between the E-
and H-fields as described in (2). As shown in Figure 1, the proposed probe provides the
simultaneous measurement of the E- and H-fields using, respectively, the loop and the gap.
As depicted in (2), this simultaneous measurement makes the phase difference be included
at the output voltage VPD of the probe. As a result, the proposed probe is useful in that
PD can be measured even in the radiative near-field region with a single measurement,
and consequently, it is not necessary to measure the E- and H-fields separately using two
different probes like in [14].

5. Conclusions

This paper proposes the field probe to measure PD at the mmWave. The proposed
probe has a structure to simultaneously measure the E- and H-fields, so PD can be measured
even in the radiative near-field region. The measurement results and the comparison with
the simulation results show that the proposed probe measures PD in the radiative near-field
region with a maximum error less than 1.3 dB. The proposed probe can be used to evaluate
human exposure to EMF generated by a 5G mmWave base station. Unlike other probes,
the proposed probe measures PD even in the radiative near-field region; hence, the EMF
exposure can be evaluated at a short distance from the base station, where such a short
distance could increase PD beyond the limitation.
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