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Abstract: When the carrier of the Satcom-on-the-Move (SOTM) antenna is in a high maneuvering state
of motion, the accuracy of the array antenna beam pointing towards the satellite may decrease, which
may cause a decline in communication effectiveness for SOTM or even cause the antenna to deviate
from the target satellite and lead to communication interruption. This paper proposes a multi-beam
searching and capturing method for SOTM array antennas, which divides the array antenna into
multiple parts to form multiple independent and controllable sub-beams. When the SOTM carrier is in
a high maneuvering state of motion, multiple sub-beams are obtained by dividing the array antenna,
thus obtaining multiple points in the radiation pattern. We designed an optimal pointing analyzer,
which calculates the SOTM array antenna beam direction based on whether the SOTM antenna
is pointing towards the satellite and utilizes different approaches for processing. Experimental
verification was conducted for the proposed scheme. The experimental results show that if the
antenna beam does not lose the satellite, the proposed scheme can obtain better communication
quality compared to conventional schemes. If the SOTM antenna beam loses the satellite and
causes communication interruption, the proposed scheme in this paper can capture the satellite
faster than conventional schemes. The experimental results demonstrate the effectiveness of the
proposed scheme.

Keywords: satellite communication; array antenna; multi-beam; SOTM; high maneuvering

1. Introduction

Satcom-on-the-Move (SOTM) refers to the installation of satellite signal antennas on
moving carriers, which can control the direction of the antenna to align with the commu-
nication satellite in real-time during the movement of the SOTM carrier, thus achieving a
stable transmission link between the satellite and SOTM [1–4]. With the development of
technology, satellite communication is becoming increasingly widespread [5–8]. Currently,
the application of array antennas in SOTM systems is a very important development di-
rection [9–11]. Array antennas in SOTM systems are generally used on moving carriers
with high height restrictions, including civilian vehicles, unmanned aerial vehicles (UAV),
commercial aircraft, etc. [12–15]. Multi-beam array antennas have achieved significant
research results in radar and conventional satellite communication fields [16,17], but their
application in SOTM is still in the early stages, and there is currently limited research in
this area.

The current systems that use array antennas generally employ a combination of
electronic beam steering and mechanical tracking control methods [18]. Ref. [19] designed
a stepper motor servo control system based on the analysis of the SOTM servo control
system and proposed a speed-position dual-closed-loop PID controller with disturbance
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compensation. In Ref. [20], a modeling method for a three-axis SOTM antenna based on a
novel modified Denavit–Hartenberg method was investigated, which addresses the gimbal
lock issue by adding a roll axis in addition to the conventional azimuth and elevation
axes. Ref. [21] designed an Active Disturbance Rejection Controller based on particle
swarm optimization to overcome the issues of response speed and accuracy for the SOTM
antenna servo control system. Ref. [22] designed a Ku-band SOTM structure that included
multiple distributed panels capable of mechanical oscillation and presented a new pseudo-
monopulse tracking method. The SOTM systems utilize Global Navigation Satellite Systems
(GNSS), compasses, and inertial navigation systems to measure the position and attitude of
the carrier, automatically adjusting the azimuth angle and elevation angle of the antenna
beam to align with the target communication satellite. The application of the SOTM systems
is becoming increasingly widespread [23,24], and their operating conditions are becoming
more complex, as they are unknown and dynamically changing [25]. Due to the carrier’s
motion, its location and attitude are constantly changing [26], and current methods can meet
the satellite tracking requirements of array carriers in general motion states. However, when
the carrier’s attitude changes beyond certain conditions, from reference [27], this condition
is generally described as angular velocityω > 30◦/s, or angular acceleration α > 40◦/s2,
conventional methods may cause a decline in the communication effectiveness of the SOTM
system and even cause the antenna to lose the tracking of the satellite and interrupt the
communication. After the antenna loses the communication satellite, reacquisition relies
on the antenna beam scanning and mechanical tracking system azimuth and elevation
axis movements, which increases the time it takes to reacquire the satellite. Currently,
research on the high maneuverability of carriers mainly focuses on the estimation of carrier
attitude and location [28–33], and research on array antenna tracking satellites under a high
maneuvering state is limited.

The contributions of this paper are as follows: Uninterrupted satellite communication
is essential in various applications, such as military and emergency communication. To
maintain the high communication quality of SOTM systems while the carrier is in a high
maneuvering state of motion, we propose a fast multiple-beam reacquisition scheme for
array antennas. After the antenna experiences a loss of the satellite, it first performs
preliminary signal recognition, then divides the array antenna into multiple beams for
measurement, obtaining multiple points in the directional diagram and the energy level of
each beam’s main lobe. Combining the directional diagram, the optimal or sub-optimal
beam direction can be quickly calculated to improve the speed of capturing satellites
for array antennas. Our research improved communication quality, shortened the time
required for the SOTM antenna to reacquire the satellite, and enhanced the reliability of the
SOTM systems, offering a practical solution to maintain communication effectiveness in a
high maneuvering state.

The remainder of this paper is organized as follows.
Section 2 introduces SOTM and its servo control system, as well as the directivity

of array antenna beams. Section 3 presents a design method for multi-beam fast satellite
seeking and acquisition. Section 4 verifies the effectiveness of the designed method through
experiments. Section 5 is the final section of this paper, which provides the summary
and conclusion.

2. Overview of the SOTM System
2.1. Principle of Satellite Tracking for SOTM Antennas

Currently, the majority of SOTM systems utilize conventional parabolic antennas.
However, these antennas have several drawbacks, including large physical dimensions,
low wind resistance, mechanical inertia during scanning, and slow tracking speed. As a
result, they suffer from compromised communication reliability and security.

Compared to the parabolic antenna, the array antenna is a new high-tech satellite
antenna. The array antenna is generally not indivisible but consists of multiple antenna
elements, each of which can form a similar and non-directional antenna pattern. Although
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the gain of each individual antenna element in the array antenna is low, the collective
effect of numerous well-designed and properly arranged elements results in a relatively
high gain for the array antenna. Therefore, the array antenna meets the requirements of
satellite communication systems. The phase between the signals of each antenna element
in the array antenna can be adjusted, enabling the beam direction of the overall array
antenna to be adjusted without the need for a mechanical system. The array antenna
has the advantages of low delay in directional adjustment, high system capacity, strong
anti-interference ability, and being lightweight.

Figure 1 illustrates the communication link structure of the SOTM system. The satellite
ground station remains in a stationary state relative to the Earth’s surface. It establishes
wired communication links with the Internet Service Provider (ISP), command center, etc.
Simultaneously, it establishes wireless communication links with communication satellites.
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Figure 1. Overview of the communication link of the SOTM.

The SOTM antenna is installed on a moving carrier, its location remains relatively
stationary with respect to the moving carrier, and the communication link is established
through wireless means. Network devices, such as modems and routers, primarily handle
tasks such as data forwarding. They typically establish communication links with the
SOTM system through cables. Additionally, they establish links with user terminal devices
such as closed-circuit television (CCTV), personal computers (PC), smartphones (SP), etc.,
through cables or wireless communication; this enables the establishment of a complete
communication link between the user’s terminal devices and entities such as the ISP and
command center.

The carrier’s movement requires the SOTM antenna to continuously align with the
communication satellite, ensuring a stable communication link. Figure 2 depicts the
structure of the SOTM system’s servo control system. Because the carrier may be in a
moving state, the location and attitude of the carrier may change.

The SOTM system attitude calculation processor calculates the real-time attitude of the
carrier through the fusion of the gyroscope, accelerometer, GNSS, and electronic compass.
The SOTM main controller calculates the direction of the antenna beam based on the
longitude, latitude, and altitude of the communication satellite, as well as the location and
attitude of the carrier. The main controller adjusts the array antenna beam’s azimuth and
elevation in real-time to track the communication satellite.
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Figure 2. The servo control system of the SOTM.

2.2. Directionality of the Array Antenna Beam

The array antenna contains multiple elements, which are generally uniformly arranged.
Figure 3 shows a schematic diagram of an N-element linear array.
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Figure 3. Multi-linear array elements.

In Figure 3, multiple linear array elements are uniformly arranged along the y-axis.
Assuming the elements’ quantity is N and the distance between two elements is d, as the
array factor is rotationally symmetric with respect to the y-axis, we only need to research
the array factor in any plane passing through the y-axis. For example, by studying the
plane with ϕ = 90◦, which is referred to as the Γ plane, we can obtain the array factor of
the Γ plane.

S = ∑N
n=1 Inej(nkdsin θ−ϕn), (1)

where Ine−jϕn is the excitation current of each element.
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3. Multi-Beam Fast Tracking and Satellite Capture Method
3.1. Overall Scheme of Multi-Beam

According to the multi-beam array antenna’s characteristics, the array antenna is
divided into multiple sections. When the moving carrier is in a normal state, the entire
array antenna runs as a whole and completes stable tracking of the communication satellite
through methods such as conical scanning. When the carrier is in a high maneuvering
moving state, the SOTM array antenna is divided into multiple beams in order to prevent
the antenna beam from losing track of the communication satellite. Each beam should
be pointed to multiple locations near the current position. Then, through demodulation
analysis and combining the energy distribution characteristics of the main lobe of the array
antenna, the accurate antenna pointing direction can be quickly determined.

The previous section introduced the directivity of array antennas. This section uses
the graphical representation of array antenna directivity, i.e., the directional pattern, to
design a method for fast-tracking satellites by array antennas under a high maneuvering
state. Figures 4 and 5 show the wide-angle directional pattern and the main lobe beam
directional pattern, respectively.
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After dividing the entire array antenna into multiple beams by block, the main lobes of
each beam become “fatter,” resulting in a larger beam coverage for the array antenna. When
the SOTM carrier’s high maneuvering moving characteristics cause significant deviation
in the tracking direction of the array antenna beam, if the array antenna works as a single
beam due to its narrow beam, the satellite may deviate from the beam range of the array
antenna due to the beam center being too far away from the communication satellite,
leading to the loss of tracking the communication satellite by the array antenna. At this
time, multiple “fatter” beams can scan simultaneously, resulting in an expansion of the
beam scanning coverage range; this significantly increases the probability of the satellite
being within the beam coverage range. Based on this, the rapid tracking scheme of this
paper is designed.

The division of the array antenna into four beams is used as an example to illustrate
the method of this paper. Assume that Figure 6 represents the entire SOTM array an-
tenna, where the black squares represent the elements. The number of black squares does
not represent the specific number of elements in the array antenna; it is for illustration
purposes only.
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Figure 6. Sketch of the SOTM array antenna.

The array antenna is divided into four sub-blocks, each of which can form an indepen-
dent beam, as shown in the schematic diagram in Figure 7. It is necessary for the number of
elements in each sub-block to be equal. In this way, each beam will point to a location close
to the direction of the SOTM array antenna when it runs as a single beam; this corresponds
to four points on the directional pattern, and the schematic diagram for multi-beam taking
points on the directional pattern is shown in Figure 8, in which, the black dots represent
the pointing values of the 4 sub-beams, while the blue dot represents the theoretical target
pointing value of the beam when the array antenna is running as a whole.
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After achieving different pointing directions for each sub-beam in the multi-beam
setup, carrier analysis is performed on each sub-beam and, combined with the energy
distribution characteristics of the array antenna’s main lobe, the coordinate values of each
sub-beam pointing direction in the directional pattern shown in Figure 8 are calculated
separately.
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Figure 9 shows a schematic diagram of the design proposal. Each sub-beam is pro-
cessed through its own synthesis network, and the processed data is sent to its own
detection component. The detection component performs beam pointing and energy char-
acteristic analysis on each sub-beam and sends the analyzed sub-beam pointing position
coordinate values in the directional pattern to the optimal pointing analyzer. The optimal
pointing analyzer analyzes and calculates an optimized array of antenna pointing informa-
tion, which includes azimuth and elevation angles. This analysis is based on the coordinate
values of the sub-beam pointing directions in the directional pattern.
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3.2. A Multi-Beam Scheme for Antenna Non-Loss of Satellite

The workflow of the optimal pointing analyzer is analyzed below. The optimal
pointing analyzer has different workflows for two different states of the SOTM system
when the carrier is in a high maneuvering moving state. The first scenario is when the
carrier is in a high maneuvering moving state, but the antenna beam is still capable of
tracking the communication satellite, albeit with a reduced communication quality. The
other scenario is when the SOTM antenna fails to maintain track of the satellite due to the
high maneuvering state of the carrier, resulting in communication interruption.

For the first state of the SOTM system, as the communication has not been interrupted,
the direction of the SOTM antenna beam is relatively close to the location of the satellite.
Firstly, the array antenna is divided into four sub-beams, and the optimal pointing analyzer
obtains the coordinate values of the four sub-beam pointing positions in the directional
pattern for the four detection devices. As shown in Figure 10, the four beam-pointing
positions in the figure are A, B, C, and D, with coordinates (Aa, Ea), (Ab, Eb), (Ac, Ec),
and (Ad, Ed), respectively. Here, Ax represents the azimuth coordinate of beam X in the
directional pattern, which is the azimuth angle of beam X; Ex represents the elevation
coordinate of beam X in the directional pattern, which is the elevation angle of beam X.
Point E is located at the center of beams A, B, C, and D in the directional diagram. As the
pointing direction of the SOTM antenna is relatively close to the location of the satellite in
the current SOTM state and the sub-beams are widened, the point corresponding to the
satellite in the directional pattern will be within the range formed by connecting points A,
B, C, and D. Additionally, point E will be relatively close to the point corresponding to the
satellite in the directional pattern. Therefore, point E is used as the target pointing direction
of the array antenna. The coordinates of point E can be easily obtained. When the error
in obtaining the coordinates of points A, B, C, and D is not considered, the coordinates of
point E are: {

Ae =
Ac+Ad

2
Ee =

Ea+Eb
2

, (2)
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However, for the actual system running in the directional pattern, there will always
be errors in the coordinate values of points A, B, C, and D. To improve the accuracy of
the location coordinate values of point E, the coordinate values of point E are obtained
as follows:
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{
Ae =

Ac+Ad+Aa+Ab
4

Ee =
Ea+Eb+Ec+Ed

4
, (3)

After obtaining point E’s coordinate values in the directional pattern, the array antenna
runs as a whole and uses single-beam alignment to obtain the increment of the azimuth and
elevation angle values of point E relative to point C (or D) and point A (or B), respectively.

Considering the time-consuming nature of the array antenna’s electronic beam control,
which operates at the millisecond level, the slight decrease in communication rate caused by
the multi-beam searching process for antenna pointing can be disregarded due to its short
duration. Therefore, in this multi-beam searching scheme for antenna pointing, the array
antenna obtains multiple sub-beams through division and communicates as a whole, which
can be regarded as parallel in macroscopic time and will not affect the normal operation of
communication.

3.3. The Multi-Beam Scheme for Antenna Loss of Satellite

For the second stage of the SOTM system, when the SOTM antenna loses satellite
connection, it is likely that the midpoint of the directional pattern is not within the range
formed by connecting points A, B, C, and D in Figure 10. In this case, calculations need
to be performed. Here, we take the azimuth angle as an example to illustrate. First, the
azimuth directional pattern of the main lobe is given, as shown in Figure 11.
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First, take the two points in the directional pattern of the four beams with the largest
difference in azimuth angle. Assume that these two points are points C and D, with
coordinates (Ac, Ec) and (Ad, Ed), respectively. The signal energy values of these two
points are Pc and Pd, respectively. Based on the numerical relationship between Ac and Ad
and the signal energy values of the two points, the coordinates of points C and D in the
azimuth pattern of the main lobe can be determined. When Ac < Ad and Pc > Pd, points
C and D are located to the left of azimuth 0◦; otherwise, they are located to the right of
azimuth 0◦.

Figure 12 is a schematic diagram for calculating the azimuth of the main lobe. The
energy values of points C and D, denoted as Pc and Pd, respectively, have been obtained.
Since the angle is a relative value based on the energy values of C and D, as well as the
formula of the azimuth directional curve of the main lobe, the coordinates Ac and Ad of
points C and D in the azimuth directional curve of the main lobe can be obtained, which
represents the difference between points C and D and the highest point (i.e., the satellite
direction) of the curve. The array antenna adjusts its azimuth angle deviation from point C
by an angle Ac or from point D by an angle Ad, depending on which point is used as the
reference. The same method can be used to obtain the required elevation angle adjustment
for the antenna.
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Although the equation of the curve is known, it contains many nonlinear components,
including logarithmic functions, exponential functions, trigonometric functions, and in-
verse trigonometric functions. From a mathematical point of view, this processing process is
relatively simple and does not require much discussion. However, from the perspective of
engineering practice, the processing of these functions poses a great challenge to micropro-
cessors. The processing process will consume much time and require high computational
and storage performance of microprocessors. Therefore, a piecewise linearization method
is adopted here to segmentally linearize the above functions, which greatly reduces the
difficulty of microprocessor processing.

Figure 13 shows a schematic diagram of the piecewise linearization method for the
azimuth directional curve of the main lobe. The black dots in the figure represent several
points taken along the curve. These points are then connected by straight lines to form the
red line segments denoted as a, b, . . ., i in Figure 13. The equation of each straight line is
calculated as follows: 

f (a) = ρax + σa
f (b) = ρbx + σb

...
f (i) = ρix + σi

(4)
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By storing the parameters of each straight line and the coordinate values at the end-
points on the local storage of the microprocessor, real-time data processing can be performed
for this solution. It should be noted that the closer to the center point O, the more accurate
the pointing needs to be, and the higher the requirement for the accuracy of the data. Hence,
as we approach point O, the line segments become shorter, and the endpoints become more
densely distributed.

4. Experiment

To verify the actual performance of the multi-beam method designed in this paper,
experiments are conducted in this section for validation. Figure 14 shows the array antenna
used in this experiment. The antenna used in this experiment is a Ku-band multi-beam array
antenna developed by SATPRO M&C Tech Co., Ltd. (Xi’an, China). The working frequency
range of the antenna is 13.7–14.5 GHz. The typical value for the pointing switching time is
0.3 ms. The azimuth scanning range is 0–360◦, and the elevation scanning range is 15–90◦.
It uses the SPI-RS422 control protocol.
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Figure 14. The SOTM array antenna in the experiment.

Figure 15 shows the experimental site. Location: SATPRO M&C Tech Co., Ltd.,
Weiyang District, Xi’an, China. Time: 4 August 2022. Weather: Cloudy, 35 ◦C. Communica-
tion Satellite: YATAI 6D Geosynchronous Satellite. The yaw range of the swing platform
was −15◦~15◦. The pitch range of the swing platform was −15◦~15◦. The toll range of the
swing platform was −15◦~15◦.
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Figure 15. Experiment site.

The angles of the yaw, pitch, and roll of the swing platform run in a sinusoidal manner
with a period of 3 s; the maximum angular velocity is 31.4159◦/s, and the maximum angular
acceleration is 65.7974◦/s2. From reference [27], when the maximum angular velocity is
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greater than 30◦/s or the maximum angular acceleration is greater than 40◦/s2, the swing
platform may be in a high maneuvering state during the experiment.

To fully validate the design scheme of this paper, the experiment is divided into the
following two experiments:

Experiment 1: No satellite loss occurred in the SOTM antenna

In this experiment, the carrier was in a high maneuvering moving state, the SOTM
antenna did not lose track of the satellite, and the SOTM communication system ran
normally. The conventional single-beam tracking method (referred to as the conventional
method in this paper) and the multi-beam method proposed in this paper are compared
and tested.

Figure 16 illustrates the real-time Automatic Gain Control (AGC) level of the SOTM
system when using the multi-beam fast-tracking scheme with the SOTM array antenna
designed in this paper, while Figure 17 illustrates the real-time AGC level of the SOTM
system when using the conventional scheme. From the perspective of the real-time AGC
level of the SOTM antenna, it can be concluded that when the SOTM antenna remains
connected to the satellite, even during the high maneuvering motion of the carrier, there
is minimal disparity in communication quality between the two approaches. This result
indicates that the multi-beam fast-tracking scheme proposed in this paper does not result
in worse communication effects than the conventional scheme.
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Figure 16. AGC of the multi-beam method in Experiment 1.

Figure 18 illustrates the real-time signal quality of the SOTM system when using the
multi-beam fast-tracking scheme with the SOTM array antenna designed in this paper,
while Figure 19 illustrates the real-time signal quality of the SOTM system when using the
conventional scheme. From the perspective of the real-time signal quality of the SOTM
system, it can be concluded that when the SOTM antenna remains connected to the satellite,
despite the high maneuvering motion of the carrier, the approach introduced in this paper
can attain superior communication quality compared to the conventional scheme; this
indicates that the multi-beam fast-tracking scheme proposed in this paper outperforms the
conventional scheme.
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Figure 17. AGC of the conventional method in Experiment 1.
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Figure 18. Signal quality of the multi-beam method in Experiment 1.

Figure 20 illustrates the real-time Signal-to-Noise Ratio (SNR) value of the SOTM
system when using the multi-beam fast-tracking scheme with the SOTM array antenna
designed in this paper, while Figure 21 illustrates the real-time SNR value of the SOTM
system when using the conventional scheme. From the perspective of the real-time SNR of
the SOTM system, it can be concluded that when the SOTM antenna remains connected
to the satellite despite the high maneuvering state of the carrier, the proposed scheme in
this paper can achieve better communication quality than the conventional scheme, with
relatively high SNR and small fluctuations; this indicates that the multi-beam fast-tracking
scheme proposed in this paper outperforms the conventional scheme.

From the results of Experiment 1, it could be concluded that when the carrier is in a
high maneuvering moving state, and the SOTM system does not experience communication
interruption, the multi-beam tracking scheme designed in this paper is superior to the
conventional method. As for the real-time AGC level value, the results of the two schemes
are close because the AGC level data retains two decimal places, and the real-time AGC
level changes less when the SOTM system communication is normal.
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Figure 19. Signal quality of the conventional method in Experiment 1.
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Experiment 2: SOTM antenna experiences satellite loss

In this experiment, physical obstruction was given to the SOTM antenna during its
operation, causing the SOTM antenna to experience satellite loss. It should be noted that
this physical obstruction was artificially given, and the time of the obstruction could not be
accurately determined.

Figure 22 illustrates the real-time AGC level value of the SOTM system when using the
multi-beam fast-tracking scheme proposed in this paper, while Figure 23 illustrates the real-
time AGC level value of the SOTM system when adopting the conventional scheme. It could
be seen that the proposed method in this paper can reacquire the communication satellite
in a significantly shorter time than the conventional method after the SOTM antenna
experiences satellite loss; this indicates that the satellite acquisition capability of the method
proposed in this paper is significantly better than that of the conventional method.
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Figures 24 and 25 show the signal quality when using the multi-beam fast tracking scheme
designed in this paper and the traditional scheme, respectively, while Figures 26 and 27 show
the SNR when using the multi-beam fast tracking scheme designed in this paper and the
traditional scheme, respectively. Similarly, it can be concluded that the satellite acquisition
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capability of the method proposed in this paper is significantly better than that of the
conventional method.
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From the experimental results above, it can be seen that when the SOTM antenna
remains connected to the satellite despite the high maneuvering state of the carrier, the
proposed scheme in this paper can achieve better communication quality than the con-
ventional scheme. When the SOTM experiences satellite loss and communication inter-
ruption, the proposed scheme in this paper can reacquire the satellite faster than the
conventional scheme.
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5. Conclusions

This paper proposes a multi-beam fast satellite acquisition scheme for the SOTM array
antenna. By dividing the array antenna into multiple parts, multiple sub-beams can be
obtained, and the main beam and multiple sub-beams can be independently controlled
without interfering with each other. When the antenna is in a high maneuvering moving
state, preliminary signal recognition can be performed, and then the array antenna can be
divided into multiple beams for measurement, obtaining multiple points in the direction
diagram. The best-pointing analyzer is used for processing to determine the direction of
the SOTM array antenna. When the carrier is in a high maneuvering moving state, there are
different processing schemes for whether the SOTM array antenna loses the communication
satellite. Finally, experiments are performed to verify the designed scheme. The results
illustrate that the designed scheme could obtain a better communication quality compared
to the conventional scheme when the SOTM antenna remains connected to the satellite
despite the high maneuvering state of the carrier. When the SOTM array antenna loses
track of the satellite and causes communication interruption, the proposed scheme can
reacquire the satellite faster than the conventional scheme, demonstrating the effectiveness
of the proposed design.
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