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Abstract: In recent years, the ubiquity of social networks has transformed them into essential
platforms for information dissemination. However, the unmoderated nature of social networks and
the advent of advanced machine learning techniques, including generative models such as GPT and
diffusion models, have facilitated the propagation of rumors, posing challenges to society. Detecting
and countering these rumors to mitigate their adverse effects on individuals and society is imperative.
Automatic rumor detection, typically framed as a binary classification problem, predominantly relies
on supervised machine learning models, necessitating substantial labeled data; yet, the scarcity
of labeled datasets due to the high cost of fact-checking and annotation hinders the application of
machine learning for rumor detection. In this study, we address this challenge through active learning.
We assess various query strategies across different machine learning models and datasets in order
to offer a comparative analysis. Our findings reveal that active learning reduces labeling time and
costs while achieving comparable rumor detection performance. Furthermore, we advocate for the
use of machine learning models with nonlinear classification boundaries on complex environmental
datasets for more effective rumor detection.

Keywords: rumor detection; active learning; active learning query strategy; social networks

1. Introduction

With the proliferation of social media platforms such as Twitter (https://twitter.
com/, accessed on 3 November 2023) and Sina Weibo (https://weibo.com/, accessed on 3
November 2023) and rapid development of smart mobile devices, people increasingly tend
to consume news from social media platforms rather than from traditional news sources [1].
According to a report by the Pew research center, more than half of Twitter user regularly
access news on the site [2].

The anonymity and openness of social media enable users to consume and share
news as well as to generate real-time information. When events such as earthquakes or
accidents occur, smart mobile devices can act as real-time news sensors, allowing people to
immediately upload information to social media. This has greatly changed the propagation
and timeliness of traditional news media.

Nevertheless, the convenience of information dissemination on social media plat-
forms facilitates the proliferation of rumors. Rumors often refer to information around
which truth and sourcing are unreliable, and are likely to be generated under emergency
situations [3]. Notably, most rumors exhibit distinct characteristics, enabling them to prop-
agate faster, deeper, and further throughout social networks [4]. Beyond the inadvertent
spreading of rumors, social media users may deliberately initiate and circulate rumors
using sophisticated generative models, often motivated by commercial or political interests.
Startlingly, it has been reported that more than a third of trending events on microblogs
contain rumors [5].
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The spread of rumors can pose significant threats to the credibility of the internet and
have far-reaching real-life consequences, including causing public panic, disrupting the
social order, eroding government credibility, and even endangering national security [6].
A notable case of rampant rumor propagation occurred during the 2016 U.S. presiden-
tial election. During the election, as many as 529 different rumor stories pertaining to
presidential candidates Donald Trump and Hillary Clinton were spreading on Twitter,
instantly reaching millions of voters and potentially influencing the election’s outcome [7].
A more recent example revolves around the plethora of rumors regarding the COVID-19
pandemic [8]. These rumors on social platforms have significantly undermined the credi-
bility and reliability of information shared on these platforms, consequently diminishing
users’ willingness to turn to social media for information. A 2021 survey conducted by
the Pew Research Center [2] further underscores this decline in trust and reliance on social
media for news. It revealed a decrease in the percentage of adult American users who
frequently or occasionally obtain news from social media platforms, dropping from 53%
in 2020 to 48% in 2021. This decline coincides with mounting criticism directed at social
media and technology companies for their perceived inadequacy in curbing the spread of
misleading information on their platforms. Therefore, it is of paramount importance to
detect rumors spreading on social media platforms as early as possible.

Rumor detection has attracted significant attention from both social media platforms
and researchers over the past decade. Typically, users on various social media platforms
are encouraged to report or annotate suspicious posts as potential rumors. Subsequently,
the accuracy of these possible rumors is verified with the assistance of human modera-
tors and third-party fact-checkers. While this approach yields high-quality results, the
substantial human effort required, including manual labeling and rumor verification, is
challenging to reconcile with the sheer volume of emerging rumors. Therefore, there is a
need for robust and efficient automated rumor detection approaches.

Automatic rumor detection is normally deemed a binary classification task, in which
classifiers are employed to distinguish between rumors and non-rumors. These methods
encompass a range of approaches, including traditional machine learning models [3,9]
and neural network-based approaches [10–12], which all follow a supervised learning
paradigm. In this paradigm, posts are first transformed into representations, which are then
fed into a supervised learning model guided by ground-truth labels. Traditional machine
learning-based approaches often rely on hand-crafted features, while neural network-based
models automatically learn latent deep feature representations of rumors. However, both
approaches require a sizable annotated dataset, such as RUMDECT [10] or PHEME [13],
for training reliable classifiers.

While the aforementioned methods have demonstrated promising results, they face
several significant challenges, as highlighted by previous research in the field of automatic
rumor detection. One of the most critical challenge pertains to the labor-intensive and costly
nature of constructing rumor datasets [14]. Labeling rumors within the ever-flowing stream
of social media is a resource-intensive task associated with substantial costs. To illustrate
this, consider the Sina Community Management Center’s rumor reporting process (https:
//service.account.weibo.com/, accessed on 3 November 2023) depicted in Figure 1.

A social media user must navigate through three stages for rumor reporting: the
reporting stage, the evidence stage, and the results announcement stage. The evidence
stage demands that the reporting user provide proof that the post in question is indeed a
rumor. Subsequently, this evidence is scrutinized by experts from the Sina platform. This
process is both time-consuming and financially burdensome.

Moreover, the rapid advancement of artificial intelligence (AI), particularly the emer-
gence of generative models such as Generative Adversarial Networks (GANs) and diffusion
models, has led to an increase in manipulated multimodal rumors. These rumors may
incorporate image, audio, and video data, rendering them increasingly challenging for
ordinary social media users to differentiate from genuine content. A notable example is the
use of DeepFakes, which leverage deep learning models to fabricate audio and video clips

https://service.account.weibo.com/
https://service.account.weibo.com/
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of real individuals uttering or performing actions that never actually occurred. This makes
rumors appear both more realistic and harder to discern [15,16].

Report processing center

All report

Rumor report

Personal attacks report

Report of violations of individual rights

Work report

Public notice of rule-violating users

Copyright protection 
for long tweets

Rights dispute

Complaint about personal rights

Complaint about intellectual property

Today's highlights Hot topics of this week

@马延明 complains about @用户7714093163 for personal attack

@喵呜不停 complains that @万物图鉴 violated individual rights

@李子暘Lee complains about @白兰地不如威士忌 for personal attack

@兴---zyx complains that @吃块红绿水果 violated individual rights

@兴---zyx complains that @脸在江山ta violated individual rights

@抹茶味儿烤鱼 complains about @明月不是月 for rumor

@不如我们好聚好散 complains that @有狐噢狐狐 violated personal rights

@令狐襄 complains that @九尾回家吃饭了 violated personal rights

@yuuugua complains that @x1nyutian violated personal rights

@都美竹 complains about @地狱把弟王 for personal attack

Default Evidence Results announcement

state Title of report Complainant The accused Visits

Results announcement@虫虫希望不再忘密码 complains about @罗小卫 ...

Results announcement@油油油菜花了 complains about @牛神nddpg111

Results announcement@123再遇见你以后 complains about @关爱桃子 ...

Figure 1. The workflow of rumor reporting on the Weibo platform, showing the three stages by which
a Sina user can confirm a rumor. The green English corresponds to the translation of the Chinese text
just above.

Furthermore, certain rumors may contain domain-specific knowledge and can only be
debunked by experts in the respective field. Annotation of previously unseen rumors often
requires in-depth domain knowledge. A notable example occurred during the COVID-19
pandemic, when rumors such as “5G caused the virus” or “facemasks do not work” had to
be confirmed as false by professional or authoritative medical experts rather than ordinary
social media users. In more challenging scenarios, slight modifications to aspects of a
non-rumor can lead to the creation of new and more convincing rumors. For instance,
altering details such as the timing, location, or individuals associated with a non-rumor
event can result in the fabrication of a convincing rumor. In such situations, it becomes
significantly more arduous for experts to distinguish rumors from normal posts, making it
a time-consuming and domain knowledge-intensive task.

Despite the growing volume of posts on social media platforms, including rumors,
obtaining high-quality, large-scale, and authoritative benchmark datasets remains a daunting
task. In comparison to benchmarks such as ImageNet [17], which contains 14,197,122 images
and serves as a standard in visual object recognition, Table 1 shows that datasets used
in recent research on rumor detection are relatively small in scale or confined to specific
rumor categories.

Table 1. Common datasets use by state-of-the-art rumor detection research.

Dataset Data Source Rumor Non-Rumor

KWON [18] Twitter 47 55
PHEME [19] Twitter 1972 3830

Medieval [20] Twitter 9000 6000
Twitter15 [21,22] Twitter 1116 374
Twitter16 [10,22] Twitter 618 205

MULTI [23] Sina Weibo 4749 4779

RUMDECT [10] Twitter 498 494
Sina Weibo 2313 2351

This discrepancy underscores the need for developing comprehensive benchmark
datasets, particularly in the current revolutionary era in deep learning.

This epoch is frequently characterized by the phrase “Data is the new oil” [24], signify-
ing the pivotal role of data in driving advancements across various tasks and applications
through data-driven learning approaches. These approaches place heightened demands on
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both the quality and quantity of data. It is crucial to recognize that the size and quality of
datasets wield a profound influence on the performance and scalability of state-of-the-art
(SOTA) rumor detection models [25].

In addition to the aforementioned challenges around labeling rumors and the limited
scale of datasets, the performance of learned models may deteriorate due to conceptual drift.
This phenomenon occurs when the distribution of features related to rumors undergoes
changes over time. Typically, mitigating conceptual drift requires the continuous annotation
of new datapoints and model updates. Unfortunately, this practice can be both costly and
impractical. In summary, the field of automatic rumor detection faces a significant challenge
in large-scale data annotation.

To address the challenges associated with rumor detection, an intuitive idea is to
selectively label valuable data instead of annotating the entire dataset for training rumor
detection models. Active Learning (AL) has emerged as a promising solution to overcome
the key challenges outlined earlier. As a subfield of machine learning, active learning aims
to create efficient training datasets by iteratively enhancing model performance through
strategic sample selection. The goal is to achieve or even surpass the expected model
performance with as few labeled samples as possible [26].

Active learning recognizes that not all samples in a dataset are equally crucial for
training a machine learning model. Therefore, it intelligently selects a subset of the dataset
for labeling by an oracle, such as a human annotator, to optimize model performance.
This approach mitigates the labeling bottleneck and minimizes the costs associated with
acquiring labeled data. Consequently, active learning is well-suited for rumor detection
scenarios, in which a surplus of unlabeled data is available from real social media streams
while labeled data remain a costly resource.

Despite the existence of comparative studies across various tasks and domains, active
learning has not been extensively explored in the context of rumor detection. In this work,
we present a comparative analysis of active learning techniques for rumor detection on
social media platforms, aiming to answer the following key questions:

1. Can active learning effectively reduce labeling costs in the context of rumor detection
while maintaining high performance?

2. Which active learning query strategies are most suitable for specific rumor detection
methods?

This research seeks to shed light on the potential of active learning in improving rumor
detection while addressing the practical challenges associated with labeling large datasets.
Hence, we evaluate the feasibility of utilizing active learning for rumor detection on social
media platforms. To assess the effectiveness of active learning, we conduct a comparative
analysis of multiple supervised machine learning methods. Our evaluation is performed
on two distinct datasets, and we explore how active learning can reduce both the sample
size and its influence on various supervised machine learning models. The significant
contributions of our work can be summarized as follows:

• To the best of our knowledge, this is the first comprehensive and comparative inves-
tigation of rumor detection using active learning, addressing an important gap in
the literature.

• We examine active learning query strategies suitable for different supervised learning
models in the context of automatic rumor detection within pool-based scenarios.

• Through extensive evaluation on Twitter and Weibo datasets, we demonstrate that
active learning achieves faster convergence with a limited amount of annotated data,
offering practical benefits for rumor detection.

The rest this paper is organized as follows. In Section 2, we provide a comprehensive
review of the related literature. Section 3 outlines the process of automatic rumor detection
using active learning. Section 4 presents our experimental setup. In Section 5, we discuss
our experiment results. Finally, Section 6 concludes the paper and discusses directions for
future work.
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2. Related Works

Though automated rumor detection is not a new phenomenon, it has been increasingly
drawing public attention [27]. Researchers have made various efforts to develop different
techniques for automated rumor detection. In this section, we briefly review existing work
in the categories of traditional machine learning-based methods and active learning.

2.1. Traditional Machine Learning-Based Rumor Detection

The objective of automated rumor detection is to distinguish between rumors and nor-
mal posts, which is typically formulated as a binary classification problem. Consequently,
early automated rumor detection methods often relied on traditional classifiers, including
Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree Classifier (DTC),
Naive Bayes (NB), Random Forest Classifier (RFC), and K-Nearest Neighbours (KNN),
among others. These models are heavily dependent on handcrafted features.

Much of the initial research into rumor detection focused on the selection and extrac-
tion of features. Commonly adopted features in state-of-the-art (SOTA) rumor detection
methods include those derived from text content, user profiles, and propagation pat-
terns. These features encompass counting the number of sentiment words, URLs, retweets,
hashtags, etc. Supervised machine learning methods for rumor detection predominantly
concentrate on characterizing one or a combination of these features.

For instance, Castillo et al. [9] analyzed features including text content, user infor-
mation, propagation patterns, and Twitter memes (hashtags, URLs, and user mentions).
Qazvinian et al. [28] built Bayes classifiers using Twitter meme-based features to detect
rumors on Twitter, reporting that these features differ between rumor-related tweets and
normal tweets. Kwon et al. [18] introduced temporal, structural, and linguistic features,
then trained DTC, RFC, and SVM classifiers to identify rumors. Liang et al. [3] proposed a
user behavior-based rumor identification scheme, treating user behaviors as hidden clues
to identify potential rumormongers or rumor posts on microblogs. Their study incorpo-
rated user behavior features, content-based features, propagation features, and multimedia
feature, and employed classifiers such as LR, SVM, DTC, NB, and KNN. Notably, the KNN
model achieved higher precision when using user behavior features.

While these models have shown acceptable performance, they rely heavily on the
quality of feature engineering. Certain distinguishing features, such as hashtags, may not
be available in all datasets, and the characteristics of rumors can change over time, limiting
the generalizability of these models. However, when conducting research on applying
active learning in rumor detection, these models may offer sufficiently convincing evidence.

2.2. Active Learning

As mentioned previously, manually labeling datasets for rumor detection can be
costly, and may demand domain-specific expertise. Active learning, which aims to achieve
high accuracy with minimal labeled instances, has gained significant traction in various
domains, including text classification [25,29], biomedical text mining [30], and computer
vision tasks [31]. Uncertainty-based sampling models have demonstrated particularly
promising results, making them a predominant choice when applying active learning to
social media.

For instance, McCallum et al. [32] demonstrated how traditional text classifiers can
reduce their need for labeled training data through active learning by leveraging a vast
pool of unlabeled documents. Siddhant et al. [33] conducted a large-scale empirical study
on deep active learning, confirming its efficacy in improving deep learning performance
for text classification, especially through Bayesian active learning by disagreement.

While active learning is commonly employed in text classification, its application in
rumor detection has been relatively limited. Most active learning studies in the context of
rumor detection have focused on fake news detection. Bhattacharjee et al. [34] explored
active learning for identifying the veracity of fake news using uncertainty-based probability
of classification. This approach was later extended to domain-specific and context-rich
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frameworks [35]. Hasan et al. [36] introduced a fake news detection framework incorpo-
rating active learning based on entropy sampling, achieving high accuracy with a limited
training dataset (4% to 28% of available data). Sahan et al. [37] conducted a comparative
study of various active learning strategies on different text embeddings for text classifi-
cation and fake news detection. Although there are inherent differences between rumor
detection and fake news detection, lessons from active learning in the context of fake news
detection can inform and benefit rumor detection tasks.

Recently, Farinneya et al. [25] introduced an active transfer learning framework for
rumor detection. Their work explored different pretrained language models, estimators,
and active learning strategies. Extensive experiments on the PHEME dataset revealed that
supervised machine learning rumor detection models using embedded representations
with limited labeled data were able to achieve similar performance to models trained on
the entire dataset. The authors’ goal was to design a new rumor detection model based
on pretrained language models and active learning. In contrast, the present study aims to
conduct a comprehensive and comparative analysis of rumor detection approaches using
active learning.

3. Methodology

The aim of this paper is to assess the effectiveness of various active learning query
strategies in the context of rumor detection models. Specifically, we seek to determine
whether active learning enhances rumor detection performance. Our study involves
comparing different query strategies and their application to different datasets using
various machine learning models. In particular, we aim to identify the most suitable query
strategy for different rumor detection models. In this section, the following three aspects are
introduced: active learning, active learning query strategies, and rumor detection classifiers.

3.1. Active Learning

Active learning is a subfield of machine learning and artificial intelligence. It falls
under the category of semi-supervised machine learning, where a learning model can
iteractively request information from the user or another information source to obtain
desired outputs at new datapoints [26]. In the statistics literature, it is sometimes known
as “query learning” or “optimal experimental design” [38]. Active learning encompasses
various problem scenarios in which a machine learning model can ask queries, such as
membership query synthesis, stream-based selective sampling, and pool-based active
learning. In the context of rumor detection, as discussed earlier, it is often possible to gather
a substantial volume of unlabeled data, aligning with the common scenario in pool-based
active learning.

Figure 2 illustrates the typical workflow cycle of active learning in pool-based scenarios.
The raw dataset for rumor detection contains a small portion of labeled data and a large
amount of unlabeled data, designated Du. The labeled dataset is divided into an initialized
training dataset Dl and a test dataset Dt based on a certain proportion. Let (x, y) be
an instance in the raw dataset, where x is a d-dimensional feature vector and y is its
corresponding label. A machine learning model, denoted as Pθ , begins with the small
labeled training dataset Dl and undergoes standard supervised training to establish an
initial model. This initial model is then evaluated on the unlabeled dataset Du, with ŷ
representing the predicted label for instance x.

A query strategy is employed to compute a measurement criterion with ŷ, which is
used to select one or a few of instances from Du. The selected unlabeled instances are
typically informative or representative samples, and are referred to as query instances. The
query instances are then sent to an oracle for labeling. When the query instances have been
labeled by querying the oracle, they are added to the training dataset Dl . The machine
learning model Pθ is then retrained with the updated labeled dataset Dl and tested on the
test dataset Dt to evaluate its current performance. This process is repeated until the model
achieves satisfactory performance on Dt or until specific preset conditions are met.
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The primary objective of active learning is to maximise the model’s effectiveness by
minimizing the number of samples that require manual labelling. The main challenge
lies in identifying informative or representative query instances that facilitate the rapid
convergence of model training.

Unlabeled data

Add  the labeled query instances 

to the training dataset Dl

Oracle

Machine Learning Model Pθ 

Fitted modelTraining model

Criterion

Query instances

Query Strategy

Du

Test dataset Dt

Training dataset Dl

Labeled data

Figure 2. The workflow cycle of active learning in pool-based active learning scenarios.

3.2. Active Learning Query Strategy

As mentioned before, the critical challenge in the workflow cycle of active learning
lies in selecting an appropriate query strategy, known as a selector. The query strategy
evaluates the “worthiness” of unlabeled samples using a specific criterion and determines
whether a sample is worthy of annotation based on its suitability. Therefore, choosing the
right query strategy is pivotal in enabling the model to converge effectively with minimal
training data. The choice of query strategy holds significant implications in active learning.

To date, numerous strategies have been proposed in the literature for querying unla-
beled instances. These query strategies can be categorized into three main groups based
on the nature of the instances they select: informative-based, representative-based, and
both of these in combination. Informative-based strategies focus on the informativeness of
unlabeled instances, prioritizing those with higher information content for labeling by the
oracle. Typically, the informativeness of unlabeled data is assessed based on the model’s
uncertainty. However, informative-based strategies may overlook relationships among
unlabeled instances, and often lead to the selection of multiple instances of a similar type.

On the other hand, representative strategies aim to make efficient use of the structure
within the unlabeled data when selecting candidate query instances. Additionally, they
strive to address the challenges encountered by informative query strategies. Represen-
tative strategies can help to alleviate issue of sampling bias by selecting instances from
diverse regions within the input space. Combining informative and representative strate-
gies can strike a balance between measures of informativeness and representativeness. It is
worth noting that an increase in the informativeness of a selected instance may come at the
cost of reduced representativeness.

In the following subsections, we provide a detailed description of the strategies
employed in this paper.

3.2.1. Uncertainty Sampling

Uncertainty sampling is a typical informative-based strategy and is the most popular
query strategy for active learning. It assumes that the uncertainty samples provide more
information for training a machine learning model if they are labeled. The rationale for this
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is that instances with lower certainty are typically located near the decision boundary of
the classification, while highly certain instances are usually far from the decision boundary.
Therefore, instances that are distant from the decision boundary are often considered re-
dundant. The uncertainty sampling strategy selects an instance with the lowest confidence
predicted by the current machine learning model as the query instance.

Common criteria for evaluating the uncertainty include least confidence, uncertainty
margin, and entropy.

Least confidence is a strategy based on the prediction uncertainty. It measures uncer-
tainty as the level of confidence in the most likely label. It is based on the probability of the
top-class label with the highest posterior probability for a given instance. The uncertainty
of an unlabeled instance is defined by Equation (1):

xs = arg max
x∈DU

{1− Pθ(ŷ|x)} = arg min
x∈DU

Pθ(ŷ|x) (1)

where Pθ(ŷ|x) is the probability of the top-class label ŷ with the highest posterior probability
(for instance, x), DU represents the unlabelled data pool, and xs is the uncertainty score of
the query instance. The least confidence criterion strives to find the most indistinguishable
instance of the current model as the query instance.

Least confidence only considers the probability of the best prediction class label, ig-
noring the information from other class labels. As an improved query strategy, margin
sampling can calculate the difference between the two most confident posterior probabili-
ties, as defined by Equation (2):

xs = arg min
x∈DU

{Pθ(ŷ1|x)− Pθ(ŷ2|x)}, (2)

where Pθ(ŷ1|x) and Pθ(ŷ2|x) are the top-1 and top-2 posterior probabilities. The instance
with the smallest difference is defined as a hard-to-classify instance for labeling.

In order to further consider the information of all class, another more typical measure
of uncertainty is entropy, which is defined by Equation (3):

xs = arg max
x∈DU

−
C

∑
i

Pθ(ŷi|x) log Pθ(ŷi|x) = arg min
x∈DU

C

∑
i

Pθ(ŷi|x) log Pθ(ŷi|x), (3)

where C is the number of classes. The entropy measures the purity of a class for one sample,
with larger entropy denoting higher uncertainty. The instance with the largest entropy is
selected as query instance.

3.2.2. Query by Committee (QBC)

QBC is another typical informative-based strategy; it is based on the inconsistency
of ensemble learning. In this strategy, a committee is composed by training multiple
classifiers on different subsets of instances drawn from the labeled dataset. The fundamental
assumption of QBC is that different classifiers should exhibit consistency with the provided
labeled data instances. Hence, the query instance is selected based on the unlabeled
instance that demonstrates the highest disagreement among the committee members in
label prediction.

There are two ways to construct this committee, namely, boosting and bagging. In
query by bagging, a committee of m classifiers is created by applying bootstrap aggregating,
which involves randomly sampling with replacement m times from the labeled training
data. In query by boosting, the random instances are bootstrapped with replacement from
available labeled training data.

There are two kinds of indicators for measuring disagreement, namely, vote entropy
and the average Kullback–Leibler (KL) divergence. Vote entropy identifies the instances
with the largest entropy among the predicted class labels. Such instances are considered
hard samples, and are selected as query instances for labeling. The average KL divergence
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measure identifies the most informative query as the one with the largest average difference
between the label distributions of any one committee member and the consensus [26].

3.2.3. Expected Error Reduction (EER)

EER is a informative-based strategy which selects the next instance that maximally
reduces the generalization “error” or “loss” in expectation [39]. It takes into account the
uncertainty or informativeness of unlabeled instances and measures the potential impact
of querying them on the overall error reduction of the learning model.

The key idea behind EER is to estimate the expected reduction in error that can be
achieved by labeling specific instances. It involves selecting those samples expected to
have the greatest impact on improving the model’s performance. This is achieved by
considering the uncertainty or lack of confidence in the current predictions made by the
learning model. The intuition is that by querying instances that are difficult to classify or
that lie near the decision boundary, the model can obtain crucial information to refine its
decision-making process.

3.2.4. Graph Density Strategy

The graph density strategy is a representative-based strategy that employs a graph
structure to identify the most representative unlabeled datapoints. The underlying intu-
ition of the graph density strategy is that representative data points for a specific class
are typically well-embedded in the graph structure, resulting in many edges � k with
high weights. To implement the graph density strategy [40], a k-nearest neighbor graph
is constructed in which eij = 1 if d(xi, xj) is one of the k smallest distances of xi with
Manhattan distance d. The strategy uses a weighted matrix with a Gaussian kernel, to rank
all data points based on their representativeness, as defined in Equation (4):

Wij = eij exp
{−d(xi, xj)

2σ2

}
. (4)

3.2.5. Querying Informative and Representative Examples (QUIRE)

QUIRE combines the informative and representative strategies, taking a min–max view
of active learning and providing a systematic way to measure and combine informativeness
and representativeness. QUIRE measures both the informativeness and representativeness
of an instance; specifically, the informativeness of an instance x is measured using its
prediction uncertainty based on the labeled data, while the representativeness of x is
measured by its prediction uncertainty based on the unlabeled data [41].

3.2.6. Information Density Weighted Strategy

The information density weighted strategy [42] is another combination of informative
and representative strategies. Informative-based strategies may tend to select unlabeled
instances that lie along the classification boundaries even when these instances are outliers
that are not representative of the broader distribution in the input space. This strategy
introduces the concept of information density (ID), as defined Equation (5):

φID(x) = φSE(x)×
(

1
|Du|

|Du |

∑
i=1

sim(x, xu)

)β

, (5)

where φSE(x) measures the “base” informativeness of an unlabeled instance x; the terms in
parentheses in Equation (5) represent the similarity of x to all other unlabeled instances in
Du, while the parameter β controls the relative importance of the representative term. The
information density weighted strategy effectively combines uncertainty and diversity in
active selection.
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3.3. Rumor Detection Classifier

In this paper, we explore a wide range of supervised learning classification models
for rumor detection and subject them to extensive study using different active learning
strategies. These classifiers LR, SVM, DTC, NB, RFC, KNN, the Gaussian Process (GP)
classifier, Multi-Layer Perceptron (MLP), Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA), and AdaBoost (Ada). Unless otherwise specified, all model
parameters were set to their default values.

We employed two LR models: one trained with the standard approach and the other
utilizing Stochastic Gradient Descent (SGD). For simplicity, we refer to these as LR and
LR(SGD), respectively. Additionally, we employed three SVM classifier models: one with a
linear kernel, denoted as SVM(Linear), another with a Radial Basis Function (RBF) kernel,
denoted as SVM(RBF), and the third with an RBF kernel trained using SGD, which we
denote as SVM(SGD). It is important to note that, unlike LR, SVM models with a linear
kernel or trained with SGD lack the ability to predict probabilities for object classes. This
limitation confines their usage to representative-based query strategies. Furthermore, we
assessed the performance of DTC using both the Gini and Entropy criteria, which are
denoted as DTC(Gini) and DTC(Entropy), respectively.

Feature extraction is one of the most crucial phases of supervised machine learning,
and has a significant influence on classification accuracy. Researchers seeking to achieve
better rumor classification performance have experimented with combinations of various
features and supervised machine learning classifiers. Several common features, including
content-based, user-based, propagation-based and behavior-based features, were selected
for experimentation in our study. The diverse features extracted from online social media
posts play a vital role in rumor detection using machine learning models.

4. Experimental Setup

In this section, we discuss the datasets and the implementation details of our
experiments.

4.1. Dataset

We conducted experiments on two publicly available datasets, PHEME and RUMDECT,
collected from Twitter and Weibo, respectively. These datasets are widely recognized and
commonly used in the field of rumor detection.

As shown in Table 1, the PHEME dataset [13] sourced from Twitter comprises 1972
instances of rumors and 3830 instances of non-rumors. This benchmark contains five
newsworthy cases of breaking news that provoked a high number (exceeding 100) of
retweets. As these five events propagated through social media, four distinct rumors
emerged from the conversations surrounding them. Table 2 illustrates typical examples of
rumor and non-rumor tweets from this dataset. Additionally, this benchmark contains rich
features, including post text, user information, and release timestamps.

Table 2. Typical tweets in the PHEME dataset.

Events Rumor Non-Rumor

Ottawa Shooting

#Ottawa police confirm shooting at War
Memorial. Reports say victim may be a
soldier.

Canine unit running to Parliament Hill

One person shot outside Centre Block,
a second wounded inside the building in
Parliament Hill shooting.

I covered Polytechnique, Concordia and
Dawson shootings. Remember, at least
half of what you hear about Ottawa shoot-
ings will prove untrue.
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Table 2. Cont.

Events Rumor Non-Rumor

Sydney siege

BREAKING: Live coverage of hostage
situation unfolding in Sydney’s Martin
Place.

Any lone nutjob who wants international
attention for a crime now just has to wave
a black flag around. Voila #sydney

Black Islamic flag being held up in win-
dow of #lindt chocolate store in Martin
Place, Sydney - hostages inside.

If you have any lingering doubts that the
threat of radical Islam is global as well as
lethal ...

The RUMDECT [10] consists of data from Weibo and Twitter, although our experiments
exclusively focused on the Weibo data. The Weibo dataset comprises 4664 labeled events
collected from the Sina Weibo rumor debunking service, encompassing 2313 rumors and
2321 non-rumors. Each event in the Weibo dataset provides text information, related
forwarding details, posting and reposting location information, user information of the
poster and reposter, and other features. Table 3 presents examples of typical rumor and
non-rumor Weibo posts from this dataset.

Table 3. Typical Weibo data from the RUMDECT dataset.

Event Text Reposter TextEvent Text Reposter Text

Rumor

#每日一帖\#[生活百科][生活常识]牙膏底部的短线，绿色天然的。蓝色天然加药

物，红色药物加化学，黑色纯化学。今后购买要记得好好看看了，真心有用！转！
Translation:#One post per day\#[Life Encyclopedia][common sense of life]The short line

at the bottom of toothpaste: green means natural. Blue means natural with added

chemicals. Red means chemicals with added medication. Black means pure chemicals.

Remember to pay attention when buying in the future, it's really useful! Share!

真的假的啊[晕]

Translation:Is it true or not! [Geez]

Non-rumor

什么叫做真正的街舞！全世界的街舞都被这帮人玩遍了 2.42秒彻底崩溃 这才是街

舞啊 你懂得  http://t.cn/hbIn6n。

Translation:What is real street dance! They've mastered street dance from all over the

world in just 2.42 seconds, completely mind-blowing. This is real street dance, you know.

http://t.cn/hbIn6n.

好帅啊~~~~~~~~~~~~

Translation:So handsome~~~~~~~~~~~~

4.2. Features Used in Supervised Machine Learning Methods

Based on the information contained in the two datasets mentioned above, we con-
ducted feature extraction on both the PHEME [10] and RUMORDECT [9] datasets. Specif-
ically, the features listed in Table 4 were extracted from these datasets, along with their
descriptions, to serve as input for the traditional machine learning models. Following the
definitions outlined in Table 4, we created two new datasets that exclusively contained
the feature data extracted from the original datasets. These datasets formed a crucial
component of our subsequent research analysis.

Table 4. The features used for rumor detection in the experiment.

Dataset Feature Name Description

RUMDECT

Number of sentiment words The number of positive and negative words in a post
Number of URLs The number of URLs in a post

Number of comment count The number of comments on a post
Account type The type of current account: personal or organization

Registration age The registration age of current account
Count followers Number of users following current account
Number of posts The number of posts by the account
Number of repost The number of total repost
Count followees Number of accounts which current account followed
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Table 4. Cont.

Dataset Feature Name Description

PHEME

Length of characters The number of all characters contained in a post
Number of words The number of words contained in a post

Count uppercase letters Fraction of capital letters in the tweet

Sentiment Score Sum of ±0.5 for weak positive/negative words, ±1.0
for strong ones

Number of URLs The number of URLs in a post
Registration age The registration age of current account
Count followers Number of users following current account

Is verified Is current account verified
Statuses count The number of tweets at posting time

Sentiment positive words The number of positive words in the text
Sentiment negative words The number of negative words in the text

Contains multi mark Contains a question mark ‘?’
Contains pronoun first Contains a personal pronoun in 1st person

Contains pronoun second Contains a personal pronoun in 2st person
Contains pronoun third Contains a personal pronoun in 3st person

4.3. Active Learning Tools and Machine Learning Tools

In order to study the impact of different active learning strategies on various super-
vised machine learning models, we employed the following mature active learning tools:
ALiPy (https://github.com/NUAA-AL/ALiPy, accessed on 3 November 2023) (Active
Learning in Python) [43] provides a module-based implementation of an active learning
framework, enabling users to conveniently evaluate, compare, and analyze the perfor-
mance of active learning methods. The library offers several commonly used strategies for
instance selection, including Uncertainty, Query by Committee, and QUIRE, among others.

We experimentally compared the performance of different query strategies, including
Uncertainty, Query By Committee (QBC), Expected Error Reduction (ERR), Graph Density,
and Querying Informative and Representative Examples (QUIRE). For the uncertainty, we
investigated three different uncertainty measures: least confidence, margin, and entropy.
For QBC, bagging was used to create a committee and vote entropy was selected as the
measure of disagreement of committees. When referring to these strategies in the legend
of the experimental results, we use the abbreviations Unc(Lc) for uncertainty with least
confidence, Unc(Ma) for uncertainty with margin, Unc(En) for uncertainty with entropy,
GD for Graph Density, and DW for the information density weighted strategy.

For machine learning models, we utilized the corresponding implementations pro-
vided by the Scikit-learn library (https://scikit-learn.org/, accessed on 3 November
2023) [44].

All experiments were performed on an Intel (R) Xeon (R) Silver 4116 CPU @ 2.10 GHz
with 48 CPUs and 128 GB of RAM.

4.4. Data Splitting and Initial Labeled Dataset

Each experiment followed a well-defined process. First, we performed random divi-
sion of the dataset into three subsets: a test dataset comprising 30% of the data, an initial
labeled dataset consisting of ten randomly selected data instances, and an unlabeled data
pool constituting approximately 70% of the data.

Within each experiment, we conducted ten rounds, and each round involved the
selection of ten labeled instances chosen at random. These labeled instances were used
to train the initial model from scratch. Subsequently, based on different query strategies,
additional unlabeled instances were selected from the unlabeled pool for annotation. Im-
portantly, the instances in the unlabeled pool already had labels, allowing us to retrieve
the label corresponding to each selected instance. These newly labeled instances were then
appended to the labeled dataset and the model was retrained using the updated labeled
dataset. This iterative process continued until the query budget was exhausted. The final
results reported in our experiments are the average outcomes across all ten rounds.

https://github.com/NUAA-AL/ALiPy
https://scikit-learn.org/
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Our experimental design incorporated a query budget, which was set to 200. This
choice was informed by careful experimentation and empirical observations that suggested
this budget as sufficient for ensuring that most models converge effectively. Unless other-
wise specified, we maintained the remaining parameters of the query strategy in the active
learning and machine learning models at their default values.

4.5. Metrics

After examining several metrics, including the accuracy, precision, recall, and F1 score,
and with LR and SVM using the three uncertainty queries, we observed that the different
metrics exhibited similar behaviors. Hence, for the sake of experimental simplicity, in
this paper we employ the accuracy as the primary metric. For all comparisons, we report
the averaged accuracy across ten runs using different random seeds. The accuracy was
computed by relating FP (False Positives), FN (False Negatives), TP (True Positives), and
TN (True Negatives), as defined in Equation (6).

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

5. Experimental Results and Discussion
5.1. Baselines

The primary objective of this paper is to assess the potential of active learning for
achieving comparable performance to models trained on the entire dataset while using a
significantly smaller amount of data. To establish a performance baseline, we employed a
model trained on the complete training dataset.

In this case, we random partitioned the preprocessed dataset into a training dataset
comprising 70% of the whole dataset and a test dataset representing the remaining 30%.
The machine learning models in our experiments underwent initial training using the
training dataset and subsequent evaluation on the test data. The reported results are an
average of the outcomes from ten rounds of experimentation.

The results are reported in Table 5. Notably, we observed that RFC consistently
demonstrated superior performance across both datasets. Machine learning models such
as MLP, AdaBoost, and KNN exhibited higher performance compared to LR, DTC, and
NB. This observation can be attributed to the constrained flexibility of the LR, DTC, and
NB models, which tend to establish a linear decision boundary between the two classes.
This inherent constraint can impede their ability to effectively distinguish between rumors
and non-rumors.

Table 5. Baseline accuracy score, best-performing accuracy score, and corresponding strategy name
among all model and strategy combinations.

Model
PHEME RUMDECT

Baseline Best Accuracy Best Strategy Baseline Best Accuracy Best Strategy

LR 0.725 0.726 ± 0.01 ERR 0.889 0.864 ± 0.01 Unc (Lc)
LR (SGD) 0.755 0.676 ± 0.03 QBC 0.889 0.856 ± 0.01 QBC

NB 0.407 0.553 ± 0.08 Unc (Ma) 0.876 0.851 ± 0.01 QUIRE
GP 0.726 0.710 ± 0.01 Unc (Lc) 0.892 0.865 ± 0.02 QBC

DTC (Gini) 0.679 0.690 ± 0.01 ERR 0.874 0.859 ± 0.02 QBC
DTC (Entropy) 0.677 0.709 ± 0.02 ERR 0.872 0.860 ± 0.02 QBC

LDA 0.771 0.673 ± 0.03 DW 0.892 0.875 ± 0.02 QBC
QDA 0.589 0.627 ± 0.10 DW 0.881 0.876 ± 0.02 DW
Ada 0.736 0.677 ± 0.02 QBC 0.903 0.883 ± 0.01 QBC
KNN 0.771 0.706 ± 0.01 QBC 0.895 0.849 ± 0.01 QBC
MLP 0.778 0.706 ± 0.01 Unc (Lc) 0.904 0.875 ± 0.01 Unc (Lc)
RFC 0.805 0.719 ± 0.01 Unc (Lc) 0.915 0.902 ± 0.01 Unc (Ma)

SVM (RBF) 0.778 0.714 ± 0.01 Unc (En) 0.895 0.884 ± 0.02 QUIRE
SVM (Linear) 0.775 0.719 ± 0.03 QBC 0.895 0.879 ± 0.02 QBC
SVM (SGD) 0.765 0.685 ± 0.03 QBC 0.894 0.854 ± 0.03 QBC
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5.2. Results

In the following, we delve into and discuss the comparative results of our experiments
in detail from multiple perspectives.

5.2.1. Analysis of the Effectiveness of Active Learning in Rumor Detection

Table 5 provides all of the baseline accuracy scores for the experimental models along
with the best-performing accuracy scores among all query strategies.

For the PHEME dataset, several models using active learning achieved performance
surpassing that of the baseline. Even LDA, the model with the lowest performance among
them, reached 87.3% of the baseline performance. Figure 3a illustrates that its performance
can be further improved to 0.741 with the addition of query datapoints, reaching up
to 96% of the baseline performance. This demonstrates that by carefully selecting an
optimal number of query instances, machine learning models can be trained effectively
with a smaller dataset compared to the entire training set while achieving the desired
performance levels.

For the RUMDECT dataset, all models using active learning exceeded the baseline
performance achieved by the models trained using the entire dataset, achieving a per-
formance level of 95%. Likewise, several models, including DTC (Gini), DTC (Entropy),
GP, LDA, and Ada, outperformed the baseline. Under appropriate query strategies, these
models can converge quickly relative to baseline performance. For example, as shown in
the Figure 3b, the RFC model uses the Unc(Margin) strategy to quickly converge within
just 100 query instances.
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Figure 3. (a) On the PHEME dataset, the DW strategy achieved the best performance for the LDA
model; however, its performance was the worst among all methods. As the query instances continue
to increase, its performance approaches the baseline performance when the total number reaches
500. (b) The RFC model, which exhibited the best baseline performance on the RUMDECT dataset,
demonstrates the ability to approach baseline performance with remarkable efficiency when utilizing
the Unc(Ma) query strategy, converging in just 100 query instance.

In summary, the results in Table 5 demonstrate that all models can approach or achieve
baseline performance using no more than 200 data instances when paired with appropriate
active learning query strategies. These data instances represent only 5% and 6% of the
training sets for the PHEME and RUDECT datasets, respectively. This highlights the
effectiveness of active learning in significantly reducing labeling costs while maintaining
high-performance results in the context of rumor detection.

5.2.2. Model Comparison

Figures 4 and 5 display the accuracy scores of various machine learning models using
different strategies on the PHEME and RUMDECT datasets, respectively. These diagrams
demonstrate that most models reach a performance plateau with just 50–150 query instances,
showcasing their ability to achieve commendable accuracy with a relatively small dataset
size. Notably, most models exhibit consistent behavior and substantial improvements
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when provided with 50–150 well-selected data samples through active learning. Overall,
the performance on the PHEME dataset lags behind that on the RUMDECT dataset, possibly
due to the higher level of noise and class imbalance present in the PHEME dataset.

Examining the results further, RFC yields the highest accuracy score in baseline and
best convergence score in active learning among our models on both datasets. Although dif-
ferent query strategies may result in varying performance, they all demonstrate consistent
convergence for RFC, which is true for models such as Ada, LR, GP, SVM(RBF) and
SVM(Linear) as well.

Several models, including LDA, MLP, QDA, and models trained by SGD. such as
LR(SGD) and SVM(SGD), exhibited noticeable oscillations across various query strategies.
In essence, these models experience fluctuations in their performance as the number of
samples increases. Notably, the LR(SGD) and SVM(SGD) models display oscillations
throughout the entire sampling process. This behavior may arise from a mismatch between
the query strategies and the fundamental principle of random sampling behind SGD-based
training. To mitigate this issue, it is possible to adopt query strategies that leverage gradient
information, such as the Expected Gradient Length (EGL) strategy [45].

In the case of the LDA model applied to the PHEME dataset, the model’s performance
initially decreases during the early stages of training, then increases, and eventually con-
verges. However, this phenomenon does not manifest on the RUMDECT dataset. We
attribute this difference to the class imbalance in the PHEME dataset and the relatively
small initial labeled dataset used for model training. To address this, we increased the
number of initial datapoints in the PHEME dataset to 25, resulting in the disappearance of
the fluctuations, as depicted in the Figure 6a. A similar trend was observed for the QDA
models, which involve a greater number of model parameters. For both LDA and QDA
models, active learning necessitates a larger labeled dataset to prevent fluctuations.

In the case of the MLP model used with active learning, an interesting observation
emerges as the query budget nears exhaustion, with a significant decrease in performance
becoming evident. In situations where the sampling budget is increased to 500, as depicted
in Figure 6b, two such performance dips are apparent. These dips do not disappear when
changing the number of hidden units. We leave the investigation of the causes of this
phenomenon to future work, along with the exploration of potential solutions.

In the case of the Decision Tree Classifier (DTC) model, there is minimal variation
between the Gini and Entropy criteria across all query strategies applied to the two datasets.
However, it is noteworthy that an intriguing pattern emerges for the query strategies
Unc(Lc), Unc(Ma), and Unc(En) as the number of samples increases, where the perfor-
mance of the DTC model starts to decline. The DTC model relies on a diverse set of
representative data points to construct effective classification rules; however, the uncer-
tainty query strategy primarily refines existing rules rather than introducing new ones,
which may explain the performance decline. A similar phenomenon was observed with
the KNN model on the PHEME dataset. Therefore, these three query strategies should
not be chosen for DTC or KNN models. The QBC query strategy, which considers the
disagreement of multiple classifiers and tends to select query instances for introducing new
rules, is applicable for DTC(Gini), DTC(Entorpy), and KNN models.

Notably, NB experienced a continuous decrease in performance when trained on the
PHEME dataset, and showed only a minimal improvement on RUMDECT. This suggests
that query strategies may not adequately address this model’s need for diverse datapoints,
highlighting an area of focus for active learning in generative models.

These findings can shed light on the complex behaviors of different models under
active learning conditions, and emphasize the importance of understanding the interplay
between model complexity, dataset characteristics, and query strategies.
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Figure 4. Performance of different strategies used with various machine learning models on the
PHEME dataset. The vertical axis shows the accuracy and the horizontal axis shows the number of
data samples used for training during active learning. Subfigures without legends share the same
legend as the first subfigure in the same row.
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Figure 5. Performance of different strategies used with various machine learning models on the
RUMDECT dataset. The meanings of the vertical axis and horizontal axis are the same as in Figure 4.
The horizontal gray dashed line represents the model’s baseline performance. Subfigures without
legends share the same legend as the first subfigure in the same row.
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Figure 6. (a) After increasing the initial amount of label data to 25, the LDA model does not
have fluctuations. (b) After the MLP model increases the query budget to 500, two fluctuations appear.

5.2.3. Analysis of Query Strategies

In this subsection, we conduct a comprehensive comparative analysis of various active
learning query strategies with the goal of gaining deeper insights into their respective
advantages and disadvantages. This analysis aims to shed light on rumor detection for
enhancing active learning query strategies in future research.

On one hand, information-based query strategies have proven to be highly effective,
especially for discriminative models characterized by linear classification boundaries.
On the other hand, representative-based query strategies are better suited for models that
rely on data diversity, such as DTC models. Interestingly, despite having the advantages
of both characteristics, the combination of information-based and representative-based
strategies does not yield superior performance.

The uncertainty-based strategies perform well across most models on both datasets,
and show no significant differences in performance. Based on the experimental results in
Figures 4 and 5, these strategies are highly effective for discriminative models characterized
by linear boundaries. However, they rely on estimating prediction uncertainties, and
consequently cannot be applied to non-probabilistic models such as SVM(Linear) and
SVM(SGD). Additionally, they tend to select non-representative instances in the feature
space, such as outliers or noisy instances;as a result, their performance is lower on the
noisy and imbalanced PHEME dataset compared to the RUMDECT dataset. Furthermore,
because these strategies may exhibit a bias towards regions in the feature space where
the model already has high confidence, they might inadvertently neglect crucial areas
that require further exploration. As a result, a performance degradation phenomenon is
observed for the DTC(Gini) and DTC(Entropy) models on both datasets, as well as for the
KNN model on the PHEME dataset.

Figures 4 and 5 illustrate that the QBC strategy consistently achieves the best perfor-
mance across multiple models on the two datasets. Notably, even in challenging scenarios
such as the DTC(Gini), DTC(Entropy), and KNN model on the PHEME dataset, the QBC
strategy outperforms most other strategies. This outcome aligns with expectations, as QBC
tends to select instances in which ensemble models exhibit the highest levels of disagree-
ment, thereby promoting diversity in the selected instances. QBC is characterized by its
stable performance and rapid convergence, making it adaptable to a wide range of machine
learning models.

In contrast, the ERR strategy is model-dependent and performs suboptimally when the
model cannot provide reliable uncertainty estimates. Even in situations where uncertainty
estimates are available, ERR tends to perform worse than QBC. This observation might
be attributed to the fact that ERR is better suited for complex models dealing with high-
dimensional data.

The GD strategy, as a representative-based query strategy, does not consistently outper-
form the other strategies on either dataset. Its convergence is relatively slow, and its perfor-
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mance appears to depend on the dataset’s characteristics. For instance, on the RUMDECT
dataset, multiple models (including LR, GP, LDA, and MLP) using the GD strategy initially
experienced a performance decrease, followed afterwards by an increase. However, this
phenomenon did not manifest on the PHEME dataset.

Regarding DW and QUIRE, which use a combination of the informative and represen-
tative strategies, our experiments indicate that they do not significantly outperform purely
informative or representative approaches.

In terms of running time, we can consider the example of LR and RFC running for
ten rounds on two datasets. Table 6 provides a comparison of their running times. It is
evident that the running times for the ERR and QUIRE strategies are significantly longer
than those for the other strategies. This is primarily because QUIRE involves measuring
both informativeness and representativeness for each unlabeled instance, making it more
computationally intensive and time consuming, especially for larger datasets. During our
experiments, we observed that running a model with the ERR or QUIRE strategy under the
hardware configuration used in this study took nearly a week. Such long processing times
could make these strategies impractical for real-world rumor detection tasks. In contrast,
while the running time for the QBC strategy is longer than for most other strategies
(excluding ERR and QUIRE), it falls within an acceptable range.

When considering both performance and running time, QBC emerges as the most
suitable query strategy for most machine learning models in rumor detection.

Table 6. Running times (in seconds) of LR and RFC on the PHEME and RUMDECT datasets when
employing different query strategies.

Model Dataset Unc (Lc) Unc (Ma) Unc (En) QBC ERR GD QUIRE DW

LR
PHEME 360 214 352 600 125,347 358 547,705 484

RUMDECT 381 239 370 417 176,304 380 625,944 845

RFC
PHEME 783 847 813 3458 684,065 463 544,903 752

RUMDECT 553 511 558 4042 465,379 523 763,072 987

6. Conclusions

In this paper, we have conducted a comprehensive experimental comparative analysis
assessing various rumor detection models in conjunction with diverse active learning query
strategies. Our experimental results indicate that most supervised machine learning models
can achieve model training with significantly fewer datapoints than the full training set,
and that their performance can match or even surpass models trained on the complete
dataset. Different supervised learning models exhibit varying performance under different
active learning query strategies. This article presents experimental findings that identify
the query strategies that enable different machine learning models to converge most rapidly.
Our experimental results illustrate that RFC achieves the best performance on both datasets,
while QBC emerges as the most suitable query strategy for most machine learning models
in rumor detection. In addition to comparing model performance, this article discusses
the runtimes of different strategies in order to further assess the pros and cons of different
machine learning models when using various query strategies. This work can provide
experimental guidance for the application of active learning in the field of rumor detection.

As part of our future work, we plan to expand upon our current research by incorpo-
rating deep neural networks such as Recurrent Neural Networks (RNNs), Convolutional
Neural Networks (CNNs), and Graph Neural Networks (GNNs) for rumor detection. Ad-
ditionally, we aim to explore the application of active learning in rumor detection within
dynamic data streaming scenarios.
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The following abbreviations are used in this manuscript:

AL Active Learning
SGD Stochastic Gradient Descent
RBF Radial Basis Function
LR Logistic Regression classifier
LR(SGD) Logistic Regression classifier trained with SGD
SVM Support Vector Machine
SVM(Linear) SVM classifier with a Linear kernel
SVM(RBF) SVM classifier with an RBF kernel
SVM(SGD) SVM(RBF) trained with SGD
DTC Decision Tree Classifier
DTC(Gini) Decision Tree Classifier using Gini criterion
DTC(Entropy) Decision Tree Classifier using Entropy criterion
NB Gaussian Naive Bayes
RFC Random Forest Classifier
KNN K-Nearest Neighbours
GP Gaussian Process classifier
MLP Multi-layer Perceptron
LDA Linear Discriminant Analysis
QDA Quadratic Discriminant Analysis
Ada AdaBoost classifier
Unc(Lc) Query strategy: uncertainty measured by least confidence criterion
Unc(Ma) Query strategy: uncertainty measured by margin criterion
Unc(Lc) Query strategy: uncertainty measured by entropy criterion
QBC Query strategy: query by committee
ERR Query strategy: expected error reduction strategy
GD Query strategy: graph density strategy
QUIRE Query strategy: querying informative and representative examples
DW Query strategy: information density weighted strategy
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