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Abstract: The development of artificial intelligence technology provides a new model for substation
inspection in the power industry, and effective defect diagnosis can avoid the impact of substation
equipment defects on the power grid and improve the reliability and stability of power grid operation.
Aiming to combat the problem of poor recognition of small targets due to large differences in equipment
morphology in complex substation scenarios, a visual fault detection algorithm of substation equipment
based on improved YOLOv5 is proposed. Firstly, a deformable convolution module is introduced
into the backbone network to achieve adaptive learning of scale and receptive field size. Secondly,
in the neck of the network, a simple and effective BiFPN structure is used instead of PANet. The
multi-level feature combination of the network is adjusted by a floating adaptive weighted fusion
strategy. Lastly, an additional small object detection layer is added to detect shallower feature maps.
Experimental results demonstrate that the improved algorithm effectively enhances the performance
of power equipment and defect recognition. The overall recall rate has increased by 7.7%, precision
rate has increased by nearly 6.3%, and mAP@0.5 has improved by 4.6%. The improved model exhibits
superior performance.

Keywords: YOLOv5; fault detection; deformable convolution; BiFPN

1. Introduction

The power system is one of the most critical infrastructures in modern society and
substations are indispensable components of the power system. In the power system,
a large number of power terminal equipment may experience wear or damage due to
factors such as service life or environmental conditions. If these defects reach a high
severity level, they can lead to equipment failure [1–4]. With the continuous increase in
electricity consumption, the operational stability and level of intelligence of the power
system face higher demands. To ensure the reliable operation of the power system, regular
inspections of substations are particularly important. This can promptly identify and
address potential safety hazards [5].

In recent years, computer vision technology [6–8] has been widely applied in various
fields such as image classification [9,10] and video analysis [11]. It has provided numerous
feasible solutions for defect detection problems [12–15], enabling computers to perceive
and recognize images or video information like humans. In the field of power equipment
maintenance, the Internet of Things (IoT) deployed by the company consists of a large
number of power terminal devices. Edge computing-based power monitoring and ap-
plication systems [16,17] are generally used for analyzing and processing the collected
images of power equipment to monitor their operational status. Therefore, object detection
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techniques can serve as an edge service to handle and analyze a large volume of device
status images.

Traditional object detection algorithms typically start by selecting candidate regions
from the input image, followed by manual feature extraction and classification using feature
classifiers [18–20]. However, these traditional models suffer from high time complexity
and large window redundancy due to the exhaustive sliding window approach, resulting
in long detection time and poor detection performance, especially on unfamiliar datasets.
With the introduction of convolutional neural networks (CNNs) [21], the paradigm of
visual perception has undergone a significant transformation.

Currently, deep learning-based object detection algorithms can be mainly divided into
two categories. The first category is the region-based R-CNN-series algorithms [22–24],
which achieve high recall rates by extracting image feature information with a minimal
number of candidate boxes. Lei X. et al. [25] used a deep convolutional neural network
method based on Faster R-CNN to identify and locate broken insulators and bird nests.
Jiang A. et al. [26] proposed the Mask R-CNN model for pixel-level recognition of substa-
tion equipment, accurately identifying various types of substation devices. Liu Z. et al. [27]
proposed an improved Mask R-CNN method that utilizes infrared image semantic segmen-
tation for device feature extraction, making it suitable for infrared image power equipment
detection tasks. Yin Z. et al. [28] proposed a detection system that combines edge computing
and an enhanced Faster R-CNN for detecting device defects in substation scenarios using
collected substation equipment video images. Ou J. et al. [29] presented an improved Faster
R-CNN model for automatically detecting 16 types of electrical equipment in substations.

The YOLO series is another type of object detection algorithm [30–32]. These algo-
rithms combine target localization and recognition based on global information, instead
of using information from each candidate box, resulting in fast and efficient detection
performance [33,34]. Wang X. et al. [35] achieved real-time detection of anomalies in power
equipment infrared images by improving the Single Shot MultiBox Detector (SSD) algo-
rithm. Cheng Y. [36] proposed an enhanced algorithm for insulator defect localization
and detection in the YOLO (You Only Look Once) model to reduce interference during
unmanned aerial vehicle inspections. Hu X. et al. [37] introduced the Path Aggregation
Network (PANet) into YOLOv4 to enhance insulator defect detection and used focal loss as
the loss function. Zheng H. et al. [38] improved the YOLOv3 model to enhance the detection
accuracy of power equipment infrared images with similar ripple patterns. They intro-
duced the Cross-Stage Partial module, which integrates the pathway aggregation network
into the feature pyramid structure of the original model. Peng J. et al. [38] proposed the
model compression algorithm ED-YOLO, which achieves obstacle avoidance in power line
inspections with high accuracy and fast recognition speed. The logistic regression-based
object detection algorithm solves detection as a regression problem, simplifying the train-
ing process and improving detection speed [39]. It is a practical solution for performing
object detection tasks that meet the real-time requirements of power recognition scenarios,
especially in edge computing applications.

Currently, deep neural networks face challenges in object detection, particularly in
complex scenarios like power systems, industrial equipment, and outdoor environments.
The distinction between the target and its surroundings is not significant. The original
model struggles to differentiate pixels and detect distant targets that cannot be approached
closely. Factors such as outdoor weather make it difficult to effectively capture the target
for detection. Issues include poor robustness, weak ability to detect small targets in noisy
environments, and ineffective target recognition. There is a need for a method applicable
in substation scenarios to identify target image features and enhance model capabilities.

In the early stage, we investigated the latest works of the YOLO series, YOLOv5,
YOLOv7, and YOLOv8. Compared to YOLOv5, YOLOv7 added Spatial Pyramid Pooling
(SSP) module and Spatial Attention Module (SAM) modules. However, compared to
YOLOv5, v7 has slightly slower detection speed and requires more training time but has
higher accuracy. YOLOv8 is larger than the YOLOv5 model and has relatively slower
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training speed. Although it is similar to the comparison between YOLOv7 and v5 in
terms of accuracy, for detection speed and deployment scenarios, such as inspection tasks,
autonomous driving, intelligent video surveillance, etc., YOLOv5 is more suitable for fast
detection scenes.

YOLOv5 is a deep learning-based object detection model that operates in real time and
with high efficiency. It offers advantages such as fast training speed, high detection accuracy,
and adaptability to various datasets. Figure 1 illustrates the process of reading image and
video data through input. The backbone network employs convolution operations to
extract features from the input image. The neck section further extracts features by utilizing
multiple layers of convolutional operations and merging feature maps from different levels.
Ultimately, three feature maps of varying scales are produced as output. The output
component converts these feature maps into object detection results, which include target
positions and class information.
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Figure 1. Overall structure diagram of YOLOv5.

Compared to traditional object detection algorithms, the YOLO-series algorithms are
highly efficient, fast, and scalable. Among the YOLO-series algorithms, YOLOv5 stands out
for its high stability, wide range of applications, and utilization of multiple resources. This
paper presents improvements to the YOLOv5 algorithm without significantly increasing its
parameter size compared to the original version.

In light of the issues faced by current defect detection models, such as susceptibility
to external environmental interference, inadequate recognition performance for devices
of varying scales in real power scenarios, and incomplete feature extraction, this paper
presents the following contributions: (1) Incorporating a variable convolution module
into YOLOv5’s backbone network to enhance the capture of finer details in the feature
map. (2) Introducing sampling between different levels within YOLOv5’s feature extraction
component to facilitate information transmission and fusion across diverse scales. (3) Ex-
perimental validation and algorithm analysis are conducted to demonstrate the feasibility
of the proposed method.

The subsequent sections are organized as follows. Section 2 introduces the original
YOLOv5 algorithm and explains the improvements made in this paper. Firstly, variable
convolution is added to the network structure, and secondly, upsampling is added between
different levels to facilitate information transmission and fusion across scales, enhancing
the feature network. Lastly, a prediction layer is included. Section 3 discusses the ablation
experiments conducted on the proposed model in this paper and analyzes and validates
the comparative results. Section 4 summarizes the research conducted in this paper and
provides prospects for future work.
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2. Framework
2.1. YOLOv5 Algorithm Improvements

In light of the complex nature, varying defect morphologies, and significant differences
in equipment scenes at substations, this paper proposes an improved YOLOv5 object detec-
tion algorithm to enhance semantic distinguishability and alleviate global class confusion.
The overall network structure is illustrated in Figure 2.
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Figure 2. Improved YOLOv5 framework.

The main improvements include the backbone network, feature layers, and prediction
layers. Firstly, we introduce deformable convolution in the backbone network section to
better adapt to changes in target shape by deforming the input feature map. Secondly,
instead of PANet, we use a simple and effective BiFPN structure in the neck of the network
to fuse multi-level features from the backbone with weighted fusion. The BiFPN structure
fully utilizes multi-scale information while having less computational cost and better
performance. Finally, we improve the structure of the model’s prediction layer by adding a
prediction head to handle large-scale variations in targets. These improvements enhance
performance in recognizing small targets and improve the adaptability of object detection
algorithms for complex scenes and diverse device configurations in substation equipment
images. Figure 3 shows the overall algorithm flowchart.

2.1.1. Fusion-Deformable Convolutional Modules

In order to enhance the semantic distinguishability of the YOLOv5 model for sub-
station equipment defect detection, we propose an improvement measure, which is the
introduction of deformable convolutions. Traditional convolution operations can only
sample the input feature maps in a fixed manner and cannot handle variations in target
shape. However, in substation equipment defect detection, targets with different scales
and shapes may coexist at different positions within the same feature layer, which limits
the flexibility of object detection. To address this issue, we introduce deformable convolu-
tions. Deformable convolutions can adaptively learn the sampling positions and shapes to
better accommodate the shape variations of the targets. It transforms the sampling point
positions in traditional convolutions into learnable forms, enabling the network to learn
more expressive feature representations. In the improved YOLOv5 detection model, we
incorporate deformable convolutions into the backbone network. This allows for better
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feature extraction and small object detection in substation equipment defect detection, thus
improving the performance of the model.

Start

Image input

Variable 
convolution extracts 

features

BiFPN multi-level 
weighted fusion

Improved prediction 
layer

End

Figure 3. Algorithm flowchart.

Figure 4 shows a schematic diagram of a 3 × 3 deformable convolution. In deformable
convolutions, the convolution layer can calculate offsets relative to the input feature map
and use these offsets to sample the input feature map. This allows for modeling transfor-
mations of the targets. The deformable convolution kernel is distributed spatially in the
same layer as the current convolution layer, with offset size matching that of the input
feature map. These offsets can be directly applied to each pixel in the input feature map for
position shifting and adjustment.
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Conv
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Offset field
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Deformable convolution

Input feature map Ouput feature map

Figure 4. Schematic diagram of 3 × 3 deformable convolution.

In previous work [40], the convolution operation was performed using a fixed-size
matrix R to sample the input feature map. This approach had limitations in terms of
receptive field size and dilation. Subsequently, convolutional kernel weighting was applied
to the sampled points.

R =

 (−1,−1) (−1, 0) (−1, 1)
(0,−1) (0, 0) (0, 1)
(1,−1) (1, 0) (1, 1)

 (1)

For each position Pn in the output feature map, its expression is as follows:

y(p0) = ∑ w(pn)x(p0 + pn) (2)

where pn represents an unknown enumeration listed in R.
In the operation of deformable convolution, a regular network is used to convolve and

sample the input feature map. The collection of sampled positions is shifted by combining
the offset with the predicted weight4mn for each sampling point. It can be represented as:

y(p0) = ∑
pn∈R

w(pn)x(p0 + pn +4pn)4mn (3)

where 4pn = 1, 2, . . . , N represents the offsets, pn +4pnis the sampling point after the
offset, and4pn is typically a fractional value that cannot accurately obtain the pixel value
of that position. Therefore, the pixel value of x can be calculated using bilinear interpolation
as follows:

g(a, b) = max(0, 1− |a− b|) (4)

G(q, p) = g(qx, px)× g(qy, py) (5)

x(p) = ∑
q

G(q, p)× x(q) (6)

where p = p0 + pn +4pn is the offset position, x(q) is the pixel value of the four known
neighboring pixels in the feature map, and G(·,·) represents the weights corresponding to
the four coordinates.

The traditional Cross-Stage Partial (CSP) module divides the feature map into two
branches to extract features and then merges them hierarchically, reducing computational
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complexity while maintaining accuracy. In the YOLOv5 network, there are two variants
of the CSP structure: CSP1_X and CSP2_X, as shown in Figure 5. The backbone network
employs the sequential connection of CSP1_X, which consists of four convolutional layers
and X residual modules, effectively reducing computational and memory overhead. On the
other hand, CSP2_X is used in the neck network with a parallel connection. The main
difference between CSP2_X and CSP1_X in the backbone network is that ordinary convolu-
tional modules replace residual modules in CSP2_X, enhancing feature fusion capability.
This paper focuses on improving the backbone network’s CSP1_X module by replacing
traditional convolution in its lower branch with deformable convolution, as depicted in
Figure 6. This modification ensures that the improved model can adaptively accomplish
target sampling with only a slight increase in computational complexity.

CBS CONV BN SiLU
Resunit CBS CBS add

CSP1_X ResunitCBS CONV

CONV

CONV

CONV

Concat CBS

CSP2_X CBS CBS

BN SiLUX

2*X

=
=
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Concat CBSBN SiLUBN

Figure 5. Traditional CSP module.

CSP1_X ResunitCBS CONV

Deformable 
conv 

Concat CBSBN SiLUX

=
BN

Figure 6. Improved CSP module.

2.1.2. Feature Network Improvements

Neck is commonly used in models for better feature fusion and image feature ex-
traction, reducing redundant information by reducing the dimension of feature maps
and enhancing feature representation capabilities by fusing features at different levels.
As shown in Figure 7a, an efficient PANet method is proposed and adopted for the first
time in YOLOv5, which proves the effectiveness of the bidirectional fusion scheme by
performing quadratic feature fusion from the bottom up. However, in this paper, BiFPN
achieves better results as a complex cross-level and cross-scale bidirectional fusion method,
as shown in Figure 7b. Due to the small number of individual type pixels of defect images
in the past dataset, the backbone network can effectively identify some shallow features
defects, and when it comes to difficult to identify defects, deeper features may produce a
large number of feature maps due to the complexity and depth of the network, containing
rich information but also containing some redundant or irrelevant information. Through
BiFPN, the information transfer and fusion between different levels of the feature pyramid
introduces more connections and backpropagation, which can better capture targets at
different scales.
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Figure 7. Feature network improvement.

In the feature network design, BiFPN changes the feature extraction and feature fusion
methods on the basis of PANet and adds upsampling between different levels to enable the
feature map to transmit and fuse information between different scales. This fusion method
is not a simple series or superposition, but an adaptive fusion weight calculation method,
which can automatically adjust the weight according to the resolution of the feature map
to improve the fusion effect. On top of PANet, if the original input feature and the output
feature are expressed at the same level, BiFPN does not add extra edges between them to
fuse more features and therefore does not add too much extra computation. In this paper,
BiFPN adjusts and optimizes the network by using the adaptive weighted fusion strategy
of fast normalization fusion.

Fast normalized fusion and softmax-based fusion share similar learning methods and
accuracy, as shown in the following equation:

O = ∑
i

wi
E + ∑j wj

Ii (7)

where wi is a learnable weight, wi > 0 is passed after the ReLU, and each normalization
weight is between 0 and 1.

As a specific example, the fusion of two features shown in the sixth layer of Figure 7b
can be described as follows:

ptd
6 = Conv(

w1Pin
6 + w2Resize(Pin

7 )

w1 + w2 + E
) (8)

pout
6 = Conv(

w′1Pin
6 + w′2Ptd

6 + w′3Resize(Pout
5 )

w′1 + w′2 + w′3 + E
) (9)

where Ptd
6 is the intermediate feature of level 6 in the up and down path, and Pout

6 is

the output feature of level 6 in the bottom-up path,
−→
pin = (pin

l , pin
l , . . . , pin

l ) ,
−→
pin repre-

sents the input multiscale feature list,
−→
pin represents the input feature of horizontal li ,

−→
pin = (ptd

l , ptd
l , . . . , ptd) represents the intermediate feature list on the path, and

−→
pin outputs

a new
−→
pout by aggregating a series of different characteristics.

2.1.3. Add Prediction Layer

One reason why YOLOv5 is not suitable for detecting small targets is that there are
fewer pixels representing features in small target samples, whereas YOLOv5 has a higher
downsampling factor. The dataset of substation equipment contains numerous very small
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targets, and as the deeper feature map gradually decreases in resolution, it leads to the
loss of detailed information about these small targets. Consequently, accurate detection
or classification becomes challenging. To address this issue, this paper introduces a small
target detection layer to prevent the loss of details on deep feature maps. Initially, YOLOv5
only performed feature prediction on the last three layers after feature fusion. However,
due to continuous downsampling causing small targets to lose their feature information,
the performance of small target detection was not satisfactory. Therefore, this experiment
adds a feature prediction layer along with the other three prediction layers. This four-
headed structure helps mitigate the negative impact caused by variations in object scale (as
depicted in Figure 2). Although adding this new prediction layer increases computational
and memory overheads by reducing the number of samples for small targets, it enhances
both resolution and learning capabilities for these smaller objects within the model.

3. Experiments and Analysis
3.1. Datasets

In this paper, we conduct equipment identification and defect detection for various
power equipment in substations. We use multiple datasets for experimental verification.
Part of the data is collected through self collection, while the other part comes from
public datasets such as “China Transmission Line Insulator Dataset (CPLID)”, “Substation
Dataset + with Annotation”, “Transformer Equipment Oil Leakage Data Set”, “Safety
Supervision Competition Question - Illegal Detection of Anti-high Fall at Typical Work
Sites of Power Grid”, and “Manhole Covers, Wire Poles, Electric Boxes, Marking Stones”.
In total, there are 15,745 images covering 35 types of equipment images and defect images.
These images can be used to train and test models.

In order to simulate the natural interference in the actual operation of power equip-
ment, this paper adopts the data enhancement method of blur, brightness change, and
atomization with a certain probability to expand the data of some images. For some cate-
gories with fewer defective images, this paper also uses normal images for compositing to
construct defective device images. Finally, a total of 13,200 substation equipment defect
datasets are constructed and divided into training set, test set, and verification set according
to 8:1:1.

3.2. Experimental Configuration and Model Training

This paper uses Pytorch as a deep learning framework to implement improved
YOLOv5 in Pytorch 1.8. In order to train the model in this paper, the NVIDIA RTX3060 GPU
is used for training and testing, and the corresponding Cuda and Cudnn environments are
installed at the same time to support GPU training and improve training efficiency and
inference speed.

This paper uses the approach of transfer learning. In the training phase, a partially
pre-trained model from YOLOv5 is used. By using these weights, we can save a lot of
training time. Then, based on this experiment, analysis is conducted and some parameters
are fine-tuned. The total number of iterations is 100 times. Some experimental parameter
values are shown in Table 1.

Table 1. Experimental parameter settings.

Name Parameter

learning rate 0.001
batch size 16

decay 0.0005
momentum 0.9

3.3. Experimental Indicators

In this experiment, three indexes were mainly used for accuracy: precision (P), recall (R)
and mean average precision (MAP).
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Where the precision rate P represents the ratio of the correctly predicted number of
positive samples to the actual total number of positive samples, and its calculation formula
is as follows:

Precision =
TP

TP + FP
(10)

The recall rate R represents the ratio of the correctly predicted number of positive
samples to the total actual number of positive samples, which is calculated as follows:

Recall =
TP

TP + FN
(11)

MAP is determined by plotting a P–R curve with precision P as the vertical axis and
recall R as the horizontal axis, and calculating the area under the curve (AP). The specific
calculation method is as follows: for each query of the target category, calculate the mean
accuracy AP in order from high to low according to the sorting results of the model,
and then average the AP values of all target categories to obtain MAP. The calculation
formula is as follows:

AP =
∫ 1

0
PdR (12)

mAP =
∑N

i=1 APi

N
(13)

where TP represents the number of classes that predict positive classes as correct, FP
represents the number of classes that predict negative classes as correct, FN represents the
number of correct classes predicted as negative classes, and N refers to the total number of
detected target classes.

The speed of model detection is evaluated using the FPS value, which refers to the num-
ber of frames transmitted per second in a video. The higher the frame rate, the smoother
the motion and consequently, the smoother the model detection operation [41,42].

3.4. Ablation Experiments

The performance of YOLOv5 is influenced by various factors in actual application
processes, including network architecture, training strategy, and data augmentation. To in-
vestigate the impact of these factors on YOLOv5’s performance, this paper conducts a series
of ablation experiments to systematically analyze different components of the algorithm.
The ablation experiments gradually modify the network architecture and training strategy
using the control variable method to evaluate their influence on detection performance.
Experiment 1: Assess the effectiveness of the proposed variable convolutional CSP module on
the original detection algorithm. Experiment 2: Evaluate the effectiveness of replacing PANet
with the BiFPN structure in the original detection algorithm. Experiment 3: Examine how
adding a detection layer affects performance improvement in the original detection algorithm.
After completing these experiments, it is necessary to analyze and explain how different
components affect inspection performance. Throughout this experiment’s training and testing
process, consistent configurations are used for accurate comparison as shown in Table 2.

Table 2. Comparison of ablation experiments.

CSP BiFPN Head Precision (%) Recall (%) mAP@0.5 (%)

YOLOv5 - - - 70.5% 65.2% 68.5%√
- - 74.4% 69.9% 70.1%

-
√

- 75.3% 70.8% 71.5%
- -

√
74.1% 68.2% 70.6%

pro-YOLOv5
√ √ √

76.8% 72.9% 73.1%
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In Table 2, row 1 shows the performance of the benchmark YOLOv5s detection al-
gorithm on the dataset in this paper, which shows that the average accuracy is 70.5%,
the recall rate is 65.2%, and the mAP@0.5 is 68.5%.

Experiment 1: Verify the impact of introducing variable convolutional CSP modules
on benchmark detection in backbone networks. This experiment uses two different net-
works: one using standard convolutional layers and one using variable convolutional
layers. In the second row of Table 2, the experimental results of the introduction of the
variable convolution module are shown, and it is found that the introduction of the vari-
able convolution CSP module improves the extraction ability of the network to target
features and the performance improvement is significantly compared with the original
algorithm, with the mAP@0.5 reaching 70.1%, an increase of 1.6%. Therefore, the variable
convolutional CSP module proposed in this paper has better performance than the original
detection algorithm, and the performance can be further improved by adding more variable
convolutional layers to the backbone network. However, when there are too many variable
convolutional layers, performance begins to degrade. Through the analysis, it was also
found that the use of variable convolution can increase the depth and width of the network
with a small amount of computation. In addition, the performance differences between
two networks using variable convolution and standard convolution are compared, and the
results show that under the same conditions, networks using variable convolution are
superior to networks using standard convolution.

Experiment 2: Verify the influence of replacing PANet with BiFPN structure on im-
proving model performance. The third row in Table 2 shows the experimental results of
replacing the original PANet with the BiFPN structure, which improves the model recall
to 70.8%, the accuracy to 75.3%, and the mAP@0.5 also improves to a small extent. Ex-
perimental results show that the use of BiFPN in YOLOv5 can significantly improve the
performance of small target detection. It is found that when using a large number of small
target datasets, the network using BiFPN can improve detection performance. In addition,
the performance differences between the two networks using PANet and using BiFPN are
compared, and the results show that the network using BiFPN is better than the network
using PANet under the same conditions.

Experiment 3: Verify the effect on model performance caused by an additional detec-
tion head to predict the effect of the position and size of smaller targets. Row 4 in Table 2
shows the performance of adding a detection head before pooling in small target detection,
and compared to the original algorithm, the recall rate is improved by 3%, the accuracy
is nearly 3.6%, and the mAP is increased to 70.6%. Further analysis found that due to the
addition of an additional detection head, the model was able to more accurately predict the
position and size of smaller targets, resulting in improved accuracy and recall. Secondly,
this paper also improves the recognition ability of the model for small targets by adjusting
the training data to make the model pay more attention to the recognition of small targets.

Experimental conclusion: In the test set, the performance of the original YOLOv5
model and the improved model in small target detection was compared, including average
accuracy, average recall, and mAP@0.5. The comparison results show that compared with
the original algorithm, the improved model performs better in the same dataset and the
same environment, with a recall increase of 7.7%, an accuracy improvement of nearly 6.3%,
and an average accuracy improvement of 4.6%. The improved model adopts the variable
convolutional CSP module and uses a simple and effective BiFPN structure to replace
PANet, which has a good improvement on the model performance. At the same time,
an additional detection head is added to predict the position and size of smaller targets,
which can improve the problem of missing detection of small targets.

4. Results and Analysis

Figure 8 shows an example of the experimental results. The four sets of images in the
figure demonstrate the outcomes obtained by utilizing YOLOv5 and enhanced YOLOv5 for
detecting substation equipment and its defects in different power equipment environments.
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These examples evaluate the effectiveness of the proposed algorithm in enhancing object
detection performance specifically for substation equipment scenarios.

Comparing the results in Figure 8, it is evident that in group A images, both algorithms
identify the oil pillow. However, due to pixel clarity issues, only the improved algorithm
in this paper successfully detects the meter on the oil pillow, while the original YOLOv5
algorithm fails to detect it. In group B images, the algorithm in this paper detects defective
insulators with inconspicuous features. In group C images, despite background complexity
and confusion between the nest and background, the original YOLOv5 algorithm detects
the insulator but not the nest, whereas the improved YOLOv5 algorithm successfully
detects both. In group D images, silica gel discoloration defects were missed by the original
YOLOv5 algorithm but accurately detected by our improved algorithm. Additionally,
for all detected targets, our improved algorithm achieved an average confidence of 0.797,
an improvement when compared to 0.748 for the original YOLOv5 algorithm. Therefore,
our proposed improved YOLOv5 algorithm outperforms its predecessor in detecting small
targets against complex backgrounds by reducing missed detections and false positives
while maintaining high detection confidence levels.

The most advanced detectors YOLOv8, YOLOv5, Faster R-CNN, RetinaNet, and
YOLOv3 was selected as a control algorithm for experimental analysis. Among them,
YOLOv8 was chosen as the latest model in the YOLO series. The improved YOLOv5
model was compared with it to verify the advancement of this model and demonstrate the
performance improvement effect compared to the original YOLOv5 model. The evaluation
criteria selected include accuracy, recall rate, mAP@0.5, and mAP@0.5:0.95 as mainstream
indicators. mAP@0.5 refers to the mAP at IOU set at a threshold of 0.5; mAP@0.5:0.95 is
obtained by averaging different threshold mAPs between 0.5 and 0.95 with a step size of
0.05. Table 3 shows the performance of the improved algorithm and mainstream algorithms
on our dataset in this paper.

Figure 8. Cont.
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Figure 8. Comparison of test results.

Table 3. Performance of improved algorithms and mainstream algorithms.

Algorithm Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95
(%)

Faster R-CNN 72.16 62.25 61.85 39.23
RetinaNet 68.43 60.26 61.85 39.23
YOLOv3 61.63 59.43 61.85 39.23
YOLOv4 66.28 60.45 58.56 37.12
YOLOv5 70.5 65.2 68.5 39.85
YOLOv8 77.5 66.1 72.3 40.21

pro-YOLOv5 76.8 72.9 73.1 42.97

As can be seen from Table 3, the proposed improved algorithm achieves 76.8% accu-
racy, 72.9% recall, 73.1% mAP@0.5 and 42.97% mAP@0.5:0.95, which is better than other
mainstream algorithms. Compared to the original YOLOv5 algorithm, the proposed algo-
rithm contributes improvements of 4.6% for mAP@0.5 and 3.12% for mAP@.5:0.95 and is
also better than the comparison algorithm in terms of detection accuracy and recall. This
shows that the proposed algorithm can effectively improve the object detection performance
on substation equipment defect dataset.

Using the bootstrap method, the average detection accuracy and average FPS of the
original YOLOv4, YOLOv5 models, YOLOv8 model, and improved YOLOv5 model were
evaluated to obtain Table 4.

Table 4. Bootstrap valuation evaluation model.

Algorithm Average Precision (%) Average FPS (%)

YOLOv4 65.4 53
YOLOv5 69.8 49
YOLOv8 76.5 46

pro-YOLOv5 76.9 48
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It can be seen that, compared to other contrast algorithm models, the improved
YOLOv5 model ensures both detection accuracy and FPS value.

Given that the improved YOLOv5 algorithm performs better than the original YOLOv5
algorithm in detecting small targets but considering the complex and diverse application
scenarios, we analyzed the performance of detecting different types of defects in different
application scenarios to verify the advantages and disadvantages of the improved YOLOv5
algorithm compared to the original algorithm.

According to the data in Figure 9, it can be concluded that the improved YOLOv5
algorithm performs better than the original YOLOv5 algorithm in detecting small targets
such as small components, rust spots, and oil leakage points. Additionally, it maintains a
similar FPS value to the original algorithm, ensuring detection efficiency.

Figure 9. Performance comparison of improved YOLOv5 and original YOLOv5 in different de-
fect scenarios.

Figure 10 shows a comparison of the mAP@0.5, mAP@0.5:0.95, precision, and recall of
the proposed improved YOLOv5 algorithm and YOLOv5. It can be seen from the figure
that all four models converge around 100 epochs, and when compared with YOLOv5,
the improved algorithm not only has a high detection accuracy but also has a high re-
call rate, which verifies the fast convergence and high recognition rate of the proposed
improved algorithm.

Figure 10. Comparison of the original YOLOv5 with the improved algorithm.

5. Conclusions

This paper presents an enhanced YOLOv5 algorithm for detecting faults in substation
equipment. It specifically addresses the challenge of accurately recognizing small targets in
complex substation scenes. The improved algorithm incorporates deformable convolution
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modules to dynamically adjust the scale and receptive field size of the target, thereby
meeting the requirements of multi-scene object detection. Additionally, it utilizes a simple
and effective BiFPN structure in the network’s neck section to achieve dynamic weighted
multi-level feature fusion, effectively addressing feature fusion challenges at various levels.
Furthermore, a small target detection layer is introduced to handle shallow feature maps.
Experimental results demonstrate that this improved algorithm significantly enhances
detection performance for small targets and complex scenes encountered in substation
scenarios. Future research directions may involve expanding datasets, including samples
with minor defects, and enhancing the model’s ability to recognize such defects. Moreover,
further optimization can be pursued to improve detection speed and facilitate its application
on mobile devices.

Author Contributions: Conceptualization, Y.W.; Methodology, Y.W. and F.X.; Validation, F.X. and
Y.S.; Resources, X.D. and C.Z.; Data curation, F.X. and F.L.; Writing—original draft, F.X. and F.L.;
Writing—review & editing, Y.W., X.D., L.L. and C.Z.; Visualization, F.X. and Y.S.; Supervision, Y.W.;
Funding acquisition, Y.W., F.X. and L.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the National Key R&D Program of China under Grant
no. 2022YFE010300, in part by the Natural Science Foundation of Hunan Province under Grant no.
2021JJ50050, in part by the Scientific Research Fund of Hunan Provincial Education Department under
Grant no. 22A0422 and in part by the Hunan Provincial Innovation Foundation For Postgraduate
under Grant no. CX20220835.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cong, S.; Pu, H.; Yao, F. Review on Application of Infrared Detection Technology in State Detection of Electrical Equipment. In

Proceedings of the 16th Annual Conference of China Electrotechnical Society, Beijing, China, 24–26 September 2021; Springer:
Singapore, 2022; Volume II, pp. 1254–1261.

2. Dongxu, L.; Li, W.; Jinxuan, L.; Shaoyu, X.; Long, W.; Wenwang, X. Design and Research of Intelligent Operation Inspection and
Monitoring System of Substation Based on Image Recognition Technology. In Proceedings of the 2022 2nd Asia-Pacific Conference
on Communications Technology and Computer Science (ACCTCS), Shenyang, China, 25–27 February 2022; pp. 448–453.

3. Bashkari, M.S.; Sami, A.; Rastegar, M. Outage cause detection in power distribution systems based on data mining. IEEE Trans.
Ind. Inform. 2020, 17, 640–649. [CrossRef]

4. Jia, Y.; Ying, L.; Wang, D.; Zhang, J. Defect prediction of relay protection systems based on LSSVM-BNDT. IEEE Trans. Ind. Inform.
2020, 17, 710–719. [CrossRef]

5. Bin, C. Research on Intelligent Reconfiguration and Recognition Technology of Mobile Environment for Substation Operation. In
Advancements in Mechatronics and Intelligent Robotics; Springer: Singapore, 2021; pp. 125–131.

6. Le, N.; Rathour, V.S.; Yamazaki, K.; Luu, K.; Savvides, M. Deep reinforcement learning in computer vision: A comprehensive
survey. Artif. Intell. Rev. 2022, 55, 2733–2819. [CrossRef]

7. Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric.
2020, 7, 1–19. [CrossRef]

8. Li, Y.; Zhang, Y. Application research of computer vision technology in automation. In Proceedings of the 2020 International
Conference on Computer Information and Big Data Applications (CIBDA), Guiyang, China, 17–19 April 2020; pp. 374–377.

9. Chandra, M.A.; Bedi, S. Survey on SVM and their application in image classification. Int. J. Inf. Technol. 2021, 13, 1–11. [CrossRef]
10. Rao, Y.; Zhao, W.; Zhu, Z.; Lu, J.; Zhou, J. Global filter networks for image classification. Adv. Neural Inf. Process. Syst. 2021,

34, 980–993.
11. Hernández, G.; Rodríguez, S.; González, A.; Corchado, J.M.; Prieto, J. Video analysis system using deep learning algorithms.

In Ambient Intelligence—Software and Applications, Proceedings of the 11th International Symposium on Ambient Intelligence, Cham,
Switzerland, L’Aquila, Italy, 17–19 June 2020; Springer: Cham, Switzerland, 2021; pp. 186–199.

12. Wang, T.; Zhang, Z.; Tsui, K.L. A deep generative approach for rail foreign object detections via semisupervised learning. IEEE
Trans. Ind. Inform. 2022, 19, 459–468. [CrossRef]

http://doi.org/10.1109/TII.2020.2966505
http://dx.doi.org/10.1109/TII.2020.2990962
http://dx.doi.org/10.1007/s10462-021-10061-9
http://dx.doi.org/10.1016/j.inpa.2019.09.006
http://dx.doi.org/10.1007/s41870-017-0080-1
http://dx.doi.org/10.1109/TII.2022.3149931


Appl. Sci. 2023, 13, 11785 16 of 17

13. Ye, C.; Zhang, N.; Peng, L.; Tao, Y. Flexible array probe with in-plane differential multichannels for inspection of microdefects on
curved surface. IEEE Trans. Ind. Electron. 2021, 69, 900–910. [CrossRef]

14. Chu, Y.; Feng, D.; Liu, Z.; Zhao, Z.; Wang, Z.; Xia, X.G.; Quek, T.Q. Hybrid-Learning-Based Operational Visual Quality Inspection
for Edge-Computing-Enabled IoT System. IEEE Internet Things J. 2021, 9, 4958–4972. [CrossRef]

15. Shang, H.; Wu, J.; Sun, C.; Liu, J.; Chen, X.; Yan, R. Global prior transformer network in intelligent borescope inspection for
surface damage detection of aero-engine blade. IEEE Trans. Ind. Inform. 2022, 19, 8865–8877. [CrossRef]

16. Minh, Q.N.; Nguyen, V.H.; Quy, V.K.; Ngoc, L.A.; Chehri, A.; Jeon, G. Edge Computing for IoT-Enabled Smart Grid: The Future
of Energy. Energies 2022, 15, 6140. [CrossRef]

17. Song, C.; Xu, W.; Han, G.; Zeng, P.; Wang, Z.; Yu, S. A cloud edge collaborative intelligence method of insulator string defect
detection for power IIoT. IEEE Internet Things J. 2020, 8, 7510–7520. [CrossRef]

18. Zhou, X.; Wang, Y.; Zhu, Q.; Mao, J.; Xiao, C.; Lu, X.; Zhang, H. A surface defect detection framework for glass bottle bottom
using visual attention model and wavelet transform. IEEE Trans. Ind. Inform. 2019, 16, 2189–2201. [CrossRef]

19. Ni, X.; Liu, H.; Ma, Z.; Wang, C.; Liu, J. Detection for rail surface defects via partitioned edge feature. IEEE Trans. Intell. Transp.
Syst. 2021, 23, 5806–5822. [CrossRef]

20. Wen, L.; Wang, Y.; Li, X. A new cycle-consistent adversarial networks with attention mechanism for surface defect classification
with small samples. IEEE Trans. Ind. Inform. 2022, 18, 8988–8998. [CrossRef]

21. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A convolutional neural network for modelling sentences. arXiv 2014,
arXiv:1404.2188.

22. Xu, Y.; Fu, M.; Wang, Q.; Wang, Y.; Chen, K.; Xia, G.S.; Bai, X. Gliding vertex on the horizontal bounding box for multi-oriented
object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 1452–1459. [CrossRef]

23. Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing geometric factors in model learning and inference for
object detection and instance segmentation. IEEE Trans. Cybern. 2021, 52, 8574–8586. [CrossRef]

24. Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: A simple and strong anchor-free object detector. IEEE Trans. Pattern Anal. Mach. Intell.
2020, 44, 1922–1933. [CrossRef]

25. Lei, X.; Sui, Z. Intelligent fault detection of high voltage line based on the Faster R-CNN. Measurement 2019, 138, 379–385.
[CrossRef]

26. Jiang, A.; Yan, N.; Wang, F.; Huang, H.; Zhu, H.; Wei, B. Visible image recognition of power transformer equipment based
on mask R-CNN. In Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 21–23
November 2019; pp. 657–661.

27. Liu, Z.; Fu, H.; Li, Y.; Zhang, G.; Hu, C.; Zhang, G. Electrical Equipment Detection in Infrared Images Based on Transfer Learning
of Mask-RCNN. J. Data Acquis. Process. 2021, 36, 176–183.

28. Yin, Z.; Meng, R.; Fan, X.; Li, B.; Zhao, Z. Typical visual defect detection system of substation equipment based on edge computing
and improved Faster R-CNN. China Sci. 2021, 16, 343–348.

29. Ou, J.; Wang, J.; Xue, J.; Wang, J.; Zhou, X.; She, L.; Fan, Y. Infrared image target detection of substation electrical equipment
using an improved faster R-CNN. IEEE Trans. Power Deliv. 2022, 38, 387–396. [CrossRef]

30. Zhang, M.; Yin, L. Solar cell surface defect detection based on improved YOLO v5. IEEE Access 2022, 10, 80804–80815. [CrossRef]
31. Guo, Z.; Wang, C.; Yang, G.; Huang, Z.; Li, G. Msft-yolo: Improved yolov5 based on transformer for detecting defects of steel

surface. Sensors 2022, 22, 3467. [CrossRef]
32. Yang, R.; Li, W.; Shang, X.; Zhu, D.; Man, X. KPE-YOLOv5: An Improved Small Target Detection Algorithm Based on YOLOv5.

Electronics 2023, 12, 817. [CrossRef]
33. Wang, Y.; Zhang, X.; Li, L.; Wang, L.; Zhou, Z.; Zhang, P. An Improved YOLOv7 Model Based on Visual Attention Fusion:

Application to the Recognition of Bouncing Locks in Substation Power Cabinets. Appl. Sci. 2023, 13, 6817. [CrossRef]
34. Hsu, W.Y.; Lin, W.Y. Ratio-and-scale-aware YOLO for pedestrian detection. IEEE Trans. Image Process. 2020, 30, 934–947.

[CrossRef] [PubMed]
35. Xuhong, W.; Hao, L.; Shaosheng, F.; Zhipeng, J. Infrared image anomaly automatic detection method for power equipment based

on improved single shot multi box detection. Trans. China Electrotech. Soc. 2020, 35, 302–310.
36. Cheng, Y. Detection of power line insulator based on enhanced Yolo Model. In Proceedings of the 2022 IEEE Asia-Pacific

Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, 14–16 April 2022; pp. 626–632.
37. Hu, X.; Zhou, Y. Insulator defect detection in power inspection image using focal loss based on YOLO v4. In Proceedings of

the International Conference on Artificial Intelligence, Virtual Reality, and Visualization (AIVRV 2021), Sanya, China, 19–21
November 2021; Volume 12153, pp. 90–95.

38. Zheng, H.; Li, J.; Liu, Y.; Cui, Y.; Ping, Y. Infrared Target Detection Model for Power Equipment Based on Improved YOLOv3.
Trans. China Electrotech. Soc. 2021, 36, 1389–1398.

39. Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection
on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC,
Canada, 11–17 October 2021; pp. 2778–2788.

40. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–27 October 2017; pp. 764–773.

http://dx.doi.org/10.1109/TIE.2021.3050376
http://dx.doi.org/10.1109/JIOT.2021.3107902
http://dx.doi.org/10.1109/TII.2022.3222300
http://dx.doi.org/10.3390/en15176140
http://dx.doi.org/10.1109/JIOT.2020.3039226
http://dx.doi.org/10.1109/TII.2019.2935153
http://dx.doi.org/10.1109/TITS.2021.3058635
http://dx.doi.org/10.1109/TII.2022.3168432
http://dx.doi.org/10.1109/TPAMI.2020.2974745
http://dx.doi.org/10.1109/TCYB.2021.3095305
http://dx.doi.org/10.1109/TPAMI.2020.3032166
http://dx.doi.org/10.1016/j.measurement.2019.01.072
http://dx.doi.org/10.1109/TPWRD.2022.3191694
http://dx.doi.org/10.1109/ACCESS.2022.3195901
http://dx.doi.org/10.3390/s22093467
http://dx.doi.org/10.3390/electronics12040817
http://dx.doi.org/10.3390/app13116817
http://dx.doi.org/10.1109/TIP.2020.3039574
http://www.ncbi.nlm.nih.gov/pubmed/33242306


Appl. Sci. 2023, 13, 11785 17 of 17

41. Heda, L.; Sahare, P. Performance Evaluation of YOLOv3, YOLOv4 and YOLOv5 for Real-Time Human Detection. In Proceedings
of the 2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and
Signal Processing (PCEMS), Nagpur, India, 5–6 April 2023; pp. 1–6.

42. Saxena, A. Optimized fractional overhead power term polynomial grey model (OFOPGM) for market clearing price prediction.
Electr. Power Syst. Res. 2023, 214, 108800. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.epsr.2022.108800

	Introduction
	Framework
	YOLOv5 Algorithm Improvements
	Fusion-Deformable Convolutional Modules
	Feature Network Improvements
	Add Prediction Layer


	Experiments and Analysis
	Datasets
	Experimental Configuration and Model Training
	Experimental Indicators
	Ablation Experiments

	Results and Analysis
	Conclusions
	References

