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Abstract: We present an any-to-one voice conversion (VC) system, using an autoregressive model and
LPCNet vocoder, aimed at enhancing the converted speech in terms of naturalness, intelligibility, and
speaker similarity. As the name implies, non-parallel any-to-one voice conversion does not require
paired source and target speeches and can be employed for arbitrary speech conversion tasks. Recent
advancements in neural-based vocoders, such as WaveNet, have improved the efficiency of speech
synthesis. However, in practice, we find that the trajectory of some generated waveforms is not
consistently smooth, leading to occasional voice errors. To address this issue, we propose to use an
autoregressive (AR) conversion model along with the high-fidelity LPCNet vocoder. This combination
not only solves the problems of waveform fluidity but also produces more natural and clear speech,
with the added capability of real-time speech generation. To precisely represent the linguistic content
of a given utterance, we use speaker-independent PPG features (SI-PPG) computed from an automatic
speech recognition (ASR) model trained on a multi-speaker corpus. Next, a conversion model maps
the SI-PPG to the acoustic representations used as input features for the LPCNet. The proposed
autoregressive structure enables our system to produce the following prediction step outputs from
the acoustic features predicted in the previous step. We evaluate the effectiveness of our system by
performing any-to-one conversion pairs between native English speakers. Experimental results show
that the proposed method outperforms state-of-the-art systems, producing higher speech quality and
greater speaker similarity.

Keywords: voice conversion; non-parallel data; autoregressive model; LPCNet; Phonetic Posteriorgrams

1. Introduction

Voice conversion (VC) aims to modify the speech signal spoken by a source speaker to
make it sound as if it was spoken by a different speaker, referred to as the target speaker
while keeping the linguistic content unchanged. VC has a wide range of applications,
including personalized speech synthesis, speech enhancement, speaker identification,
human-robot interaction, and movie dubbing.

Generally, voice conversion systems differ in terms of how the datasets are obtained
and utilized during training. Systems using parallel training data require recordings of
the same linguistic content from paired source and target speakers, while those using
non-parallel training data (i.e., non-parallel VC) are trained on unpaired speech data. A
recent comprehensive overview of VC techniques and their performance evaluation meth-
ods, from statistical approaches to deep learning, can be found in [1,2]. Various methods
have been proposed for parallel voice conversion tasks using statistical modeling, such
as Gaussian Mixture Models (GMMs) [3,4] and frequency warping [5,6]. Although these
methods are low-cost in terms of time and resources, spectral details are typically lost when
using low-dimensional representations, leading to overly smoothed speech waveforms.
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To overcome this issue, more advanced models have been developed, taking advantage
of machine learning-based techniques such as Deep Neural Networks (DNNs) [7,8], Re-
current Neural Networks (RNNs) [9] and Sequence-To-Sequence (Seq2Seq) [10,11], which
achieved superior performance in terms of naturalness and similarity when compared to
conventional VC methods [2].

While previous VC methods have shown promising outcomes, they face a significant
limitation: the requirement for parallel training data, which may not always be readily
available in practice.

In recent years, VC research utilizing non-parallel training data has seen substantial
improvements, largely due to the effectiveness of deep learning techniques in learning
mapping functions. Successful techniques have been developed, such as those in [12–15].
For example, approaches including CyleGAN-VC [16,17], StarGAN-VC [18,19] and VAW-
GAN [20,21], have employed generative adversarial networks (GANs) [22] to improve
both speech quality and similarity to the target speaker, particularly when a large amount
of speech data is available. Other approaches, introduced in [13,15], use Seq2Seq models
and aim to separate linguistic features from speaker identity components. During the
training process, the model learns linguistic representations from acoustic features using
the encoder output as the reference. At run-time conversion, the Seq2Seq decoder is used
to reconstruct the acoustic features, taking advantage of target speaker representations.

The recent advances in non-parallel VC involve the use of linguistic features extracted
from the automatic speech recognition (ASR) model trained using a large multi-speaker
corpus, such as Phonetic PosterioGram (PPG) and bottleneck features. PPGs refer to frame-
level contextual representations derived from the posterior probabilities associated with
each phonetic class, using a speaker-independent ASR system (SI-ASR).

The application of these techniques has received particular attention in relevant
studies [10,23–26] where a conversion model is first used to convert PPGs extracted from
the source speech into spectral features of the target speaker. Subsequently, a vocoder is
applied using the converted features to generate the target speaker’s speech waveforms.
WaveNet [24] serves as the primary neural vocoder widely utilized in VC methods. How-
ever, it has a limitation in generating only one speech sample at a time, which presents
challenges for real-time applications. Moreover, despite the success of PPGs, one of their
limitations is the lack of smoothness in the trajectory of the generated waveforms, leading
to speech artifacts, particularly in run-time conversion.

In this paper, we propose an innovative non-parallel voice conversion framework
that relies on an autoregressive model, a fusion of PPGs and speaker-embedding linguistic
features, and an LPCNet vocoder for any-to-one voice conversion. This method allows us
to transform the voice of an arbitrary speaker, including those who were not part of the
training data, into the voice of a known speaker. Our approach focuses on improving the
robustness of VC techniques in terms of speech quality, naturalness, and speaker similarity.

In summary, the main contributions of this paper are as follows:

• We propose a VC framework using an autoregressive conversion model to obtain
acoustic features with higher precision, thereby generating a smooth trajectory and
reducing speech error problems.

• We use a high-fidelity LPCNet-based vocoder, which improves the efficiency of speech
synthesis and can generate speech in real time.

• We leverage the use of SI-PPGs, which exclude the attention-based duration conversion
module. Additionally, we incorporate speaker embeddings obtained from the speaker
encoder network as auxiliary features, which improves the overall training stability
and minimizes pronunciation artifacts.

• We evaluate the effectiveness of our system by performing “any-to-one” voice conver-
sion pairs on the popular American CMU-ARCTIC database.

Experiments on both objective and subjective evaluations showed that the proposed
method outperforms state-of-the-art systems, demonstrating clearer pronunciation and
greater speaker similarity.
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The remaining sections of this paper are organized as follows: Section 2 introduces the
related work that has motivated our research. Section 3 describes the method we propose.
Section 4 details the experimental setup. Section 5 presents the results and discussion. We
conclude in Section 6.

2. Related Work

Non-parallel VC techniques are even more challenging because they do not need
parallel data for training. Some successful non-parallel VC methods include variational
autoencoder (VAE) [21,27], generative adversarial network (GAN) [22] and its variants
such as CycleGAN [17] and StarGAN [18]. Although these methods have focused on
transforming a non-parallel corpus into a quasi-parallel corpus and then on learning a
conversion function (which is not so straightforward), they can lead to a degradation of
speech quality.

Recent methods based on the use of linguistic features PPGs and vocoders have
also been proposed and have proven to be effective [10,23–26,28]. PPGs are high-level
contextual representations obtained from the posterior probabilities of each phonetic class
using a speaker-independent ASR system. Although PPG techniques have been applied
successfully, they still have inherent limitations, e.g., the quality of the PPGs is highly
dependent on the ASR system.

While conventional parametric vocoders, as mentioned in the work of Kawahara
et al. [29], could be utilized, they tend to produce synthesized speech of lower quality than
neural vocoders. In particular, WaveNet, presented by Liu et al. [24], represents a very
successful implementation of a neural vocoder. WaveNet operates as an autoregressive gen-
erative model, known for its ability to generate high-fidelity audio waveforms. WaveNet’s
autoregressive structure greatly improves the continuity of the generated waveforms;
however, its drawback lies in the slowness of real-time synthesis, due to the one-by-one
generation of waveform samples. In response to this limitation, an alternative to WaveNet
has been proposed in the form of WaveRNN [30], which seeks to improve the quality of the
WaveNet model. WaveRNN uses a layer of sparse gated recurrent units (GRUs) rather than
the dilated causal convolutions used in WaveNet.

Recently, a highly efficient neural vocoder, known as LPCNet [31], has been introduced,
drawing inspiration from WaveRNN. LPCNet leverages the principles of linear predictive
coding (LPC) to model vocal tract responses and incorporates linear prediction techniques
into the WaveRNN architecture, resulting in a reduction in the complexity of generating
raw speech waveforms. Notably, LPCNet achieves the synthesis of higher-quality speech
compared to WaveRNN, even when using the same network size. Moreover, LPCNet
exhibits real-time or faster-than-real-time performance on a single CPU core, thanks to
efficient vectorization techniques. Since its inception, LPCNet has emerged as a popular
choice for various speech synthesis tasks.

Hence, numerous approaches have been proposed to improve the inference speed
of LPCNet [32–34]. In addition, there is considerable enthusiasm for high-fidelity neural
vocoders that exploit generative adversarial networks for their lightweight architectures
and fast speech generation capabilities [35–37]. Nevertheless, the training of these vocoders
can pose challenges, potentially leading to audible artifacts like pitch errors and periodicity
artifacts, attributed to their non-autoregressive (non-AR) structures [38].

Our proposed method differs from conventional PPG-VC techniques, such as the
works of Zhou et al. [23] and Sun et al. [39], in that we use the acoustic features of the
previous step as input to generate next-step output through the proposed AR structure,
resulting in a smooth waveform and low speech distortion. Indeed, taking advantage of the
PPGs, our proposal allows for any-to-one conversion due to its speaker-independent char-
acteristics. In addition, as part of our approach, we use speaker embeddings derived from a
speaker encoder network, originally trained for the classification of multiple speakers [40],
as additional features to more accurately capture the characteristics of target speakers.



Appl. Sci. 2023, 13, 11988 4 of 14

The concatenation of PPGs and speaker embedding features results in a more intelligible
converted speech.

For speech synthesis, instead of the basic WaveNet vocoder, used in such baseline
systems as [10,41], we use a high-fidelity LPCNet-based vocoder [31], which combines
linear prediction with recurrent neural networks. LPCNet has a considerable advantage
in terms of the simplicity of the model. WaveNet, on the other hand, is a much more
complex model, involving more neurons. As a result, it often requires a larger dataset
during training to achieve high audio-quality speech.

3. Method

The architecture of the proposed non-parallel VC framework, shown in Figure 1,
comprises three main components: (1) Linguistic features extraction, (2) Autoregressive
conversion model, and (3) LPCNet synthesizer. We use an SI-ASR model to extract PPG
linguistic features, which are used as input. The conversion model includes an encoder
and an autoregressive decoder, which aims to convert the linguistic features into acoustic
features. We adopt the LPCNet vocoder as a synthesizer that uses the predicted acoustic
features to reconstruct the speech waveform. All these components are described in the
following subsections.

Figure 1. Training stage (a) and conversion stage (b) of the proposed non-parallel VC system based
on an autoregressive conversion model

3.1. Linguistic Features Extraction

To generate PPG features, an ASR system is used to balance the difference between
speakers. We used a speaker-independent ASR model (SI-ASR) based on the Kaldi
toolkit [42]. The model is trained to estimate posterior probabilities using a large multi-
speaker corpus. More specifically, the input of the SI-ASR consists of acoustic features Xt
extracted at each frame t. The outputs are posterior probabilities vectors, denoted Pt, which
represent the PPG’s linguistic features calculated as follows:

Pt = (p(s|Xt)|s) (1)

where p(s|Xt) denotes the posterior probability of each phonetic class s.
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The speaker embeddings are generated through a DNN-based speaker encoder, which
was initially trained for multi-speaker classification, following the methodology employed
in the [40] research. During the training stage, these speaker embeddings are calculated and
preserved for later use. Subsequently, the extracted SI-PPG features are judiciously com-
bined with the speaker embeddings to be used as the input data to the conversion model.

3.2. Autoregressive Conversion Model

We adopt an encoder-decoder recurrent network for the conversion model. The
encoder we use is based on the Tacotron model [43]. Firstly, a sequence of features including
the combined SI-PPGs and speaker embeddings is taken as input. The input vectors are
then passed through a Pre-Net, a non-linear transformation, which includes a bottleneck
layer with dropout to facilitate convergence. The pre-net outputs are further processed
using a CBHG module [43] to produce the final encoder representation. The effectiveness
of CBHG stems from its ability to learn context-dependent representations at a high level.
CBHG’s architecture consists of a 1-D convolutional bank, highway networks [44], and
Bidirectional Gated Recurrent Unit (Bi-GRU) [45] layers.

We define a sequence of linguistic features P = (p1, . . . , p2, pN) of length N as the
encoder input, where P ∈ RN×Dp . Here, N represents the number of frames and Dp is the
dimension of the features sequence. The Pre-Net layer produces a set of output vectors
denoted as R = [r1, r2, . . . , rN ], where R ∈ RN×Dr .

The encoder outputs sequence H = [h1, h2, . . . , hN ] (i.e., the hidden representations)
are obtained, where H ∈ RN×Dh , Dh is the dimension of the encoder output vectors.

For the decoder, we use an attention-based decoder, which is an autoregressive RNN
model. This means that it predicts a sequence of acoustic features using the encoder outputs.
The architecture consists of an attention layer, an LSTM layer, and a Pre-Net layer. The
attention layer employs a “Bahdanau” attention mechanism, which compresses the encoder
output into a fixed-length context vector. This context vector is then combined with the
output of the attention layer and used as input for the LSTM layer.

We define the sequence of acoustic features representing the decoder output as
O = (o1, o2, . . . , oN), where O ∈ RN×Do . First, at each step t, the attention layer gen-
erates a fused representation, denoted as ft ∈ R1×D, which is computed by concatenating
the previous acoustic feature ot−1 ∈ R1×Do with the encoder output ht ∈ R1×Dh using the
following formulas:

ft = αT
attCt (2)

where Ct ∈ R2×D is the concatenated representations as

Ct = [ot−1Wo; htWh] (3)

Secondly, the LSTM layer is initialized using two inputs: the generated fusion repre-
sentation denoted ft, and the decoder hidden state from the previous step denoted hd

t−1.
The decoder LSTM output od

t is produced as

od
i = LSTM( ft, ht−1) (4)

The LSTM output od
t is then fed into the pre-net layer to generate the decoder output.

The Pre-Net serves as bottleneck information needed to learn the autoregressive decoder.
The acoustic feature vector ot ∈ R1×Do representing the decoder output is

finally generated.

3.3. LPCNet Synthesizer

To generate the converted speech, a waveform synthesizer based on a variant of
WaveRNN vocoder [30] is used. We chose LPCNet vocoder [31], an efficient neural vocoder,
which combines linear prediction with RNN to considerably improve the audio quality
of the resynthesized speech. LPCNet generates speech from Bark-Frequency Cepstral
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Coefficients (BFCCs) [46] and two pitch (period, correlation) parameters. This presents a
high-level control of the spectral shape outputs as it directly depends on the shape of the
linear predictive coding filter.

To implement the model, we were inspired by open-source code made available by
the Mozilla and Google LLC teams [31]. To achieve better control over high-frequency
features, we increased the dimension of the input features from 18-D Bark-Frequency
Cepstral Coefficients (BFCCs) to 30-D BFCCs. This resulted in the extraction of 32-D
acoustic features comprising 30-D BFCCs, 1-D pitch period, and 1-D pitch correlation.

3.4. Model Training

In the training stage, acoustic features are first extracted from the target speech signals.
PPGs are then computed using the SI-ASR model from the MFCC features. Speaker
embeddings are also computed from the target speech as auxiliary features through a
speaker encoder neural network. These embeddings will then serve as a reference for all
subsequent real-time conversions to the target speaker. The conversion model takes PPG
features and speaker embeddings as inputs and predicts acoustic features as outputs.

All parameters of the conversion model are optimized using the mean squared error
(MSE) loss between the ground truth and the predicted acoustic feature vectors through
the back-propagation algorithm (BP).

At run-time conversion, the PPG features are extracted from the source speech. These
features are then concatenated with the previously calculated speaker embeddings of the
target speaker and fed into the conversion model to predict acoustic features. Finally, the
LPCNet vocoder utilizes the predicted features to generate the speech waveform. This
process is shown in Figure 1.

4. Experiments

The following subsections outline the experimental datasets, implementation details,
and the various experiments conducted to evaluate the proposed method.

4.1. Database

We use the American CMU-ARCTIC database [47] for VC experiments. The multi-
speaker TIMIT corpus [48] was used to train the SI-ASR system. The CMU-ARCTIC
database is a collection of parallel recordings of seven professional speakers of different
genders and accents. Each speaker recorded a set of 1132 sentences in the form of “.wav”
audio files. All the speech signals are sampled at a sampling rate of 16 kHz, windowed
by a 25 ms Hamming window, and shifted every 5 ms. In this paper, only the utterances
of native US English speakers were taken into account: two females (SLT and CLB) and
two males (BDL and RMS). A total of 500 utterances were selected for each speaker to form
the non-parallel training set. A further 50 non-overlapping utterances were selected for
testing and evaluation. In our experiments, we performed an any-to-one speech conversion,
using the female speaker SLT as the target speaker and two male speakers (BDL, CLB), and
a female speaker (RMS) as the source speakers as follows: BDL to SLT, CLB to SLT, and
RMS to SLT.

4.2. Implementation Details

For each input utterance, the PPGs are obtained using a DNN-based SI-ASR model
with four hidden layers. This model is implemented using the Kaldi speech recogni-
tion toolkit [42] and trained on TIMIT corpus [48]. For DNN-ASR training, we use
40-dimensional filterbank acoustic features, extracted every 10 ms frameshift, with
25 ms window size as input. The output of this model is the sequence of PPG feature
vectors. For each waveform input, PPG feature vectors of dimension 512 (Dp = 512) are
extracted. The conversion model takes as input a sequence of 512-D PPG features and
speaker embeddings, which are used as additional features to better capture different
aspects of the target speaker’s characteristics. The speaker embeddings are derived from a
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DNN-based speaker encoder trained for multi-speaker classification as applied in the [40]
study. To compute speaker embeddings for the target speaker, we choose a reference record-
ing with a long duration from the training data. We also extract 39th-order mel-cepstral
coefficients (MCCs) from spectral envelopes, which are utilized as spectral features for
objective evaluation.

To train the conversion model, we choose a batch size of 32, an Adam optimizer with
β1 = 0.9, β2 = 0.999, and an initial learning rate of 0.001. We used Mean Square Error
(MSE) as the loss function. Firstly, we used a Pre-Net, which consisted of a dense layer with
a dropout rate of 0.5, and an output dimension of 512. Secondly, we incorporated a CBHG
module with a 1-D convolutional bank comprising 16 sets of 1-D convolutional filters, each
with 128 output channels and ReLU activation. These convolutional outputs were then fed
into a highway network (consisting of four fully connected layers) followed by a Bi-GRU
(with 128 units per direction) to extract 256-dimensional context-feature representations
(where Dh = 256) as encoder outputs. In the third step, the 256-dimensional encoder
outputs were combined with previously predicted acoustic features through an attention
RNN layer.

The fused representations were then passed through an LSTM layer of 512 cells. Finally,
the outputs of the LSTM layer were fed into a decoder Pre-Net with a dropout rate of 0.5 to
predict acoustic features (where Do = 32) to be used by LPCNet for speech synthesis.

The LPCNet operates at a 16 kHz sampling rate and a frame rate network that pro-
cesses 10 ms frames. We use 32-D acoustic features including 30-D Bark-scale frequency
cepstral coefficients, 1-D pitch period, and 1-D pitch correlation. The LPCNet is trained for
200 epochs, the batch size is 32, and the learning rate is set to 1 × 103.

4.3. Compared Methods

To evaluate the effectiveness of our proposed system (Proposed) on the VC task, four
recent state-of-the-art systems (S1, S2, S3, S4) designed for VC were chosen for comparison
using parallel and non-parallel training data. Note that all systems were tested under the
same conditions for a fair and complete evaluation. The details are described below:

• Baseline system 1 (S1): Refers to parallel VC system [11] based on ASR and text-to-
speech (TTS)-oriented pretraining strategy using Transformer models for sequence-
to-sequence VC. This method provides a significant improvement in performance in
terms of intelligibility and speech quality, even when training data are limited.

• Baseline system 2 (S2): Refers to parallel baseline VC system [10] based on sequence-
to-sequence mapping model with attention, which achieved better performance on
naturalness and speaker similarity when compared with conventional methods.

• Baseline system 3 (S3): Refers to non-parallel VC system [49] based on a variant of the
GAN model called StarGAN. This system can generate converted speech signals at a
high speed, allowing for real-time applications and requiring only a few minutes of
training to produce realistic speech.

• Baseline system 4 (S4): Refers to non-parallel baseline VC system [41], which aims to
jointly train conversion model and WaveNet vocoder using mel-spectrograms and
Phonetic Posteriorgrams.

5. Results and Discussion

Objective and subjective evaluations were performed to assess the performance of our
systems in terms of speech quality and speaker similarity. The assessment utterances are
taken from the 25 utterances in the test set.

Audio samples from this work are depicted at the demo link: https://techtech-
solution.com/Kadria/20221215/index.php (accessed on 10 October 2023).

5.1. Objective Evaluations

We objectively evaluated the similarity between the target and converted speech by
using Mel Cepstral Distortion (MCD), a widely used metric for spectral distortion in speech

https://techtech-solution.com/Kadria/20221215/index.php
https://techtech-solution.com/Kadria/20221215/index.php
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conversion, calculated using Equation (5). The MCD results of both our proposed and
baseline methods were evaluated.

MCD [dB] =
10

ln 10

√√√√2
D

∑
k=1

(C(c)
k − C(t)

k )2 (5)

where C(c)
k and C(t)

k represent the kth coefficient of the converted and target MCCs vectors,
respectively. D denotes the dimension of MCCs (39-dimensional features), calculated with
a 25ms window size and 10ms window shift.

To measure the intelligibility of the speech generated by the different systems we
also calculated the Word Error Rates (WER) from the ASR transcriptions. We used the
Word Error Rate Matlab toolbox [50] to calculate the Levenstein distance [51] between
the hypothesis sentence (ASR transcription output) and the reference sentence (original
utterance). The Levenstein distance WER considers insertions, deletions, and substitutions
observed in the ASR transcription output. The WER formula is given in the following
Equation (6). The smaller the WER scores, the better the speech intelligibility.

WER =
Substitutions + Insertions + Deletions

Total number of words in reference sentence
× 100 (6)

The MCDs results obtained with the proposed and baseline methods on the validation
set are summarized in Table 1. A lower MCD value signifies the better performance of the
VC system.

Table 1. Mel Cepstral Distortion (dB) results of baseline and proposed methods

Methods
MCD (dB)

BDL–>SLT CLB–>SLT RMS–>SLT Average

Para
S1 [11] 7.08 6.63 6.88 6.86

S2 [10] 7.22 6.64 7.34 7.06

N-Para

S3 [49] 6.57 6.47 6.40 6.48

S4 [41] 7.17 7.31 7.11 7.19

Proposed 6.53 6.49 6.37 6.46

Comparing the proposed method to the baseline methods S3 et S4, which are based
on non-parallel training data, the results clearly show that the proposed method performs
better for all conversion pairs. The average MCD values obtained by the method we
propose are significantly lower than those obtained by S4, namely 6.46 dB vs. 7.19 dB, but
almost equivalent to those obtained by S3, i.e., 6.46 vs. 6.48. We can explain this by using
the autoregressive structure that incorporates the outputs from the previous step to predict
the outputs of the next step, which results in smoother waveforms. We can confirm this
by using the efficient LPCNet vocoder to generate waveforms, while S3 and S4 adopt the
WORLD [52] and WaveNet vocoders, respectively.

On the other hand, by comparing the proposed method to the baseline methods
based on parallel training data, we can show that our system produces considerably
better MCD values than those obtained by S2 for all conversion pairs. For example,
in the case of the RMS-to-SLT conversion pair, our proposal achieved an MCD value
of 6.37, whereas S2 obtained a value of 7.34, resulting in a relative reduction of 0.97.
Furthermore, we compare the baseline S1 and our method based on parallel and non-
parallel voice conversion. We observe that the proposed method gives slightly better MCD
values than S1, i.e., an average of 6.86 vs.6.46.

Table 2 gives the WER scores obtained for our VC method and the state-of-the-art methods.
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Table 2. ASR Word error rate (WER) (%) scores for source speech (Source), converted speech from
proposed and baseline (S1, S2, S3, S4) methods for male and female speakers

Methods
WER in (%)

BDL (Male) CLB (Female) Average

Source 8.56% 7.46% 8.01%

Proposed 28.89% 27.69% 28.29%

S1 37.39% 34.19% 35.79%

S2 32.67% 29.87% 31.54%

S3 41.33% 43.03% 42.18%

S4 50.6% 48.76% 49.68%

The proposed method demonstrated lower WER scores (i.e., better intelligibility)
compared to state-of-the-art methods for both male and female speakers.

From the female speaker’s WER, it can be seen that our method notably reduces
errors compared to the male speaker’s WER. Specifically, when comparing the WER from
baseline S4 with our proposed method, there was a substantial relative reduction of 21.07%.
However, there was a slight degradation in the WER from baseline S2, amounting to 3.98%.

These results demonstrate that the conversion model trained on a non-parallel corpus
performs comparably, and in some cases better, than its counterparts trained on a parallel
corpus. This shows the effectiveness of our method in improving speech quality and
reducing pronunciation errors. However, it is essential to note that the direct comparison
of parallel and non-parallel VC methods is not entirely fair, as the non-parallel VC only
uses the target speaker’s data during training.

Figure 2 illustrates improvements in spectrogram visualization by comparing the
converted speech between the proposed and baseline (S1) systems. Our observations
indicate that the proposed method effectively mitigates speech artifacts. However, for
the S1 system, the reconstructed speech exhibits audible artifacts, occasionally appearing
within non-speech segments.

5.2. Subjective Evaluations

We perform subjective listening tests to assess the performance of our systems in terms
of speech quality and speaker similarity of the generated speech from the five conversion
methods (proposed, S1, S2, S3, and S4). It should be noted that all tests were performed
under the same conditions.

We first conduct the Mean Opinion Score (MOS) test, admittedly the most pertinent
subjective test. For each conversion pair, 10 pairs (sentences) were randomly selected
from the 25 paired samples of the test set. A group of fifteen listeners (five males and ten
females) took part in the listening tests where each participant had to listen to 10 speech
samples, which were converted according to each of the systems mentioned above. In this
experiment, each converted sample was randomly presented to listeners who were asked
to independently judge the quality of the speech in terms of speech quality and naturalness
on a five-level scale (ranging from 1, for the lowest quality, to 5 for the best quality). Each
participant has the chance to replay each stimulus before giving his/her note.

We then performed an ABX similarity test to evaluate the recognition of the target
speaker. The setup is similar to the MOS test. X was the converted sample in each pair, and
A and B were the source and target samples, respectively. Listeners are requested to judge
the proximity of the converted sample X to both source sample A and target sample B by
giving a score of either 0 or 1 (0 for the choice of source speaker and 1 point for the choice of
target speaker) after each listening session. The final result is given as a percentage for the
converted voices X that is recognized as the target speaker. In the case of Male-to-Female
and Female-to-Male conversion, the inter-gender conversions were easily recognized.
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The results of the subjective MOS and ABX tests obtained on the validation set are
depicted in Figure 3 and Figure 4, respectively.

Figure 2. Spectrograms of the target speech, the converted speech from the proposed system, and the
S1 baseline system of the same sentence “Beyond refusing to sell us food, they left us to ourselves”.

Figure 3. MOS results with 95% confidence intervals on naturalness obtained from all
conversion pairs.

From Figure 3, it can be observed that the S4 system yields lower MOS values than
the other three methods, which confirms the results of the objective experiments. In the
RMS-to-SLT conversion pair, we notice that the method we propose proved to be close
and has slightly lower efficiency compared to the S2 system. Respective MOS values are
3.86 and 3.89. In all conversion pairs performed, we can further see that the MOS scores of
our proposed method are higher than those of the S4 method on naturalness.

Figure 4 presents the results of the similarity test obtained from the Male-to-Male
and Female-to-Female conversion pairs. As can be seen, listeners preferred the proposed
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system and the baseline S3 since the stimuli provided by both methods seem to them more
similar and closer to the target than those provided by the other methods.

Figure 4. ABX results with 95% confidence intervals on similarity obtained from Female-to-Female
and Male-to-Male conversion pairs.

To evaluate the degree of preference for the different conversion systems, we also
conduct an AB preference test to compare between proposed methods (designated A) and
baseline methods (designated B). Similar to the ABX test, 10 pairs were randomly selected
from the 25 paired test samples. For every pair of samples, listeners were asked to listen to
utterances presented in a random order and decide which of the two samples was better in
terms of speech quality.

The obtained results of the AB test on naturalness and similarity are respectively
presented in Figure 5 along with the average of the scores with 95% confidence interval.

Overall, we can see in Figure 5b,d that the proposed method outperforms the baseline
S2 and S4 in terms of naturalness and speaker similarity of the converted speech. In
Figure 5a, comparing the baseline S1 to our proposed system on naturalness, we see that
50.34% of the listeners prefer the proposed method, 44.66% prefer the baseline method,
and the remaining 5% show no significant preference between the two converted samples.
On the other hand, when comparing the baseline S3 to our proposed system on similarity,
Figure 5c shows that listeners preferred S3, with a preference rate of 50%. In Figure 5d,
we see the preference of our system in both naturalness and similarity, with an average
preference rate of 60.67% compared to 11.67% for baseline S4.

This indicates that our proposed system outperforms the S2 and S4 baseline systems
in terms of naturalness and similarity scores while showing comparable performance to
the S3 baseline system.

Therefore, based on the above test results, it can be concluded that our non-parallel
VC system significantly outperforms the baseline non-parallel methods and can achieve a
level of conversion performance comparable to that of parallel VC methods, both in terms
of speech quality and similarity to the target speaker.
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Figure 5. Results of AB preference test on naturalness and similarity between the proposed and
(a) baseline system 1 S1, (b) baseline system 2 (S2), (c) baseline system 3 (S3), and (d) baseline
system 4 (S4)

6. Conclusions

In this study, we introduce a non-parallel voice conversion framework that leverages
an autoregressive model, linguistic Phoneme PosteriorGram (PPG) features, and an LPCNet
vocoder to enable any-to-one speech conversion. In contrast to data-parallel approaches,
our system does not require parallel training data, can be easily adapted to real-time appli-
cations, and is exceptionally flexible for any-to-one voice conversion tasks. Experimental
results demonstrate that our proposed method improves the naturalness of the converted
speech and its similarity to the target speaker. In our future work, we intend to explore
techniques aimed at stabilizing and expediting the learning process in non-parallel VC.
Additionally, we aspire to extend our approach to cross-lingual speech conversion and
investigate the influence of linguistic diversity on the performance of our model.
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