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Abstract: SLAM (simultaneous localization and mapping) technology incorporating QR code naviga-
tion has been widely used in the mobile robotics industry. However, the particle kidnapping problem,
positioning accuracy, and navigation time are still urgent issues to be solved. In this paper, a SLAM
fused QR code navigation method is proposed and an improved adaptive Monte Carlo positioning
algorithm is used to fuse the QR code information. Firstly, the generation and resampling methods
of initialized particle swarms are improved to improve the robustness and weights of the swarms
and to avoid the kidnapping problem. Secondly, the Gmapping scan data and the data generated
by the improved AMCL algorithm are fused using the extended Kalman filter to improve the accu-
racy and stability of the state estimation. Finally, in terms of the positioning system, Gmapping is
used to obtain QR code data as marker positions on static maps, and the improved adaptive Monte
Carlo localization particle positioning algorithm is matched with a library of QR code templates,
which corrects for offset distances and achieves precise point-to-point positioning under grey-valued
raster maps. The experimental results show that the particles encountered with kidnapping can be
quickly adjusted in position, with a 68.73% improvement in adjustment time, 64.27% improvement in
navigation and positioning accuracy, and 42.81% reduction in positioning time.

Keywords: SLAM; adaptive Monte Carlo localization; kidnapping; Gmapping; QR code template
library; extended Kalman filter

1. Introduction

An automated Guided Vehicle is a robot used for equipment handling and automatic
assembly [1]. With the development of industry and the increase in the cost of human
resources, material handling in industrial production has been gradually replaced by
intelligent AGVs [2], which are equipped with various kinds of photoelectric sensors
to network and interconnect, and issue scheduling instructions to realize the intelligent
material handling system. According to the different navigation methods, AGVs can be
divided into QR code, magnetic, inertial, laser, etc. [3]. When AGVs convey material along a
planned route, their surroundings and ground cleanliness partially impact most navigation
methods [4]. As we all know, QR code navigation requires a neat and clean floor, and the
QR code must be protected to a large extent [5]. On the contrary, SLAM navigation does not
require ground road conditions to build a map but has a strong need for the surrounding
environment [6]. For the above situation, the navigation method is established as SLAM
fused QR code navigation, and the improved AMCL positioning algorithm is used to match
the QR code information to improve the positioning accuracy.
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AGV navigation has been a fundamental problem for logistics robots. The key to this
is the combination of algorithms with various navigation and optimization methods. Bach
S H et al. [7] corrected the cumulative error in attitude estimation by combining the internal
coded sensor data with the remaining external QR code data. Kulaç N. et al. [8] used RGB
cameras and QR codes for mapping and localization, eliminating permanent localization
errors, but the light source affects the actual localization. P. Kumar [9] used EKF for the data
tracking of QR codes and the experiments proved that the positioning accuracy is improved
but the quality of the QR code is required and regular maintenance is needed. C. Zhou’s [10]
use of QR codes for AGV navigation has been shown through experiments to reduce costs
and improve positioning accuracy. Still, the system uses machine vision to recognize QR
codes and therefore has an impact on the scanning time as well as precision. Adaptive
Monte Carlo localization is a very effective solution for localizing the robot in a given
environment [11]. Zhang, X. et al. [12] proposed an improved EKF intelligent algorithm to
reduce and eliminate the deviation in the fusion of various sensor data. When in a highly
similar working environment, the positioning accuracy, stability, and data processing will
be significantly affected [13]. The parameter changes in the AMCL positioning algorithm
also impact the algorithm response and actual positioning [14,15].

SLAM [16] is the abbreviation for “simultaneous localization and mapping,” mainly
used to solve the problem of localization and map construction when a robot moves in an
unknown environment. It consists of four main parts: front-end scanning and matching,
back-end optimization, closed-loop detection, and map construction [17]. Gmapping is
a SLAM algorithm based on laser sensors, which has high map building and position-
ing accuracy, and is able to build accurate maps in real time and achieve more accurate
positioning [18]. AMCL localization algorithms are widely used because they are highly
flexible, adaptive and can handle noise and uncertainty [19]. However, in localization,
AMCL is highly dependent on the accuracy of the sensors, which will affect the accuracy
of the localization if the data fails. In this paper, an enhanced AMCL based on QR code
information is proposed. The improved AMCL algorithm is able to automatically adjust
the weights and distributions of the particles according to the estimation error through an
adaptive sampling strategy, which improves the accuracy and robustness of localization.
Accurate localization is still achieved in the presence of dynamic environment and sen-
sor errors. To meet the requirements of the real-time and positioning accuracy of visual
navigation, this paper uses the QR code as a landmark. A QR code is a two-dimensional
matrix composed of QR code symbols and has the advantages of a fast reading speed,
large amount of information, low cost, and high reliability [20]. In the process of the AGV
moving, the QR code camera at the bottom of the vehicle scans the QR code. It determines
the position and attitude information of the AGV by identifying the current QR code. In
this process, the angular error and positional error in the motion process are analyzed and
calculated. By using various algorithms for correction and compensation, the positioning
accuracy of the robot is improved to a certain extent. Based on the above problems, an
improved AMCL particle localization algorithm is introduced into the SLAM fusion QR
code, connecting the world coordinates of the QR code to enhance the number of particles
in the AMCL algorithm, optimizing the particle sampling strategy, and improving the
motion model to introduce a non-linear model to improve the localization accuracy.

The AGV navigation and positioning system researched in this paper is characterized
by a high accuracy, low latency, reduced maintenance cost and improved work efficiency. It
can solve the navigation and positioning problems encountered by AGVs in practical work.
According to the requirements of the actual production environment, this paper describes
the improved methods and measures, and compares them with the unimproved methods
and measures. Figure 1 shows the system framework diagram of AGV.
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Figure 1. System Framework.

The following are the main contributions made by this paper:

(1) Improve the way of generating and resampling the initial particle swarm of the AMCL
algorithm, so that the particle performance is more stable, and can effectively match
the set template library to improve the positioning accuracy.

(2) In the navigation process, even if the QR code is damaged and stained, it still does
not affect the navigation and positioning. Hybrid navigation can complement each
other and complete the navigation task independently.

(3) The improved AMCL algorithm fuses QR code navigation. The two types of data are
fused using EKF in order to improve the positioning accuracy and at the same time
reduce the navigation time and improve the navigation efficiency.

(4) The improved AMCL algorithm can effectively reduce or avoid the occurrence
of particle abduction events and increase the reliability of accurate AGV position-
ing. The superiority of the improved algorithm can be effectively proved through
field experiments.

2. Improved AMCL Algorithm

The AMCL suits local and global localization problems [21,22]. The improved AMCL
algorithm can effectively solve the problem of low positioning accuracy by dynamically
adjusting the number of particles and incremental particle weights and improving the
resampling method, which can effectively improve the accuracy and stability of positioning.

Based on the above problem, state fusion is performed by introducing an extended
Kalman filter using the outputs of the two algorithms. The different data information
from the improved AMCL algorithm and the Gmapping constructed graph are fused.
The map position generated using Gmapping is fused with the robot position generated
by the improved AMCL, matching the AGV position estimation with the map data to
obtain more accurate localization results. The improved AMCL localization algorithm
inputs a parameter file to subscribe to the map information scanned using Gmapping. The
sensor information received by the LiDAR is input to the AMCL positioning algorithm,
and the EKF enhances the positioning accuracy by fusing the output states based on the
received map data information and the AMCL positioning algorithm information. Figure 2
shows the process of data fusion between the AMCL algorithm data and lidar sweep map
information by the extended Kalman filter.
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2.1. AGV Motion Modelling and Chassis Structure Analysis

According to the drive mode, it is known that the AGV uses differential drive, so the
motion model sketch of the QR code navigation AGV is shown in Figure 3.
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Figure 3. AGV structure and motion modelling: (a) chassis structure; (b) movement model.

As shown in the figure, the AGV dimensions R1, R2, and R3 are: 38 cm, 30 cm, and
46 cm, respectively. The AGV is powered by a pair of differential wheels, with two followers
at the front and rear supporting the AGV body. In Figure 3b, v is the linear velocity of the
centre of the AGV, ω is the angular velocity of the AGV, and the attitude of the AGV at the
moment t + 1 at P0. The kinematic model of the AGV is shown in Equation (1).

xt+1 = xt − v
ω sin(θt) +

v
ω sin(θt + ω∆t)

yt+1 = yt − v
ω cos(θt)− v

ω cos(θt + ω∆t)

θt+1 = θt + ωt

(1)
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where ∆t is the sampling interval, (xt, yt, zt) is the attitude of the AGV at moment t, and
(xt+1, yt+1, zt+1) is the attitude at moment t + 1.

2.2. Improving the Flow of the Algorithm

Aiming at resampling the AMCL algorithm in the iterative computation process which
will increase the computation amount, an improved AMCL algorithm combining QR code
information is proposed to improve the positioning accuracy, reduce the computation
amount, and shorten the navigation time. The effect of the improved algorithm is shown in
Figure 4.
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2.3. Improved Odometer Motion Model Sampling

In the time interval (t− 1, t), the given motion information ut is

ut =

[
xt−1

xt

]
(2)

where xt is the coordinates inside the robot; the difference between xt−1 and xt enables
an estimate of the difference between the two poses. The relative distances can be calcu-
lated from three steps: initial rotation δrot1, translation δtrans, and secondary rotation δrot2.
Calculate one translation and two rotations by the given motion information ut.

δtrans =

√(
x− x′

)2
+
(

y− y′
)2

δrot1 = arctan2
(

y′ − y, x′ − x
)
− θ

δrot2 = θ′ − θ − δrot1

δtrans =

√(
x− x′

)2
+
(

y− y′
)2

(3)

Since the AGV runs for a long time, it will lead to cumulative errors. The actual values
of translation and rotation can be obtained by subtracting the observed value from the
interference error εb2 , the variance of which is b2. Therefore, the motion error model can be
written as: 

δ̂trans = δtrans − εα1δ2
trans

+ α4δ2
rot1 + α4δ2

rot2

δ̂rot1 = δrot1 − εα1δ2
rot1

+ α2δ2
trans

δ̂rot2 = δrot2 − εα1δ2
rot2

+ α2δ2
trans

(4)

εα1 ∼ εα4 is the cumulative error of motion.
To obtain the actual location xt from xt−1 after the initial rotation angle δ̂rot1, follow

the pan delta δ̂trans, then add to another rotation angle δ̂rot2:

x′

y′

θ′

 =

x
y
θ

+


δ̂transcos

(
θ + δ̂rot1

)
δ̂trans sin

(
θ + δ̂rot2

)
δ̂rot1 + δ̂rot2

 (5)
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Then, the final odometer error is:
δtrans − δ̂trans

δrot1 − δ̂rot1

δrot2 − δ̂rot2

(6)

2.4. Improved Resampling to Avoid Kidnapping
2.4.1. Adjustment of KLD Dynamic Resampling

The kidnapping problem refers to the fact that when the robot undergoes a drastic
change in the environment or is moved to a new location, the particles in the particle filter
will gather at the wrong location, resulting in inaccurate localization. In order to effectively
reduce or avoid the kidnapping problem in the AMCL algorithm, this can be achieved by
improving the resampling strategy of the particle filter. Traditional resampling methods,
such as uniform resampling, are prone to lead to the kidnapping problem. Therefore, the
kidnapping problem is avoided by using an improved KLD (Kullback–Leibler divergence
resampling) sampling method to decide whether to resample or not by calculating the
information entropy of the particle weights.

The Kullback–Leibler distance represents the approximation error between two proba-
bility distributions p and q, i.e.,

K(p, q) = ∑
x

p(x)log
p(x)
q(x)

(7)

The Kullback–Leibler distance is non-negative and has a value of zero if and only if
the two probability distributions p and q agree.

Assuming there is a discrete distribution with k different subspaces, where the vector
X = {X1, X2, X3, . . . , Xk} represents the number of particles sampled from each subspace
and the vector P = {P1, P2, P3, . . . , Pk} represents the true probability of each subspace, the
maximum likelihood estimation probability density is P̂ = X

n . When n satisfies a certain
number, it can be ensured that the Kullback–Leibler distance K

(
P̂, P

)
between the true

probability density and the estimated probability density is less than a threshold value
ε, which ensures that the approximation error between the true probability density and
the estimated probability density is minimized. At this point, according to the Wilson
Ferty transformation method, the approximate calculation formula for n with the minimum
approximation error can be obtained as follows:

n =
k− 1

2ε
{1− 2

9(k− 1)
+

√
2

9(k− 1)
z1−δ}3 (8)

where z1−δ is the standard normal distribution for the upper quartile 1− δ.
From the above equation, the number of particles required to minimize the approxima-

tion error between the estimated and true posterior distributions can be obtained. The main
purpose of particle filtering is to estimate a posterior distribution, so it is only necessary
to determine the number of effective subspaces k and the pre-given ε and δ to obtain the
minimum number of particles required to ensure the estimation performance of particle
filtering. It follows that the the improved KLD dynamically adjusted resampling process is
as follows:

1. Input the collection of particles St−1 =
{(

x(i)t−1, w(i)
t−1

)∣∣∣i = 1, . . . , n
}

after resampling
at moment t− 1, the observation B, set ε and δ, the minimum value of the total number
of particles nxmin, and the number of particles nt−1 at moment t− 1.

2. Set the predicted particle set at time t to
∼
s t = ∅, with a total number of particles of

n = 1500, a number of particles on the line nxmax = 100000, and variables k and α



Appl. Sci. 2023, 13, 11913 7 of 30

both being 0. Use the dynamic adjustment method to resample particle x(i)t−1 to obtain

the predicted particle x(i)t , and calculate the corresponding weight w(i)
t .

3. Accumulation of weights:
∼
s t =

∼
s t ∪

{
x(n)t , w(n)

t

}
, place the newly predicted particles

into the set of predicted particles b. If x(n)t falls into the space interval b, then k = k + 1,
while the interval b becomes non-empty.

4. If n ≥ nmin then nx = k−1
2ε

{
1− 2

9(k−1) +
√

2
9(k−1) z1−δ

}3
, n = n + 1, followed by

weight orthogonalization: w(i)
t , and finally return

∼
s t.

2.4.2. Simulation to Verify the Analysis of the Adjusted Dynamic Results

Verify the effectiveness of KLD dynamically adjusting resampling particles to solve
the kidnapping problem through the state estimation of nonlinear systems. The simulation
uses a Windows 64 bit system and the simulation software is MATLAB 2021B.

Simulation research is conducted on the state estimation problem of nonlinear systems,
and the nonlinear system state equation used is as follows:

xk = 1 + sin(0.04πk) + 0.5xk−1 + vk−1

y =

{
0.2x2

k + nk k ≤ 30

0.5xk − 2 + nk k > 30

(9)

where the system noise is: vk ∼ Gamma(3, 2), and the observation noise is: nk ∼ N(0, 0.00001).
The system noise is taken as gamma noise and the observation noise is Gaussian white

noise. The initial azimuthal misalignment angle is 10◦; the initial horizontal alignment
angle is 1◦; the accelerometer constant drift is 3× 10−5g; the accelerometer random drift
is 1× 10−5g; the gyroscope constant drift is 0.05◦/h; and the gyroscope random drift is
0.01◦/h.

From the simulation results in Figure 5a, it can be seen that the KLD and the improved
KLD resampling methods conclude that only the improved KLD resampling has a more
stable convergence speed and consistency, and can effectively solve the fluctuation problem
of particle filtering. From Figure 5b, it can be seen that the alignment accuracy and
convergence speed of the improved KLD resampling are significantly better than that of
the unimproved method, and the improved simulation curve eliminates the fluctuation
phenomenon present in other algorithms and has better stability.
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Under the same simulation conditions, the KLD and the improved KLD methods are
run for 1000 steps each, and the results of calculating the mean square deviation of the
state estimation of the different methods and the running time consumed by running the
simulation for 1000 steps are shown in Table 1.

Table 1. Comparison of alignment accuracy and runtime.

Algorithm Standard KLD Resampling
Method

Improved KLD Resampling
Method

Running Time 232 75
∅E/(′) Variance 1.63 0.71
∅N/(′) Variance 1.35 0.84
∅U/(′) Variance 2.59 0.93

From Table 1, it can be concluded that the estimation accuracy of the improved KLD
resampling method is better than that of the KLD method, and the computation time
consumed is less than 1/2 of that of the KLD method, which evidently has a better real-time
processing capability and is more suitable for real-time applications.

2.5. Improvement of AMCL Algorithm Initial Particle Swarm Generation

1. Random sampling from Gaussian distribution to generate initial particles. Use the
global coordinate system as the reference coordinate system, use the initial positional
attitude (default 0) as the mean value of the initial particle distribution, and obtain
the covariance matrix of the positional attitude from the parameter server.

2. Prediction of particle orientation. When the odometer information is received, it is
sampled from the odometer model to estimate the predicted position of the parti-
cle swarm.

3. Update particle position. When receiving the measurement data, the measurement
data is put under the position of each particle, to judge the possibility of the mea-
surement data occurring, and update the weights of the particles with this possibility.
Put the laser measurement data into each particle position, and then calculate the
distance between the endpoint of the laser measurement and the nearest obstacle on
the map, the smaller the space is, the greater the likelihood of the laser measurement
data occurring, and the greater the weight of the particle. The darker the color of the
particle, the greater the weight.

4. Resample. If resampling, the program will judge the variance of the weights of the
particle set; the larger the variance the smaller the effective particles and the more
serious the particle degradation. In this case, it is necessary to carry out the resampling.
After resampling, the number of particles will remain unchanged, particles with
smaller weights will be filtered out, and particles with larger weights will be copied.

5. Place the resampled particles into the histogram. The bit positions of the particles after
resampling are put into the corresponding histogram. Maintain the data structure
of the histogram with kd-tree, with the bit positions of the histogram as key and
the weights of the particles as value. the more particles within the histogram, the
darker the color of the histogram, which represents a more significant weight of
that histogram.

6. Clustering statistics results. Recursively find if there are histograms containing par-
ticles at nine fixed distances around each histogram (here, the size of a histogram
edge is used as the distance), and cluster them into one class if there are, and where
it is clear that c1 is the highest-weighted class. Again, generate the variable particle
swarm, find the particles in c1 and take the mean of their bit positions as the final
result to publish.

Figure 6a,b represent the particle’s position information in global coordinates and
the odometer’s re-prediction of the particle’s position by Gaussian noise, respectively.
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Figure 7a,b represent the change in the particle weights, the size of the weights based
on color discrimination and the particles with larger weights are replicated, respectively.
Figure 8a–c represent the process of dividing the particles based on regions, finding particles
with high weights using clustering methods, and publishing particles, respectively. From
the analysis of the above steps, it can be concluded that the sampling method based on
the probabilistic model is used to generate the particle swarm more evenly and uniformly.
According to the weights of the particles, filter out the particles with smaller weights and
copy the particles with larger weights to better cover the area where the AGV is located
and improve the robustness of the algorithm. For the improved initial particle swarm
optimization, this can improve the initial positioning accuracy and convergence speed of
the algorithm. In addition, the improved initial particle swarm generation method can
also improve the accuracy of the algorithm, enabling it to effectively locate in different
environments and initial conditions.
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2.6. Comparison of Performance Metrics of the Improved AMCL Algorithm

The AMCL and improved AMCL algorithms are tested in simulation experiments,
respectively. The simulated AGV is started on ROS with a Gmapping raster map, and the
start point and end point are set to use the two algorithms for trajectory tracking planning,
respectively. The distance between the cyclic Gmapping maps is 10 m, and the walking
of 10 circles is one round, ten rounds. The data of each travel is recorded using a rosbag
file and then imported into Matlab for simulation analysis. As shown in Figure 9, the
simulation is carried out in the ROS operating system.
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Where the parameters are set to c = 0 .357, ε = 0.2, τ = 0.05, δ = 0.01. The rest of the
parameters were kept unchanged.

The packet rosbag obtained on ROS was imported into Matlab 2021B, after which the
data was extracted to obtain the following plot of fitted and analyzed data.

The data for each of the simulations are shown in Table 2. Table 2 represents the
parameter differences between the two different algorithms in the simulation case.
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Table 2. AMCL and improved AMCL fusion QR code algorithm comparison.

Parametric Algorithm Value

Maximum offset angle AMCL 30◦

Improved AMCL 21◦

Minimum offset angle AMCL 24◦

Improved AMCL 10◦

Average travel time for one lap AMCL 7.3 s
Improved AMCL 5.5 s

Maximum error from target point AMCL 34 cm
Improved AMCL 11 cm

Minimum error from target point AMCL 24 cm
Improved AMCL 5.2 cm

As can be seen from the illustration, the trace of the error is consistent with the offset
error generated during AGV traveling. Still, it needs to be corrected concerning the actual
speed value, a priori estimate, and a posteriori estimate. That is, the following predicted
path in the process of traveling has a significant deviation from the real path, and it is easy
to produce a situation in which the command route is not the same as the real route.

The improved algorithm was tested in the simulation by setting the initial yaw angle
to 60◦. The value change in the optimized algorithm, while ensuring that the rest of the
parameters are the same, yields the silky smoothness of the real trajectory graph running
over the time of (a) in Figure 10. The improved algorithm is better smoothed compared to
the AMCL. (b) The grey lines in the figure serve as the measured data, with a large degree of
deviation; the green lines serve as the modelled values, with a smaller degree of deviation;
and the final filtered results are much closer to the true values, and the traces of error
have converged to a minimum. From the figure, it can be concluded that the fluctuation is
small and the performance is relatively smooth. The thin line represents the AMCL algo-
rithm test results, and the thick line represents the improved AMCL algorithm test results.
(c) and (d) in Figure 10 illustrate that the improved AMCL algorithm performs smoother
for the fluctuation of the errors of the true value of the speed, the a priori estimate and the
a posteriori estimate for different directions, the errors are within the permissible range,
and the improvement of the algorithm meets the requirements and performs well.
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3. QR Code Navigation and Construction of a Template Matching Library

The experimental simulation verifies that the improved AMCL algorithm has better
performance, yielding better data in terms of positioning accuracy, arrival time and offset
angle. Therefore the improved algorithm can be verified by fusion experiments.

3.1. QR Code Navigation Process

First, the AGV uses SLAM to navigate to the area near the specified QR code. Then,
the AGV opens the QR code scanning function and switches to QR code navigation after
scanning the QR code setting information. Then, the AGV approaches the direction of
the center of the QR code until the scanning center of the AGV chassis coincides with the
center of the QR code. The vehicle-mounted camera takes the position of the QR code
center as the relative position, obtains the spatial coordinates through calculation and
conversion, and uses the coordinate transformation to make the AGV scan the center of the
QR code and realize normal movement. Figure 11 shows the flow chart of QR code scanning
and recognition.

To calculate the geometric information of objects in three-dimensional space, it is
necessary to calibrate the camera. From this, the camera’s internal parameter matrix A
and R are obtained, and the camera’s orientation relative to the world coordinate system is
determined. Since the camera’s focal length is not 0, and the matrices A and R are reversible,
the actual coordinates of pixels in the photo in the AGV coordinate system are calculated
using Formula (10). 

X
Y
Z

 = R−1·

A−1·

u
v
1

−1
(uc, vc) =

(
u1+u3

2 , v1+v3
2

) (10)
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Figure 11. QR code scanning recognition process.

When the central coordinate of the QR code p(uc, vc) is known, the coordinates
P(XC, YC, ZC) of the car body coordinate system can be calculated. Due to the use of
QR code three-point positioning, the coordinates of the three points of the QR code in
the image (u1, v1), (u2, v2), (u3, v3), and because the position of the required detection
pattern is known, the coordinates of the center p(uc, vc) of the QR code can be calculated,
and p(uc, vc) is substituted to obtain the coordinates P(XC, YC, ZC) of the QR code in the
coordinate system of the car body. Combined with the coordinate information of the current
QR code in the entire map, the position of the AGV in the map can be determined. In
Figure 12 (a) represents the relationship between the three coordinate systems, (b) AGV
scanning for coordinate transformation.
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3.2. Construction of the Template Matching Library

The stability of QR code navigation depends on the performance of the reader (de-
coding speed, accuracy, and precision) and the performance of the IMU (accuracy and
stability) [23,24]. The higher the decoding efficiency of the reader, the higher the AGV
can travel. However, if the QR code is dirty and damaged, the navigation accuracy will
significantly decrease. Therefore, we propose a library of QR code templates to improve
the positioning accuracy. QR codes of the same size with different recognition areas are
generated by a QR code generator, and each QR code template library contains nine inde-
pendent QR codes, each of which is unique. In other words, multiple QR codes are fused
into a QR code combination map, and the QR code template libraries are constructed based
on the “different codes” in the QR code recognition area, and the current pose is quickly
determined by triangulation matching.

To further improve the localization accuracy of QR code labels in the global graph, a
particle-based localization algorithm in AMCL is used to match the QR code combination
graph. The Gmapping grid map is drawn using SLAM navigation. Use the three points
of the QR code identification area to form a triangle as the coordinate position of the QR
code (the QR code itself also stores the position information), and save it in the map. The
location of the QR code label is used as a landmark, and the AGV recognizes its ID by
matching the triangles and obtains the corresponding coordinates when it detects the
QR code landmark. Since each QR code tag area generates different particles, but the
template library is unique, the similar triangles identified above for triangle matching
can be matched with the template library. As shown in Figure 13a shows the graphic
and storage information area of the QR code, Figure 13b shows the formation of QR code
landmarks through multiple QR codes, and Figure 13c shows the QR code landmarks
affixed to the experimental site. For example, when different numbers of particles are
generated at the position of the label of the template library in the front A, then scanning
the position in front can obtain a lot of similar triangles according to the different positions
of the particles, at this time, the triangles generated by the particles in the fixed area are
matched with the triangles of the current correct position area, which is similar but the
direction is different, and thus the AGV is automatically adjusted to the angle. Therefore,
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the distance and offset angle between the AGV and the label can be determined. Firstly, the
AGV calculates the relative position of the QR code tag in the SLAM global map based on
the received QR code data, thus obtaining the approximate orientation of the detected QR
code. Then, the AGV performs a self-tracking motion based on the approximate position in
the map and quickly determines the part of the QR code label based on triangle matching.
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The matching template library formula is as follows:

l49, l48, l89, (x4, y4), (x8, y8), (x9, y9), 1

l48, l18, l14, (x1, y1), (x4, y4), (x8, y8), 2

l33, l12, l26, (x3, y3), (x7, y7), (x5, y5), 3
...

lxy, lxy, lxy,
(
xx, yy

)
,
(
xx, yy

)
,
(
xx, yy

)
, r

...
lxy, lxy, lxy,

(
xx, yy

)
,
(

xx, yy
)
,
(
xx, yy

)
, n

(11)

In the above equation, lxy is the edge length of the triangle template library, and(
xx , yy

)
is the coordinate value of each point.

In this paper, we use the estimated position of the AGV as the input to fuse the world
coordinates of the QR code and increase the weight of particles in the AMCL algorithm.
Many QR code landmarks were detected in the process of AGV moving, and the location
of QR code landmarks was quickly determined according to the triangle matching. The
relationship between the AGV and the detected QR code landmark is as follows:

(xV − x1)
2 + (yV − y1)

2 = r2
1

(xV − x2)
2 + (yV − y2)

2 = r2
2

...
(xV − xi)

2 + (yV − yi)
2 = r2

i
...

(xV − xn)
2 + (yV − yn)

2 = r2
n

(12)
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where (xV , yV) represents the estimated position of the AGV car, which can be obtained by
solving the formula. (xi, yi) is the ith location of the QR code detected. In addition, it can
be obtained that the direction of the AGV is

θV =



1
n

n
∑

i=1

[
arctan

(
yi−yV
xi−xV

)
− ϕi

]
xi > xV

1
n

n
∑

i=1

[
arctan

(
yi−yV
xi−xV

)
− ϕi + π

]
yi ≥ yV , xi < xV

1
n

n
∑

i=1

[
arctan

(
yi−yV
xi−xV

)
− ϕi − π

]
yi < yV , xi < xV

1
n

n
∑

i=1

[
π
2 − ϕi

]
yi > yV , xi = xV

1
n

n
∑

i=1

[
−π

2 − ϕi
]

yi < yV , xi = xV

(13)

where θV represents the direction of the AGV car and ϕ is the observation angle of the
detected QR code landmark. Therefore, the estimated pose of the AGV car can be expressed
as µV = (xV , yV , zV).

The estimated position of the AGV car can be obtained from Equations (12) and (13),
and the position weight of the particle can be calculated as follows:

d[i] =
1

(2π)
3
2

EXP(−1
2
(x[i]t − µV)

T
(x[i]t − µV)) (14)

where the position and direction of the particle are x[i]t = (xi, yi, ϕi).
The AMCL algorithm covers the whole map evenly, and then the particles converge

near the QR code according to the location of the QR code landmark. As shown in
Figure 14a,b. When scanning the QR code landmark at a specific location, triangular
matching joins to the QR code landmark. As in Figure 14c. The coordinates of a, b, and
c are (xa, ya), (xb, yb), and (xc, yc), respectively. The side lengths of the three measured
triangles are lab, lac, and lbc, respectively. First, search for similar triangles in the QR code
template library. As in Figure 14d. The three sides are unequal in length but proportional,
and the angles are equal. Thus, the detected ∆abc matches the ∆835 in the library. As in
Figure 14e,f.

Triangle detected:
lab, lac, lbc, (xaya), (xbyb), (xcyc) (15)

Matching template library:

l49, l48, l89, (x8, y8), (x3, y3), (x5, y5), 1
...

l28, l29, l89, (x2, y2), (x8, y8), (x9, y9), k
...

l35, l34, l55, (x1, y1), (x3, y3), (x9, y9), n

(16)

Triangular matching identification:
a(xa, ya) = 8(x8, y8)

b(xb, yb) = 3(x3, y3)

c(xc, yc) = 5(x5, y5)

(17)
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In the navigation process, the completeness and accuracy of the constructed map is
one of the decisive factors in determining the accuracy of navigation and positioning [25].
Significant errors in map construction often directly lead to problems such as positioning
failure and unguaranteed accuracy [26]. To improve the map-matching accuracy in naviga-
tion, the weight of the particles in the AMCL algorithm is increased in the code reading
area. Then, the AGV position information is updated, and the data is estimated to be within
the normal range according to the recognition of the new.
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Figure 14. Process of AMCL particle distribution and triangulation matching. The number of the QR
code reflection surface detected by (a–c) is the ID of the QR code landmark in the template library:
(a) particles flatten the entire map; (b) the particle converges to the landmark position of the QR code;
(c) use triangular matching positioning to increase the weight when scanning the QR code; (d) a, b
and c are the detected QR code reflecting surfaces; (e) there are all kinds of triangles in the template
library; (f) the two triangles are proportional in length and match in shape.

Establish a simulation environment and analyze and improve the various types of
problems that occur in the algorithm through simulation experiments to verify the algo-
rithm. Figures 15 and 16 represent the fusion process of QR codes in the simulated state and
in the improved algorithmic positioning shown simultaneously in the RVIZ and Gazebo
environments, respectively.
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3.3. Extended Kalman Filter Fusion Data

The estimated position of the QR code navigation AGV sweep data and the AMCL algo-
rithm can be fused by a fusion method to obtain a more accurate position estimation [27,28].
In the fusion process, it is first necessary to convert the QR code navigation AGV scanning
data into positional information, which is usually obtained by decoding the QR code to
obtain the position and attitude information of the QR code. Then, this position informa-
tion is fused with the estimated position of the AMCL algorithm. The fusion method is
as follows:
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1. Prediction steps.

Establishing the equation of state:

Xk+1 =


xk
yk
vk
θk
ωk

+


vk· cos(θ)·∆t
vk·sin(θ)·∆t

0
ω·∆t

0

+



1
2 ·αv,k· cos(θ)·∆t2

1
2 ·αv,k· sin(θ)·∆t2

αv,k·∆t
1
2 ·αω,k·∆t2

αω,k·∆t2


, ωk 6= 0 (18)

where x is the x-direction coordinate, y is the y-direction coordinate, v is the radial velocity,
θ is the yaw angle, ω is the yaw angular velocity, αv,k is the acceleration of the radial velocity
v, and αω,k is the acceleration of the yaw angular velocity ω.

Condition prediction:

x̂k+1|k =
[

f
(

x̂k|k

)
+ Fk

(
xk − x̂k|k

)
+ ωk

]
(19)

where f
(

x̂k|k

)
is the state estimate, xk is the state vector, and Fk is the higher order term

derivation.
From Equations (18) and (19) the predicted covariance prediction can be derived as

Pk+1|k = [F
k

(
xk − x̂k|k· cos(θ)∆t

)
+ αv,k·∆t] ·[F k

(
xk + x̂k|k· sin(θ)∆t

)
− αω,k·∆t2] (20)

2. Update steps.

Convert the QR code navigation AGV scanning data into an observation model, i.e., the
position and attitude information of the QR code is converted into a positional observation.
Compare the observation model with the predicted position and attitude, and calculate the
observation residuals:

ŷ = zk − Hk x̂k|k+1 (21)

zk is the state estimation transfer equation and Hk is the observation matrix.{
zk = Hk·xk + vk

xk = Fkxk−1 + Bkuk + ωk
(22)

vk is the observation noise and Bk is the input control model acting on the controller
vector uk.

Calculate the Kalman gain:

Kk = P̂k·HT ·
(

H·P̂k HT + R
)−1

(23)

R is the measurement noise covariance matrix and H is the measurement matrix.
Based on the Kalman gain and observation residuals, the updated bit position estimate

is

h
(

x′
)
=

ρ
ψ
.
ρ

 =



√
P2

x + P2
y

arctan
(

Px
Py

)
PxVx+PyVy√

P2
x+P2

y

 (24)

where Px, Py, Vx, and Vy are the positions and velocities of the fused a priori estimates.
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3. Simulation result diagram.

The two were fused for simulation to test the correlation relationship.
Figure 17 shows the accuracy test of the EKF fusion data. Simulations using EKF fused

data can yield close to the true values and can be used with this fusion method.
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4. Experimental Validation

In order to verify the effectiveness of the proposed combination algorithm, a simulation
platform is established and real experimental scenarios are built to verify the effectiveness.
The AGV used in the simulation is 0.5 m × 0.3 m × 0.2 m in size, with a mass of 10 Kg,
LIDAR on top, and an inertia matrix of [0.01, 0, 0; 0, 0.02, 0; 0, 0, 0.03]T . The mean value
of the measurement noise is set at 0, and the covariance matrix at [0.01, 0; 0, 0.01], which
means that the variance of the measurement noise in the x- and y-directions is 0.01.

The parameters are set for simulation experiments and the rest of the data is kept
constant. The data obtained in the simulation experiment platform is analyzed using
MATLAB2021B. Table 3 shows the parameter settings of the AGV.

Table 3. AGV setup parameters.

Name Number

Maximum linear speed 1 m/s
Maximum angular velocity 1 rad/s

Maximum linear acceleration 0.5 m/s2

Maximum angular acceleration 0.5 rad/s2

Radar scanning angle 320◦

Radar scanning frequency 10 Hz
Maximum measurement distance of radar 10 m

Improved AMCL algorithm particle initial value 1000
Resampling measurement Low variance resampling

4.1. Improved AMCL Algorithm Simulation Comparison Experiment

A raster map is generated using SLAM laser navigation, and AMCL localization
particles are tiled over the raster map until the whole map is tiled. The AMCL algorithm
and the improved AMCL algorithm are introduced separately, and the different situations
among the two are observed and data is collected for analysis. The size of the map is
10 m × 10 m, and travelling one lap is recorded as one complete distance.
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Navigation was tested using different algorithms in the same environment, and
Figure 18 show the different scenarios in which the particles behaved separately.
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Figure 18. AMCL algorithm with improved AMCL algorithm particle changes: (a) AMCL algorithm
for particle changes at the starting point; (b) AMCL algorithm changes of particles at the end point;
(c) improved AMCL algorithm for particle changes at the starting point; (d) improved AMCL
algorithm for particle changes at endpoints.

Photoelectric sensors were set up on both sides of the laying of the QR code and at the
start-end position to detect the number of corrections and the maximum distance of error
when different algorithms were used for tracking the trajectory, in order to record a week’s
navigation time as well as the maximum distance from the set point of the target error.

It can be learnt from the distribution of the particles that the distribution of the
improved algorithm particles performs better compared to the previous algorithm, dis-
tributing on the real trajectory with less error, and the rest of the particles of the regions
not involved by the AGVs disappear, only in the aggregation of the labels. From Figure 19
it can be seen that during approximately the first 30 messages released by the AMCL,
the localization error is small; once 30 messages are released, the AGV is abducted to
produce a large error. As the AGV moves, the positioning error gradually decreases, and
after multiple messages, the error tends to 0, restoring the original positioning accuracy.
Although the improved AMCL algorithm also encounters kidnapping, the adjustment time
is improved by 68.73% compared to the unimproved algorithm.
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Figure 19. Particle distribution and position error: (a) particle distributions generated by the AMCL
algorithm and improved algorithms on trajectories; (b) AMCL and improved AMCL algorithm for
processing information in case of kidnapping.

The maximum data for the offset recorded by the photoelectric sensor in Figure 20a is
(−18.79, 22.38) when using the AMCL algorithm, while the improved AMCL algorithm is
(−4.79, 6.82). That is to say, adjusting the trajectory to the left exceeds the set trajectory line
by a maximum of 22.83 cm and 6.82 cm, and adjusting the trajectory to the right exceeds
the distance by a maximum of 18.79 cm and 4.79 cm, from which the comparison can
be significantly concluded that the improved algorithm is superior. Figure 20b with the
increase in the running time, the error gradually increases and reaches a peak at a certain
point, and then the error gradually decreases, but the adjustment time also gradually
increases. In contrast, because of the addition of the algorithm to eliminate the cumulative
error link, in the improved algorithm, the error will be adjusted quickly with a slight
difference between the scan data and the simulation algorithm. Because of the large
deviation, the velocity variation is large, the maximum velocity cannot be reached, and
the velocity variation has to be adjusted in each sweep, and the fluctuation of linear and
angular velocities in Figure 20c,d are fluctuate more compared to the improved AMCL
algorithm. Table 4 shows the performance of different algorithms with the same conditions.

4.2. Real Scene Experimental Test

The simulation experiments have proved that the proposed algorithm has good per-
formance and the localization time and error distance are greatly reduced, so it can be
significantly shown that the improved AMCL algorithm has better superiority. Therefore,
the real effectiveness of the improved algorithm is verified, and the experiments are carried
out and analyzed in real scenarios. Figure 21a,b shows the front and side view of the AGV
used in the experiment. Figure 21c shows the experimental site used in the experiment,
and Figure 21d shows the QR code labels pasted in the experimental site.

Real experimental scenarios are established and tested using the improved AMCL
algorithm to obtain valid data for analyzing the reliability of the algorithm.

The map generated using the SLAM technique is shown in Figure 22, where the
thin green line from 0 to 1 is the trajectory of the AGV. The round-trip is one lap, and
the data of the AGV travelling ten laps are saved and imported into MATLAB2021B for
analysis, which proves the validity of the proposed algorithm by comparing the data with
the positional error of AGV arriving at the target point, the maximal corrective angle, the
speed fluctuation, and line acceleration.
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Table 4. AMCL and improved AMCL fusion QR code algorithm comparison.

Parametric Algorithm Value

Starting particle AMCL 1500
Improved AMCL 1500

Time from start to target
(10-turn average)

AMCL 12.59 s
Improved AMCL 7.42 s

Offset maximum distance
(both sides)

AMCL (−18.79, 22.38) cm
Improved AMCL (−4.79, 6.82) cm

Deviation distance to target point
(10-turn average)

AMCL 27.36 cm
Improved AMCL 4.81 cm

Dissolution of kidnapping recovery time
(10-turn average)

AMCL 2.2 s
Improved AMCL 0.39 s
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4.2.1. Improved AMCL Matching Template Library Accuracy Test

Use SLAM to generate particles on the QR code, mark the coordinate position of the
QR code on the map, turn off the camera, use the particles to determine the coordinate
position of the QR code, and the AGV travels to the particle aggregation area until it reaches
the matching QR code marking point. Compare the position information with the actual
coordinate position information of the QR code and analyze the error distance between
the two.
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Figure 23a shows that the improved AMCL particles converge on the QR1 position, at
which time, Figure 23b shows that the AGV stopping position is in the area directly above
the landmark. From the actual test, it is concluded that the AGV identifies the particle
template on QR1 to match the exact position of the first landmark on the SLAM construction
map, and then accurately travels to the first landmark area location, waiting for the next
command. At this time, the industrial camera is opened to scan the code, and the real
position of the AGV at this time is obtained through coordinate conversion, comparing
the coordinate information and measuring the position error interval between the particle
triangular matching position information using the improved AMCL algorithm and the
position error interval of the QR code scanning information.
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Taking the forward direction of the AGV as the y-axis and the left-right offset distance
as the x-axis, two photoelectric sensors are installed before and after the QR1 landmark po-
sition, and the coordinate information of each arrival position is re-recorded and weighted
average. Table 5 shows that the combination of code-sweeping positioning and improved
AMCL algorithm has the highest accuracy, with the maximum offset of coordinate infor-
mation not exceeding 1 cm, and the reading distance before and after the combination
not exceeding 0.5 cm, and the navigation and positioning accuracy has been improved by
64.27% on the original basis.

Table 5. AMCL and improved AMCL fusion QR code algorithm comparison.

Average
Value

Actual Position
Coordinates

Particle Triangulation
Matching Position

Coordinates

Industrial Camera
Scanning Position

Coordinates

Scanning Fusion
Improved AMCL

Maximum Left Offset
Maximum Right

Offset

Cycle 5 times (0, 375.00) cm (1.96, 377.92) cm (3.24, 373.16) cm (0.59, 374.25) cm (0.88, 0.53) cm
Cycle 10 times (0, 375.00) cm (2.88, 373.40) cm (2.64, 377.88) cm (0.36, 375.40) cm (0.56, 0.62) cm
Cycle 20 times (0, 375.00) cm (3.72, 377.34) cm (1.52, 377.50) cm (0.42, 375.34) cm (0.78, 0.62) cm
Cycle 30 times (0, 375.00) cm (2.48, 373.68) cm (2.44, 373.32) cm (0.44, 375.32) cm (0.84, 0.66) cm
Cycle 50 times (0, 375.00) cm (1.54, 377.12) cm (3.72, 377.48) cm (0.72, 374.48) cm (0.76, 0.64) cm

4.2.2. AGV Particle Kidnapping Experiment

In previous simulation experiments, it was found that the particles generated by the
AMCL algorithm were prone to kidnapping events during the positioning process. The
improvement of the algorithm as well as the improvement of resampling can effectively
avoid such situations, so it is verified in real experiments that the algorithm can effectively
improve the robustness and reliability of AGV positioning.
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The experiments show that the particles in the AMCL algorithm will not disperse
automatically after AGV is kidnapped, so it is impossible to relocate. However, the im-
proved AMCL algorithm will scatter some particles at the kidnapped position, which can
be relocated. Figure 24 shows the process of the kidnapping and location recovery of the
AGV when the improved AMCL algorithm is started. Figure 24a shows the initial state of
the AGV. At this time, the AGV is ready to accept the command to move forward, and the
particles are in a dispersed state. Figure 24b shows the state that the AGV moves to QR2
point, at which time the particles are in a convergent state. Figure 24c shows that the AGV
is kidnapped, and the particles gather in this area and do not diverge with the movement
of AGV. As shown in Figure 24d, to detect the kidnapping event, the improved algorithm
is adjusted and the positioning state is restored. To calculate the kidnapping time, calculate
the duration of the kidnapping time based on the start time and end time of the kidnapping
event. To monitor the positioning error, sensors or other positioning systems are used to
monitor the difference between the actual position of the AGV and the position estimated
by the AMCL algorithm. When the positioning error exceeds a certain threshold, it can be
determined that an kidnapping event has occurred. Record the start time of the abduction
event. When the positioning error exceeds the threshold, record the current time as the start
time of the kidnapping event. To monitor the positioning recovery, continue to monitor the
positioning error, and when the positioning error recovers to within an acceptable range, it
can be judged that the kidnapping event is over.
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The AGV was driven for 10, 20, and up to 50 laps, respectively, for the experimental
testing, the time used when the kidnapping event occurred and the time after adjustment
were recorded, and the data were analysed and counted in Table 6. From Table 6, it can
be clearly concluded that the use of the improved AMCL algorithm can effectively avoid
the occurrence of kidnapping events, and the solution of the kidnapping problem can
save 42.81% of the AGV navigation time, and once such an event occurs, it can be quickly
adjusted to avoid the problem of inaccurate positioning in the process of moving forward.

Table 6. Measurements of the occurrence of kidnappings.

Number of
Cycles Algorithm

Number of
Kidnapping

Incidents

Cumulative Time
/Average Time (s)

Maximum/Minimum
Recovery Time (s)

Maximum/Minimum
Positioning Error (cm)

10
AMCL 17 51.64/3.04 2.59/1.75 22.81/15.69

Improved AMCL 2 1.18/0.59 0.12/0.06 3.88/1.72

20
AMCL 31 79.04/2.54 2.78/1.16 19.26/10.71

Improved AMCL 3 1.56/0.52 0.21/0.02 4.33/2.28

30
AMCL 44 119.68/2.72 2.13/1.54 21.16/9.31

Improved AMCL 5 2.26/0.45 0.51/0.03 3.29/1.61

40
AMCL 60 146.28/2.44 2.88/1.02 18.74/11.26

Improved AMCL 8 3.28/0.40 0.96/0.02 5.10/2.13

50
AMCL 71 162.64/2.29 1.35/0.97 16.89/8.92

Improved AMCL 10 4.18/0.41 0.29/0.05 3.77/1.02

4.3. Discussion

QR code-navigated AGVs are widely used in agriculture, industrial automation,
healthcare, logistics, and other fields. There are a large number of researchers contributing
to QR code navigation, localization, path planning, etc. in the related literature. With the
development of industrial automation, visual navigation is widely adopted because of
its high accuracy and low latency. However, single navigation still faces many problems,
such as a long processing time and high sensor requirements. Ref. [7] proposed to use
EKF combined with an internal encoder and external QR code to correct the cumulative
error generated by attitude estimation. This method can effectively solve the error problem
and improve the positioning accuracy, providing a new reference for navigation methods.
However, the error increases as the distance of the QR code paste increases.

In this article, EKF can only calculate the a posteriori estimate of the state through
the current measurement value and the a priori estimate, and cannot directly consider the
influence of historical data, so it is susceptible to the cumulative error of the sensor. EKF as-
sumes that the noises in the system model and the measurement model are linear Gaussian
distributed, but there may be nonlinear noises and non-Gaussian distributed noises in the
actual application, which may lead to the filtering results of accuracy degradation. Our
work meets the positioning requirements of high-precision navigation systems in terms of
adaptive tuning, positioning accuracy, and navigation time.

When in a suitable environment, the navigation and positioning scheme proposed by
some researchers can achieve 100% positioning and permanently eliminate accumulated
errors. The method proposed by [8] can achieve 100% accuracy and complete given
commands under suitable circumstances. It has achieved a qualitative leap in the field
of navigation and positioning. However, due to its use of RGB sweep detection, when
encountering bright light environments, or when obstacles are similar in color to the
transported object, it can adversely affect the results to detect the completion of instructions.

Zhang, H., and Dong, S. et al. [29,30] proposed different fusion methods to improve the
positioning accuracy and reduce the time required for navigation. However, when AGVs
are in an environment similar to a long corridor, they are prone to map distortion, incorrect
judgement of current position, continuing along the wrong route and collision problems.
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Through the simulation experiments and scenario tests in this section, a large number
of experimental comparisons can be made to conclude the superiority of the proposed
method in this paper, which is better than similar methods in terms of the adaptive adjust-
ment time, positioning accuracy, and navigation time.

5. Conclusions

This paper introduces an AGV navigation and positioning system that integrates
navigation and precise positioning. The AMCL particle positioning algorithm is used to
perform triangular matching, establish a library of QR code templates, and quickly identify
the current position of the QR code for precise positioning. The accuracy of the proposed
algorithm is verified through a large number of comparative experiments and simulation
data, and the positioning and navigation tasks can be completed in a real experimental
environment. It solves the problems of inaccurate positioning and low precision, which are
common in the market at present, and provides reference for the accurate positioning of
AGV. The focus of this research is to develop hybrid navigation AGVs based on the market
scarcity to serve the public and shift from industry to service. The main contributions of
this paper are as follows:

1 This article provides an in-depth analysis and research on the development status of
AGV’s critical domestic and international technologies and researches robot naviga-
tion, positioning, and path planning technology. The advantages and disadvantages
of various methods are compared, and the overall navigation scheme and system
navigation method are designed in detail. Finally, the feasibility and benefits of this
choice are verified through experiments.

2 An ROS operating system was used to build the simulation environment of the AGV,
and the real positioning system platform was established to prepare for the research
of the AGV positioning system. The localization system proposed in this paper uses
SLAM global mapping to obtain the absolute coordinates of ground punctuation.
It uses the improved AMCL algorithm to combine QR codes, which improves the
positioning time and accuracy in the navigation process.

3 Improving the generation of the initial particle swarm can improve the convergence
speed and accuracy of the algorithm, and improve the resampling method to effec-
tively reduce or avoid the kidnapping problem. By building the simulation model
and testing the simulation using MATLAB software, the algorithm can be made to
converge faster and more accurately to the AGV position, as well as improving the
real-time and responsiveness of the system, and greatly reducing the time required
for navigation.

4 When the particles generated by the AMCL algorithm encounter the kidnapping
situation, i.e., the AGV generates too much offset and the particle state does not
change with the movement of the AGV. Through comparison, it can be learnt that
the improved AMCL algorithm can quickly adjust the attitude and correct the off-
set distance, so that it can quickly return to the original travelling route, and the
resumption of the adjustment time has been improved by 68.73% compared with the
unimproved algorithm.

5 During AGV navigation, the time required for navigation was reduced by 42.81%
compared to the unimproved algorithm. The navigation time is greatly reduced,
which speeds up the time to process the goods and improves the turnaround speed
and capacity of the goods. The positioning accuracy is an important criterion to
measure the accuracy of the proposed algorithm. In this paper, by comparing and
contrasting, it is concluded that the positioning accuracy is improved by 64.27%
compared to the previous algorithm.

In the following research, we will pay more attention to the accuracy and practicality
of AGVs in positioning and navigation. For example, we will study the practical application
of visual navigation in AGVs and further combine visual information with or instead of QR
code data to improve the ability of AGVs to sense their surroundings. In addition, we aim
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to make a major breakthrough in visual autonomous navigation in AGVs, i.e., to achieve
more accurate positioning and no interference throughout the autonomous navigation
process, and to apply it to more complex operational tasks and environments.
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