Effect of Temperature Distribution on Interfacial Bonding Process between CFRTP Composite and Aluminum Alloy during Laser Direct Joining
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Device and Setup for Interfacial Bonding Process Observation
2.2. Simulation Modeling of Temperature Field during Laser Direct Joining
3. Results and Discussion
3.1. Consistency Verification of Observation and Simulation Results
3.2. Effect of Temperature Distribution on Interfacial Bonding Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siengchin, S. A review on lightweight materials for defence applications: Present and future developments. Def. Technol. 2023, 24, 1–17. [Google Scholar] [CrossRef]
- Wu, J.W.; Posen, I.D.; MacLean, H.L. Trade-offs between vehicle fuel economy and performance: Evidence from heterogeneous firms in China. Energy Policy 2021, 156, 112445. [Google Scholar] [CrossRef]
- Ahmad, F.; Al Awadh, M.; Noor, S. Optimum alternate material selection methodology for an aircraft skin. Chin. J. Aeronaut. 2023, 36, 476–488. [Google Scholar] [CrossRef]
- Cao, J.F.; Bai, S.L.; Qin, W.Z.; Yan, Y. Research progress on preparation and properties of carbon fiber reinforced thermoplastic composites. Acta Mater. Compos. Sin. 2023, 40, 1229–1247. [Google Scholar]
- Min, J.; Hu, J.; Sun, C.; Wan, H.L.; Liao, P.X.; Teng, H.; Lin, J.P. Fabrication processes of metal-fiber reinforced polymer hybrid components: A review. Adv. Compos. Hybrid Mater. 2022, 5, 651–678. [Google Scholar] [CrossRef]
- Lin, Y.; Min, J.; Teng, H.; Lin, J.P.; Hu, J.H.; Xu, N.J. Flexural Performance of Steel–FRP Composites for Automotive Applications. Automot. Innov. 2020, 3, 280–295. [Google Scholar] [CrossRef]
- Backe, S.; Balle, F. A novel short-time concept for fatigue life estimation of carbon (CFRP) and metal/carbon fiber reinforced polymer (MCFRP). Int. J. Fatigue 2018, 116, 317–322. [Google Scholar] [CrossRef]
- Gardiner, G. A350 XWB update: Smart Manufacturing. Available online: https://www.compositesworld.com/articles/a350-xwb-update-smart-manufacturing (accessed on 7 October 2023).
- Roux, M.; Eguémann, N.; Dransfeld, C.; Thiébaud, F.; Perreux, D. Thermoplastic carbon fibre-reinforced polymer recycling with electrodynamical fragmentation: From cradle to cradle. J. Thermoplast. Compos. Mater. 2017, 30, 381–403. [Google Scholar] [CrossRef]
- Zhao, T.; Zhao, Q.Y.; Wu, W.W.; Xi, L.; Li, Y.; Wan, Z.S.; Villegas, I.F.; Benedictus, R. Enhancing weld attributes in ultrasonic spot welding of carbon fibre-reinforced thermoplastic composites: Effect of sonotrode configurations and process control. Compos. Pt. B-Eng. 2021, 211, 108648. [Google Scholar] [CrossRef]
- Jin, Z.; Han, Z.; Chang, C.; Sun, S.Z.; Fu, H.Y. Review of methods for enhancing interlaminar mechanical properties of fiber-reinforced thermoplastic composites: Interfacial modification, nano-filling and forming technology. Compos. Sci. Technol. 2022, 228, 109660. [Google Scholar] [CrossRef]
- Martín, I.; Fernández, K.; Cuenca, J.; Sánchez, C.; Anaya, S.; Élices, R. Design and manufacture of a reinforced fuselage structure through automatic laying-up and in-situ consolidation with co-consolidation of skin and stringers using thermoplastic composite materials. Heliyon 2023, 9, e12728. [Google Scholar] [CrossRef]
- Behrens, B.A.; Brosius, A.; Hintze, W.; Ihlenfeldt, S.; Wulfsberg, J.P. Automated Assembly of Thermoplastic Fuselage Structures for Future Aircrafts. In Production at the Leading Edge of Technology; Brosius, A., Hintze, W., Ihlenfeldt, S., Wulfsberg, J.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 467–475. [Google Scholar]
- Omairey, S.L.; Sampethai, S.; Hans, L.; Worrall, C.; Lewis, S.; Negro, D.; Sattar, T.; Ferrera, E.; Blanco, E.; Wighton, J.; et al. Development of innovative automated solutions for the assembly of multifunctional thermoplastic composite fuselage. Int. J. Adv. Manuf. Technol. 2021, 117, 1721–1738. [Google Scholar] [CrossRef]
- Gardiner, G. Automated Joining of Hybrid metal-Thermoplastic Composite Structures. Available online: https://www.compositesworld.com/articles/automated-joining-of-hybrid-metal-thermoplastic-composite-structures (accessed on 7 October 2023).
- Murray, R.E.; Roadman, J.; Beach, R. Fusion joining of thermoplastic composite wind turbine blades: Lap-shear bond characterization. Renew. Energy 2019, 140, 501–512. [Google Scholar] [CrossRef]
- Jiao, J.; Xu, J.; Jing, C.; Sheng, L.; Ru, H.; Xia, H. Laser welding process and strength enhancement of carbon fiber reinforced thermoplastic composites and metals dissimilar joint: A review. Chin. J. Aeronaut. 2023, in press. [Google Scholar] [CrossRef]
- Yang, H.Y.; Zhan, X.H.; Bu, H.C.; Ma, W.P.; Wang, F.Y. Study on bubble morphology at interface of laser direct joint between carbon fiber reinforced thermoplastic (CFRTP) and titanium alloy. J. Polym. Eng. 2020, 40, 868–875. [Google Scholar] [CrossRef]
- Chen, J.; Bai, J.; Zu, S.; Lin, Z.; Yang, S. Effect of interfacial thermal history on bonding mechanism of laser assisted joining of QP980-CFRTP with adjustable flat-top rectangular laser beam. Compos. Struct. 2023, 323, 117488. [Google Scholar] [CrossRef]
- Tan, C.W.; Liu, Y.F.; Liu, F.; Su, J.H.; Zhang, Z.Q.; Zhang, X.Y.; Song, K.J.; Chen, B.; Song, X.G. Effect of laser power on laser joining of carbon fiber reinforced plastic to AZ31B Mg alloy. Opt. Laser Technol. 2022, 145, 107449. [Google Scholar] [CrossRef]
- Lambiase, F.; Genna, S.; Kant, R. Optimization of laser-assisted joining through an integrated experimental-simulation approach. J. Adv. Manuf. Technol. 2018, 97, 2655–2666. [Google Scholar] [CrossRef]
- Lambiase, F.; Genna, S. Homogenization of temperature distribution at metal-polymer interface during Laser Direct Joining. Opt. Laser Technol. 2020, 128, 106226. [Google Scholar] [CrossRef]
- Hussein, F.I.; Salloomi, K.N.; Akman, E.; Hajim, K.I.; Demir, A. Finite element thermal analysis for PMMA/st.st.304 laser direct joining. Opt. Laser Technol. 2017, 87, 64–71. [Google Scholar] [CrossRef]
- Tan, C.; Su, J.; Zhu, B.; Li, X.; Wu, L.; Chen, B.; Song, X.; Feng, J. Effect of scanning speed on laser joining of carbon fiber reinforced PEEK to titanium alloy. Opt. Laser Technol. 2020, 129, 106273. [Google Scholar] [CrossRef]
- Wang, Q.; Jia, Z.Y.; Zhang, B.Y.; Gao, D.L.; Ma, Y.; Liu, J.Y. Influence of processing parameters on joint shear performance in laser direct joining of CFRTP and aluminum alloy. Mater. Des. 2021, 209, 109996. [Google Scholar] [CrossRef]
- Jiao, J.K.; Wang, Q.; Wang, F.Y.; Zan, S.P.; Zhang, W.W. Numerical and experimental investigation on joining CFRTP and stainless steel using fiber lasers. J. Mater. Process. Technol. 2017, 240, 362–369. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, X.H.; Zhang, J.; Shan, J.G. Suppression of shrinkage porosity in laser-joining of CFRP and steel using a laser surface modification process “Surfi-Sculpt (R)”. Int. J. Adhes. Adhes. 2018, 85, 184–192. [Google Scholar] [CrossRef]
- Ai, Y.W.; Zheng, K.; Shin, Y.C.; Wu, B.X. Analysis of weld geometry and liquid flow in laser transmission welding between polyethylene terephthalate (PET) and Ti6Al4V based on numerical simulation. Opt. Laser Technol. 2018, 103, 99–108. [Google Scholar] [CrossRef]
- Tao, W.; Su, X.; Chen, Y.B.; Tian, Z. Joint formation and fracture characteristics of laser welded CFRP/TC4 joints. J. Manuf. Process. 2019, 45, 1–8. [Google Scholar] [CrossRef]
- Lambiase, F.; Genna, S. Experimental analysis of laser assisted joining of Al-Mg aluminium alloy with Polyetheretherketone (PEEK). Int. J. Adhes. Adhes. 2018, 84, 265–274. [Google Scholar] [CrossRef]
- Meiabadi, M.S.S.M.; Kazerooni, A.; Moradi, M.; Torkamany, M.J. Laser assisted joining of St12 to polycarbonate: Experimental study and numerical simulation. Optik 2020, 208, 164151. [Google Scholar] [CrossRef]
- Xue, Z.; Shen, J.; Hu, S. Influence of scanning speed and defocus distance on laser welded PA6GF30/SUS444 dissimilar lap joints. Opt. Laser Technol. 2022, 153, 108223. [Google Scholar] [CrossRef]
- Jiao, J.K.; Jia, S.H.; Xu, Z.F.; Ye, Y.Y.; Sheng, L.Y.; Zhang, W.W. Laser direct joining of CFRTP and aluminium alloy with a hybrid surface pre-treating method. Compos. Pt. B-Eng. 2019, 173, 106911. [Google Scholar] [CrossRef]
- Lambiase, F.; Genna, S.; Kant, R. A procedure for calibration and validation of FE modelling of laser-assisted metal to polymer direct joining. Opt. Laser Technol. 2018, 98, 363–372. [Google Scholar] [CrossRef]
- Bu, H.; Zhan, X.; Yang, H.; Wang, F.; Wang, F.; Ma, W. Numerical simulation of thermal distribution and residual stress characteristic for laser wobble joining of CFRTP and Ti-6Al-4V alloy. J. Manuf. Process. 2022, 79, 562–575. [Google Scholar] [CrossRef]
- Wang, Q.; Jiao, J.K.; Zan, S.P.; Zhang, W.W. Effect of Thermal Contact Conductanceon Temperature Field of CFRTP/Stainless Steel Laser Direct Joining. Chin. J. Lasers 2017, 44, 0402002. [Google Scholar] [CrossRef]
Parameters | CF/PEEK | 6061 Aluminum Alloy | PEEK Polymer |
---|---|---|---|
Density (kg/m3) | 1580 | 2700 | 1300 |
Tensile strength (MPa) | 980 | 320 | 100 |
Melting temperature (°C) | 343 | 615–655 | 343 |
Decomposition temperature (°C) | 520 | - | 520 |
Specific heat capacity J/(kg·K) | |||
Thermal conductivity W/(m·K) |
Interface without Polymer Filling | Interface with Polymer Filling | |
---|---|---|
Temperature distribution | ||
Temperature gradient | ||
x direction temperature gradient | ||
y direction temperature gradient |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Fu, R.; Wang, F.; Luo, C.; Li, J.; Jia, Z. Effect of Temperature Distribution on Interfacial Bonding Process between CFRTP Composite and Aluminum Alloy during Laser Direct Joining. Appl. Sci. 2023, 13, 11973. https://doi.org/10.3390/app132111973
Wang Q, Fu R, Wang F, Luo C, Li J, Jia Z. Effect of Temperature Distribution on Interfacial Bonding Process between CFRTP Composite and Aluminum Alloy during Laser Direct Joining. Applied Sciences. 2023; 13(21):11973. https://doi.org/10.3390/app132111973
Chicago/Turabian StyleWang, Qi, Rao Fu, Fuji Wang, Chaoyang Luo, Jiankang Li, and Zhenyuan Jia. 2023. "Effect of Temperature Distribution on Interfacial Bonding Process between CFRTP Composite and Aluminum Alloy during Laser Direct Joining" Applied Sciences 13, no. 21: 11973. https://doi.org/10.3390/app132111973
APA StyleWang, Q., Fu, R., Wang, F., Luo, C., Li, J., & Jia, Z. (2023). Effect of Temperature Distribution on Interfacial Bonding Process between CFRTP Composite and Aluminum Alloy during Laser Direct Joining. Applied Sciences, 13(21), 11973. https://doi.org/10.3390/app132111973