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Abstract: As laminated composites are applied more commonly, Prognostics and Health Management
(PHM) techniques for the maintenance of composite systems are also attracting attention. However,
applying PHM techniques to a composite system is challenging due to the data imbalance problem
from the lack of failure data and unpredictable failure cases. Despite numerous studies conducted to
address this limitation, including techniques like data augmentation and transfer learning, significant
challenges remain. In this study, the Wasserstein Generative Adversarial Network (WGAN) model
using a time-series data augmentation technique is proposed as a solution to the data imbalance prob-
lem. To ensure the performance of the WGAN model, time-series data augmentation of experimental
data is executed with a frequency analysis. After that, a One-Dimensional Convolutional Neural
Network (1D CNN) is used for fault diagnosis in laminated composites, validating the performance
improvement after data augmentation. The proposed data augmentation significantly elevated
the performance of the 1D CNN classification model compared to its non-augmented counterpart.
Specifically, the accuracy increased from 89.20% to 91.96%. The precision improved remarkably from
29.76% to 74.10%, and its sensitivity rose from 33.33% to 94.39%. Collectively, these enhancements
highlight the vital role of data augmentation in improving fault diagnosis performance.

Keywords: PHM; fault diagnosis; data imbalance; laminated composite; WGAN

1. Introduction

With their high specific strength, stiffness, and resistance to both corrosion and heat,
composite structures are increasingly replacing metallic structures in various engineering
applications, including aerospace, marine, automobile, and infrastructure [1,2]. Composite
structure has orthotropic, layered structure and complexity in the manufacturing process.
Due to these natural characteristics, various fault modes, such as matrix crack, fiber break-
age, and delamination, often occur, and this makes it difficult to apply composite structures
in the actual industrial field [3,4]. Among these various failure modes, delamination or
inter-ply separation is the most critical defect. These types of failure exist in the inner
surface and are not observable without technical equipment, leading to sudden fracture
of the structure and a huge loss of various resources [5,6]. To avoid structural failure and
severe loss, it is necessary to quickly detect damage in composite structures to prolong
their service life. PHM technology provides early damage detection and helps avoid the
deterioration of various industrial systems [7–12]. Recently, techniques for PHM based on
Machine Learning (ML) and Deep Learning (DL) using vibration signals have been contin-
uously adopted for fault diagnosis in various structures. They have the ability to detect
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unseen defects in the interior of the structure, and using the vibration data demonstrates
high fault diagnosis performance [13–16].

Initially, conventional Machine Learning (ML) model-based fault diagnosis was mainly
used, in which engineers manually extracted features related to the faults of the system and
diagnosed the condition of the system [17]. Features extracted from signals are generally
from the time domain, frequency domain, and time–frequency domain [18]. Time domain
features vary from conventional values, for example, the mean, standard deviation, peak,
amplitude square, and Root Mean Square (RMS), to combinations of these features, like
the waveform factor, peak factor, margin factor, and central moment [19,20]. For more
detailed information, frequency, as well as time–frequency domain features, could also be
derived from the Fourier transform, short-time Fourier transform, wavelet transform, and
wavelet packet transform [21–23]. Because features related to frequency analysis contain the
dynamic behavior of the system, they can offer more sensitive and thorough information
about the system. The extracted features are then utilized to predict whether the system is
in a normal or fault state. ML models, such as K-Nearest Neighbor (KNN), Support Vector
Machine (SVM), and Decision Tree, are trained by part of the extracted features, while the
rest of the features are exploited to test whether the trained model can properly decide the
health state of the system [24–26].

Although fault diagnosis using ML showed remarkable performance, it was time
consuming, and a massive theoretical background was needed to extract features manually
from the data. To overcome this limitation, Deep Learning (DL) techniques started to be
utilized for fault diagnosis. The DL model can extract features automatically by using
its neural network and classify the health state of the system. The Convolutional Neural
Network (CNN) model is generally used for fault diagnosis owing to its outstanding feature
extraction performance from motor current signals, vibration signals, and multi-variate
signals [27–30]. Raw signals are converted into images that can represent the health state
of the system, like spectrogram, scalogram, or various sorts of grey-scale images. The
CNN model extracts features from these images and then predicts whether the system is
in a normal state. The Vision Transformer (ViT) model is also utilized for fault diagnosis
using image data [31]. The ViT model can extract features from the local part of an image
and classify the health state of the system. Transfer learning models that are pretrained
on a large amount of image datasets are widely applied for fault diagnosis. Among the
various models, Residual Network-50 (Resnet-50) is generally used [32]. Long Short-Term
Memory (LSTM) and Bidirectional LSTM (BiLSTM) are other deep learning-based methods
for fault diagnosis. They have a unique ability to extract features from time series data;
they have remarkable performance in predicting Remaining Useful Life (RUL), as well as
fault diagnosis. The models use extracted features from the raw time-series signal itself or
preprocessed signals to perform fault diagnosis [33–36].

Although DL-based fault diagnosis has been explored by many researchers, numerous
limitations still remain. For general applications of fault diagnosis using DL models, further
research is required to address challenges, such as noise mitigation, data imbalance, and
various uncertainties. In particular, data imbalance, where certain classes in the dataset
have fewer instances, can significantly reduce the performance of the DL model. The model
may struggle to learn features of the minority class, resulting in lower accuracy for that
class [37]. In addition, since there is a myriad of unpredictable damage cases with a diverse
range of operating and environmental conditions, it is impractical to comprehensively
detect and anticipate all potential damages in advance. To cope with these challenges, it is
essential to generate synthetic data through experimentation, simulation, or data-driven
approaches. However, the process of data acquisition through experiments or simulations
can be both time-consuming and financially burdensome. Additionally, these methods
require an in-depth understanding of the physics of the composite structure [38]. To address
these challenges, a focus has been placed on developing data-driven approaches to generate
synthetic data. These methods require less in-depth understanding of the physics involved
and are less labor-intensive by leveraging advanced algorithms and DL techniques.
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Above all, there are some basic data augmentation techniques that use simple mathe-
matical calculations. For example, images from impact response data can be manipulated
by adding and multiplying by random numbers [39]. Similarly, adding Gaussian noise
to the images obtained from acoustic emission and guided wave signals was also per-
formed [40,41]. The advantage of this type of data augmentation method is the low level of
difficulty. They are easy to implement, and the corresponding algorithms are not complex.
Other simple methods—such as shifting, scaling, rotating, and random grid shuffling of the
images—are also performed [42]. These are also basic techniques for data augmentation for
images. However, in most engineering problems, images contain some dynamic character-
istics of the system, including time, amplitude, and frequency of the signal. Therefore, this
kind of augmentation technique should be applied with caution regarding the engineering
problem. Recently, data augmentation using the GAN model for image data has been
widely used [43–45]. By using the GAN model, it is possible to duplicate the dynamic
characteristics of the original data and thus generate synthetic image data properly.

Although these approaches can generate sufficient data for robust fault diagnosis
in composite structures, most of them rely on image-based data augmentation. Thus,
this approach necessitates proper preprocessing of raw data for their transformation into
2D images, making the process tedious and time-consuming. Therefore, data augmen-
tation of the raw time-series signal, not imagery, can benefit by eliminating the need for
excessive preprocessing, making the PHM process for composite structures simple and
computationally efficient.

To tackle the issues mentioned above, this paper proposes a time-series data augmen-
tation technique using the Wasserstein Generative Adversarial Network (WGAN) model.
WGAN is a type of DL model that can accurately capture the distribution of the training
data. Thus, it can generate synthetic data that maintain identical dynamic characteristics
with the training data. For this reason, an in-depth understanding of the physics of the
composite structures is less necessary to use the WGAN model to generate the synthetic
data. As a tool to validate the proposed data augmentation method, fault diagnosis in lami-
nated composite structure using the One-Dimensional Convolutional Neural Network (1D
CNN) model was implemented. The 1D CNN can extract features directly from time-series
signals, and no preprocessing is needed for the use of input data. Therefore, the total time
for both preprocessing and training is reduced.

To validate the proposed data augmentation methodology, an initial experiment was
conducted to obtain vibration data from composite specimens. Three different health
states of composite specimens—healthy, delamination 1, and delamination 2—were man-
ufactured. Vibration signals from these states were then captured using a shaker and
computer software. The amount of data collected for the healthy state was intentionally
made much larger than the damaged ones to simulate the data imbalance problem. Then,
data augmentation was performed across all health states. After data augmentation, a fault
diagnosis was conducted using the 1D CNN model on two different datasets: a dataset
consisting of only experimental data and a dataset composed of synthetic data. Then, the
two results were compared to assess the data augmentation capabilities of the WGAN
model. Afterward, a comparative analysis was performed to highlight the superior data
augmentation ability of the WGAN model by comparing it with various oversampling and
other data augmentation methods.

The rest of this paper is composed as follows: Section 2 presents the background
of previous methods for data augmentation and the fault diagnosis model for this re-
search. Section 3 illustrates the experimental setup to validate the suggested methodology.
Section 4 describes the fault diagnosis results and provides a comparative analysis. Finally,
Section 5 concludes this research, outlining its contributions and suggesting directions for
future research.
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2. Proposed Methodology
2.1. Overview

In this section, solutions for the data imbalance problem and fault diagnosis method-
ology are proposed. Section 2.2 briefly introduces the theoretical background of previous
methods for oversampling and data augmentation, which is later utilized in Section 4.
Then, Section 2.3 describes the mathematical formula of the WGAN model for time-series
vibration data augmentation. Finally, Section 2.4 explains the fundamental contents of the
1D CNN model for fault diagnosis.

2.2. Previous Works
2.2.1. Adaptive Synthetic Sampling

Although several techniques have been developed to address data imbalance, methods
that directly augment the minority class by generating synthetic data have gained signif-
icant attention. Adaptive Synthetic Sampling (ADASYN) is an oversampling technique
based on the K-Nearest Neighbor (KNN) algorithm, considering the distribution of the
minority and majority classes. ADASYN generates synthetic data by interpolating between
existing data points within the minority class rather than merely duplicating the original
data [46]. In the minority class, the basis data point is decided as a fixed point to apply the
KNN algorithm, and the nearest neighbor value is selected. After the nearest neighbors
are chosen, the linear interpolation method of Equation (1) is used to generate synthetic
data between the basis data point and the nearest neighbors, where α is a random value
from 0 to 1.

sj = (1− α)× pi + pij, i, j = 1, 2, 3 . . . (1)

Here, data points in the majority class, which exist in the inner area of the nearest
neighbor boundary, are considered. The ratio of data points within the majority class is
calculated according to Equation (2), where δi is the number of data points in the majority
class in the nearest neighbor boundary for the i-th nearest neighbor, and K is the total
number of nearest neighbors.

ri =
δi

K
, i = 1, 2, 3 . . . (2)

ADASYN generates more synthetic data if ri is larger than the others. Owing to this
comparison process of data distribution, synthetic data could be distributed to maintain
distinct characteristics compared to the data from other classes.

2.2.2. System Identification

While ADASYN focuses on generating synthetic data for the minority class based
on the distribution of classes and neighboring data points, another approach to tackle
data imbalance is through System Identification (SI). The SI process builds a mathematical
dynamic model of the system by using the measured input and output signals. The SI
technique is an important part of modern control theory [47] and has been used as a data
augmentation to overcome data imbalance and the data scarcity problem [48]. The input
and output signals of the system are used to reconstruct the discrete system matrix Ar, Br,
Cr, Dr, which is expressed as a state space model, where Ar is the realized system matrix,
Br is the realized input matrix, Cr is the realized output matrix, and Dr is the transmission
matrix [49]. After these matrices are defined, unseen signals are used as input for the
realized matrices. As a result, synthetic signals, which are augmented signals, could be
obtained. The SI technique can restore the system dynamics by using only single input and
output signals, which means that it does not need multiple pairs of signals. Because of this
advantage, it could be used as a great solution for data imbalance and the scarcity problem,
as mentioned above.
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2.2.3. Generative Adversarial Network

The GAN model, originally proposed to produce real-like images from Gaussian
noise input, has also been developed to generate synthetic time-series data [50–53]. The
GAN model is composed of two deep learning models: generator and discriminator. The
generator generates synthetic data by using Gaussian noise input. The discriminator gets
real data and synthetic data as input data and discriminates whether the input data are
real or synthetic. By using the training results of these models, parameters are updated to
produce realistic synthetic data, which means that the synthetic data distribution pz has a
similar distribution to the real data pdata(x). The loss function of the GAN model is written
as Equation (3), which is the deformed shape of the Jensen–Shannon Divergence (JSD),
where D(x) is the discriminator output, and G(z) is the generator output.

maxminV(D, G) = Ex∼pdata(x)
[log D(x)] + Ez∼pz(z)

[ log(1−D(G(z)) )] (3)

The generator and discriminator keep training to deceive each other until the mod-
els reach the Nash Equilibrium. Figure 1 illustrates the training process of the general
GAN model.
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Although the GAN model shows remarkable data augmentation performance, its
mathematical nature raises several critical points. There are two main limitations to
the application of the GAN model: gradient vanishing and mode collapse [54,55]. Both
problems arise from the loss function of the GAN model. The fundamental concept of
the GAN model is a minimax game in which the discriminator tries to maximize the loss
function while the generator attempts to minimize the loss function. In this process, if the
discriminator is trained better than the generator, the gradient of the generator becomes
0 according to Equation (3), and the generator cannot be trained properly. This is called
gradient vanishing. Also, when the generator generates synthetic data in multiple classes,
the generator only tries to deceive the discriminator and does not consider the information
about each class. As a result of this characteristic, the training process of the generator could
be biased to specific weights, which means the generator only generates data belonging
to a specific class, not evenly. Simply, the generator falls into a local minimum problem
and cannot imitate the distribution in any other classes except one class. This is called
mode collapse.

Due to the drawbacks mentioned above, instability in training the GAN model often
takes place. This makes it hard to converge the generator and discriminator, reducing
the performance of the GAN model. Numerous unrevealed factors may exist in this
instability, but one of the fundamental reasons is the loss function. The loss function
that uses JSD could output 0 or too large a number, as mentioned above, leading to the
submission of meaningless gradients to the generator and discriminator. To overcome these
vulnerabilities, various GAN models that use different loss functions have been introduced.
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2.3. Wasserstein Generative Adversarial Network

As outlined in Section 2.2.3, the limitations for GAN arise from the generator receiving
meaningless gradients. To provide the generator with meaningful gradients, employing
an alternative loss function is essential. WGAN uses Earth Mover’s Distance (EMD) or
Wasserstein distance as loss functions, which can be expressed as Equation (4).

W
(
Pr,Pg

)
= inf

γ∈Π(Pr,Pg)
E(x,y)∼γ[‖x− y‖] (4)

Here, Π
(
Pr,Pg

)
represents all sets of the joint distributions γ(x, y), which have Pr, Pg

as marginal individually. The intuitive definition of the Wasserstein distance means the
quantity of mass that must be transported from x to y for the distribution of the generated
data Pg to align with the distribution of real data Pr.

However, it is impossible to apply the Wasserstein distance in Equation (4) directly
as a loss function because it is almost impossible to find all the joint distributions and
minimum values. Due to this restriction, Kantorovich–Rubinstein duality is introduced,
which constrains the objective function by using the 1–Lipshitz method [56]. In this context,
since it is difficult to identify the exact function we want to constrain, the objective function
is approximated using a neural network. After applying the Kantorovich–Rubinstein
duality and 1–Lipshitz method, the loss function using Wasserstein distance turns into
Equation (5).

Loss function = max
w∈W

Ex∼Pr [fw(x)]−Ez∼p(z)[fw(gθ(z))] (5)

Here, fw denotes a function approximated by the neural network that has variables of
w, and similarly, gθ is a function that involves variables of θ. For brevity of the study, de-
tailed mathematical formulae of the Kantorovich–Rubinstein duality and Lipshitz method
are omitted.

The gradients for updating WGAN must be restricted because it does not use the
sigmoid function for the last layer of the discriminator. This could potentially lead to
unbounded output values and destabilizing gradients during the training process. For
this purpose, the ‘weight clipping’ technique is used to restrict the scale of the gradients
between −0.01 and 0.01. Because of this mathematical difference between the discriminator
in the conventional GAN and the discriminator in WGAN, the latter one is named the
‘critic’. Through this overall process in WGAN, the generator can obtain proper gradients,
and the training generator and critic can be balanced. Furthermore, through generating
meaningful gradients, the stability of the training process can be improved.

2.4. One-Dimensional Convolutional Neural Network

Over recent years, there has been significant research interest in the Two-Dimensional
Convolutional Neural Network (2D CNN) model-based fault diagnosis because it has a
remarkable ability to automatically extract features from the images [57,58]. However, 2D
CNN requires various data preprocessing techniques, especially when used with vibration
signals. For this application, the signal has to be converted into spectral images, making
the fault diagnosis procedure more complex and laborious. Also, 2D CNN takes a longer
time for training and testing, which may not be suitable for real-time fault diagnosis. For
these reasons, this research employs the One-Dimensional Convolutional Neural Network
(1D CNN), using time-series vibration signals directly as input for fault diagnosis.

The 1D CNN can directly extract features from time-series signals without data prepro-
cessing. Contrary to 2D CNN, convolution and pooling size can extract one-dimensional
features from a time-series signal. Also, the training speed of the 1D CNN is much quicker
than that of the 2D CNN because the input data size for the 1D CNN is smaller, and
1D CNN does not need additional preprocessing techniques since time-series data are
directly used as input. This makes the 1D CNN more resource-efficient, leading to cost
savings without decreasing the fault diagnosis performance. Owing to these advantages,
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1D CNN is continuously applied for fault diagnosis in various systems [59,60]. Details of
the structures of the 1D CNN used in this research are later discussed in Section 4.2.

3. Experimental Validation

Section 3 describes the experimental validation process to ensure the performance of
the suggested data augmentation and fault diagnosis techniques. Section 3.1 explains the
experimental setup to obtain the imbalanced vibration dataset, while Section 3.2 describes
the data augmentation process using the WGAN model to resolve the data imbalance
problem and the validation of the synthetic data involved.

3.1. Experimental Setup and Data Acquisition

Laminated composite plates are manufactured to obtain an imbalanced vibration
dataset. Eight layers of carbon prepreg (T700SC–12k–60E), which have dimensions of
35 cm × 30 cm, are stacked in [0/90/0/90]s order, as shown in Figure 2. Table 1 shows the
mechanical properties of the prepreg.
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Table 1. Mechanical properties of the carbon prepreg.

Tensile
Modulus

Tensile
Strength Elongation Thermal

Conductivity Density Filament
Diameter

230 GPa 4900 MPa 2.1% 9.4 W/m·K 1.8 g/cm3 7 µm

To imitate various health states of the laminated composites, Teflon film (Model
KSC−V1000) with a thickness of 0.03 mm and a usable heating range of 280 ◦C was
inserted between the fourth and fifth layers during the stacking. The film can act like
damage inside the laminated composite, so the presence of delamination could be imitated.
A total of three health states of composite plates are stacked: Healthy (H), which has no
delamination, and Delamination 1 (D1) and Delamination 2 (D2), which have delamination
in different locations inside of the specimens.

After stacking, the plates were cured using the hot press machine illustrated in
Figure 3a. The pressure of the machine was 20 kg/cm2, and the heating cycle of the
plate is in Figure 3b. The cured plates that have dimensions of 35 cm × 30 cm are then cut
into five pieces to receive a beam-shape of 35 cm × 5 cm, as shown in Figure 4. Thus, five
specimens for each health state, and a total of fifteen specimens, were manufactured for all
health states. The blue-colored area is used as the fixed part for the vibration experiment,
while the red-colored area indicates the presence of delamination.

Figure 5 shows the Data Acquisition system. Random vibration signals were generated
through MATLAB Simulink, and they were collected in the Data Acquisition (DAQ) unit
(DAQ1, model dSPACE/CLP1104). The magnitude of signals was enlarged through the
amplifier (model Labworks/PA-151). These amplified signals were then received by a
shaker (model Labworks/ET-126-4), which induced vibration in the specimen.
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Figure 5. Data acquisition system for the experiment.

Response signals were obtained with accelerometer (model Bruel & Kjaer/Type 4517-C)
sensors that were bonded on the top surface of the specimens. Herein, for the robustness of
variations in signals, signals were acquired through the same ten sensors but in different
locations. Figure 6 shows the locations of the accelerometers. The figure shows that
the sensors were bonded near the edges to consider the effects of twisting and bending
in the specimen.
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The response signals from the sensors were then put into the amplifier (model Bruel &
Kjaer/Type 2692-0s2) again, and after passing the DAQ (DAQ2, model NI/USB-6341), the
final response vibration signals were saved in the computer.

To simulate the imbalance problem in the experimental condition, a different number
of sensors were selected for each health state. For state H, sensors from P1 to P10 were used,
while for states D1 and D2, only P01 was used. For state H, 1000 signals were obtained for
each sensor, and 60 signals for D1 and D2 were acquired to maximize the data imbalance
problem. Because five specimens for each health state were utilized to obtain the dataset,
200 data instances for H and 12 data instances for D1 and D2 each were acquired from
each specimen. Table 2 shows the number of the dataset and length of the signals for
each health state.

Table 2. Description of dataset for each health state.

Healthy Delamination 1 Delamination 2

Number of sensors P01–P10 P01 P01
Number of data 1000 60 60

Signal length 1875 1875 1875

3.2. Data Augmentation Using WGAN Model

To validate the proposed method, data augmentation was performed using the WGAN
model illustrated in Figure 7. The structure of the WGAN model and model parameters
listed in Table 3 are determined through a process of trial and error because there is no
specific standard or technique.
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Table 3. Model parameters of the WGAN model for each health state.

Healthy Delamination 1 Delamination 2

Beta 1 0.5 0.5 0.5
Beta 2 0.9 0.9 0.9

Training critic/Training
generator 3 5 5

Learning rate 3 × 10−4 3 × 10−4 3 × 10−4

Epoch 2000 2000 2000
Batch size 8 8 8

For the Healthy state, since it takes a significant period to generate synthetic signals
for all pairs, signals from sensors in the same location have similar dynamic characteristics.
Thus, synthetic signals were generated by only considering sensor location. With data
augmentation, with 300 signals per sensor, a total of 3000 signals were generated. For
Delamination 1 state, three specimens, D1-1, D1-2, and D1-3, were utilized individually
to obtain 1000 synthetic signals per specimen. Similarly, Delamination 2 state used three
specimens and acquired 1000 signals per specimen. For delamination cases, delamination
in the specimens was manufactured by manually inserting the Teflon films. Therefore, there
are slight differences in dynamic characteristics for different specimens. In this perspective,
data augmentation for delamination cases was conducted for each specimen. There were
1000 synthetic signals for each specimen; a total of 3000 signals were generated.

4. Fault Diagnosis Results
4.1. Evaluation Metrics

Evaluation metrics are employed to evaluate the classification performance of a DL
model. These metrics are calculated by using the predicted labels from the DL model and
comparing them with the actual labels. Figure 8 shows the relationships and denotations
of these metrics, while Equations (6)–(9) provide the formulae for these evaluation metrics.
Accuracy is an intuitive metric with which to evaluate the classification performance; it
quantifies the proportion of predicted labels that match the actual labels, including both
true and false predictions. Precision is the ratio of actual true labels to the labels that the
model predicted as true. Sensitivity is the ratio of the labels that the model predicted
as true to the actual true labels. The F1 score is the harmonic average of the precision
and sensitivity. All metrics reinforce the weakness of others and thus can evaluate the
classification performance of the model.

Accuracy =
TP + TN

TP + FN + FP + TN
(6)

Precision =
TP

TP + FP
(7)

Sensitivity =
TP

TP + FN
(8)

F1 score = 2× Precision× Sensitivity
Precision + Sensitivity

(9)
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4.2. Fault Diagnosis Results

In this section, fault diagnosis was performed on the experimental data and synthetic
data to evaluate the effectiveness of data augmentation. Figure 9 shows the 1D CNN model
structure that was used for fault diagnosis, and Table 4 indicates the detailed information of
the model. To maintain the uniformity of the research, the same 1D CNN model structure
was applied in all instances of fault diagnosis. Considering complex embedded information
in the random signal, the model is constructed with several Convulotional–Maxpooling
pairs. To activate the nonlinearities from convolution layers, the ReLU activation function
was applied. After extracting features, the dropout layer was added after the dense layer to
reduce overfitting due to its complex model structure.
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Table 4. Detailed information of 1D CNN model for the research.

Network Layer Output Data Size Parameters

Input Layer 1875 × 1 1875 length signal input
Conv1D 1875 × 32 32 @ 3 × 1, stride = 1, activation = ReLU
Conv1D 1875 × 32 32 @ 3 × 1, stride = 1, activation = ReLU

Max pooling 1D 937 × 32 2 × 1, stride = 2, activation = ReLU
Conv1D 937 × 64 64 @ 3 × 1, stride = 1, activation = ReLU
Conv1D 937 × 64 64 @ 3 × 1, stride = 1, activation = ReLU

Max pooling 1D 468 × 64 2 × 1, stride = 2, activation = ReLU
Conv1D 468 × 128 128 @ 2 × 1, stride = 1, activation = ReLU

Max pooling 1D 234 × 128 2 × 1, stride = 2, activation = ReLU
Conv1D 234 × 128 128 @ 2 × 1, stride = 1, activation = ReLU

Max pooling 1D 117 × 128 2 × 1, stride = 2, activation = ReLU
Conv1D 117 × 256 256 @ 2 × 1, stride = 1, activation = ReLU

Max pooling 1D 58 × 256 2 × 1, stride = 2, activation = ReLU
Conv1D 58 × 256 256 @ 2 × 1, stride = 1, activation = ReLU

Max pooling 1D 29 × 256 2 × 1, stride = 2, activation = ReLU
Flatten Layer 1 × 7424 7424 neurons
Input Layer 1 × 7424 7424 neurons

Dense 1 × 1024 1024 neurons
Dropout 1 × 1024 Dropout rate: 0.4

Dense 1 × 512 512 neurons
Dropout 1 × 512 Dropout rate: 0.4

Dense 1 × 128 128 neurons
Dropout 1 × 128 Dropout rate: 0.4

Dense 1 × 3 128 neurons
SoftMax 1 × 3 Classification Layer

For the 1120 signals in the experiment, they were randomly divided into 60%, 20%,
and 20% for training, validation, and testing of the model while maintaining the proportion
of the data for each class. After generating synthetic signals with the WGAN model, as
written in Section 3.2, they were used for training and validation data with the same 1D
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CNN model structure. For each health state, 3000 signals were generated, 9000 in total.
Then, synthetic signals were randomly divided into a 60% allocation for training data and a
40% allocation for validation data while maintaining the class proportion. To demonstrate
the enhanced fault diagnosis performance, the test dataset for the experimental data case
was used for both cases. Because the data were divided randomly, test data may contain
some identical data used for data augmentation. However, this fault diagnosis result could
bring meaningful conclusions for the solution of the data imbalance problem.

The test results are shown in Figure 10. For the experimental data case, because of
the severe data imbalance problem, the training process of the 1D CNN model is biased
for a healthy state, dropping the fault diagnosis performance of fault states, as shown in
Figure 10a. This bias caused the 1D CNN model to diagnose the fault state improperly,
showing inferior fault diagnosis performance. The test result for synthetic data is depicted
in Figure 10b. Compared to the results from the experimental data, the performance for
the healthy state decreased slightly. However, the classification results for faulty states
increased dramatically; 23 cases were predicted correctly out of 24 cases. From this, it could
be concluded that the proposed data augmentation technique increased the overall fault
diagnosis performance.
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At first glance, the accuracy seems to show only a negligible improvement, rising from
89.29% to 91.96%. However, the other metrics, precision and sensitivity, showed much-
improved outcomes. The precision surged from 29.76% to 74.10%, while the sensitivity
soared from 33.33% to 94.39%. These differences in results across the metrics derive from
the imbalanced nature of the dataset. Imbalanced datasets can often lead to misleading
accuracy metrics, as the model might perform very well on the majority class but poorly
on the minority class. In such cases, precision and sensitivity provide a more accurate
understanding of the model’s performance, especially in identifying and classifying the
underrepresented class.

4.3. Comparative Analysis

To demonstrate that the WGAN model is the best solution for addressing the data
imbalance problem in the vibration signal, a comparative analysis was conducted between
the WGAN model and the other methods of ADASYN, SI, and GAN. Table 5 describes the
model parameters of the GAN model. The same structure of the discriminator and generator
as the WGAN model was used and the corresponding parameters were adjusted by trial
and error. Through the parameter optimizing results, it was observed that even though
the same discriminator and critic models were utilized, the parameters were completely
different according to the type of loss function.
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Table 5. Model parameters of the GAN model for each health state.

Healthy Delamination 1 Delamination 2

Beta 1 0.5 0.5 0.5
Beta 2 0.999 0.999 0.999

Learning rate 1 × 10−3 1 × 10−3 1 × 10−3

Epoch 1200 1200 1200
Batch size 8 8 8

Table 6 shows the number of synthetic data for each method. Basically, the ADASYN
algorithm is an oversampling method, which means that it can only generate minority class
data, the D1 and D2 cases in this research. Therefore, the total amount of data is different
from the other methods. For all the methods, synthetic data instances were randomly
divided into 60% and 40% for training and validation while maintaining the proportion of
each class.

Table 6. The number of synthetic data for training and validation using the different methods.

Healthy Delamination 1 Delamination 2

Experimental data only 800 48 48
ADASYN 800 793 798

SI 3000 3000 3000
GAN 3000 3000 3000

WGAN 3000 3000 3000

Table 7 shows the fault diagnosis results for the same test dataset as Section 4.2. The
accuracy of the WGAN model was the highest result at 91.96%. Also, the experimental data-
only case has relatively higher accuracy than the other methods. As mentioned above, this
originates from the data imbalance. The majority of the class data was classified properly;
thus, the accuracy itself turned out to be high. For precision, ADASYN was the highest, at
77.80%, with a difference of 3.70% compared to the WGAN model. For sensitivity, WGAN
had the highest value at 94.39%, which is 3.11% higher than the ADASYN. By comparing
the precision and sensitivity of the ADASYN and WGAN, WGAN seems to have a better
ability to identify fault states properly. The health state data for ADASYN may be classified
more properly than that for WGAN, and this point brought higher precision in ADASYN
but lower performance in sensitivity. For the F1 score, ADASYN and WGAN were the
highest at 0.81.

Table 7. Fault diagnosis result of each oversampling and augmentation method.

Accuracy (%) Precision (%) Sensitivity (%) F1 Score

Experimental data only 89.29 29.76 33.33 0.31
ADASYN 90.63 77.80 91.28 0.81

SI 5.80 35.13 35.00 0.04
GAN 86.61 53.83 55.83 0.55

WGAN 91.96 74.10 94.39 0.81

For overall analysis, the synthetic data generated with SI seems not to be proper for
this research because all evaluation metrics were much lower than the other methods. In the
case of ADASYN, because of the characteristic of oversampling, real data are contained in
the training and validation datasets, while the rest of them are only composed of synthetic
data. This could increase the fault diagnosis performance compared with the others. For
the ADASYN, GAN, and WGAN cases, the evaluation metrics increased significantly
compared to the experimental data case, but the WGAN model showed the best evaluation
metrics, which means that the WGAN model can generate signals that contain dynamic
characteristics that are the same as real signals.
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5. Conclusions

This study addresses the time-series data augmentation technique using the WGAN
model for the solution of the data imbalance problem and fault diagnosis using the 1D CNN
model. For time-series data augmentation, vibration signals were directly used as input data
for the WGAN model. To verify the performance increase in fault diagnosis by applying
the WGAN model, experiments using laminated composite beam specimens to obtain
vibration signals were conducted. For imitation of the data imbalance dataset, 1000 signals
for the healthy state and 60 signals for faulty states were obtained through the experiments,
and a total of 9000 synthetic signals were generated by using the WGAN model. To verify
the enhanced fault diagnosis performance, the results from a 1D CNN model using both
experimental and synthetic datasets were compared. The results demonstrated a significant
improvement in fault diagnosis. Furthermore, a comparative study revealed that data
augmentation with the WGAN model yielded the best diagnostic performance.

In contrast to previous works, this research has simplified the data augmentation and
fault diagnosis process by directly using time-series data as input. The simplification of the
process saves computational resources because both the WGAN and 1D CNN models use
time-series data, which has a smaller data size than the image data. Thus, training time, as
well as predicting time, are also much shorter, which means the enhanced probability of
applications in real-time fault diagnosis. For the last contribution, fault diagnosis could be
performed by inexpensive and simple experiments. The accelerometer is a cheap sensor
among various sensors, which means that data can be obtained efficiently.

Notwithstanding these contributions to the solution of the data imbalance problem and
the fault diagnosis process, some limitations still exist. After the advent of the GAN model,
much research related to GAN has been conducted, but a generalization of the GAN model
for various engineering problems is still one of the critical issues [61]. Thus, the trial and
error process is generally employed to optimize the parameters of GAN models; however,
it is a time-consuming and laborious method. A reasonable technique or specific standard
for optimizing the parameters of the GAN model is essential. For the next limitation, the
1D CNN model can extract features and diagnose the health state of the composite system,
as mentioned above. However, because the 1D CNN model is a black box model, it is
unclear which part of the signal was considered, especially for fault diagnosis. To improve
this hardship in explainability, the eXplainable Artificial Intelligence (XAI) algorithm will
be used in future work. Through the XAI algorithm, it is anticipated that the features that
are considered more important in the fault diagnosis process will be identified.

Also, this research focused on evaluating data augmentation performance. For future
research, a generalization of the fault diagnosis model will be conducted. For this purpose, a
large number of specimens with various conditions will be tested. Then, data augmentation
will be implemented for the training dataset to prove that the fault diagnosis model can
accurately classify the data that are not trained for the model.
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