Analysis of the Risk of Coastal Flooding Due to Rising Sea Levels in Ría of Arosa (Pontevedra, Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vulnerability Analysis of Coastal Flooding
2.2.1. Lithological Factor (Fl)
2.2.2. Geomorphological Factor (Fg)
2.2.3. Slope Factor (Fs)
2.2.4. Heigh Factor (Fh)
2.2.5. Distance Factor (Fd)
2.2.6. Bathymetric Factor (Fb)
2.2.7. Coastal Factor/West Coastline Change Rate (Fc)
2.2.8. Wave Factor: Average Rate of Significant Waves (Fw)
2.2.9. Sea-Level Factor (Fsl)
2.2.10. Extreme Tidal Range Factor (Ftr)
2.3. Coastal Flooding Analysis
3. Results
3.1. Coastal Vulnerability in the Ría of Arosa
3.2. Coastal Flood Analysis of Ría of Arosa
4. Discussion
4.1. Socio-Economic Impact Due to Coastal Flooding
4.2. Action Strategies against Coastal Flooding
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, S.J.; Lee, D.K. Prediction of coastal flooding risk under climate change impacts in South Korea using machine learning algorithms. Environ. Res. Lett. 2020, 15, 094052. [Google Scholar] [CrossRef]
- Kirschbaum, M.U. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 2005, 27, 753–760. [Google Scholar] [CrossRef]
- Mori, N.; Yasuda, T.; Mase, H.; Tom, T.; Oku, Y. Projection of extreme wave climate change under global warming. Hydrol. Res. Lett. 2010, 4, 15–19. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Rahmstorf, S. A semi-empirical approach to projecting future sea-level rise. Science 2007, 315, 368–370. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007, The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Intragovernmental Panel on Climate Change (IPCC). Sea Level Change. In Climate Change 2013, The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2013; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014, Impacts, Adaptation, and Vulnerability; Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the IPCC 2014; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Vellinga, M.; Wood, R. Impacts of thermohaline circulation shutdown in the twenty-first century. Clim. Chang. 2008, 91, 43–63. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Harper, J.T.; O’Neel, S. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 2008, 321, 1340–1343. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Reconstructing Sea level from paleo and projected temperatures 200–2100 AD. Clim. Dyn. 2010, 34, 461–472. [Google Scholar] [CrossRef]
- Vermeer, M.; Rahmstorf, S. Global Sea level linked to global temperature. Proc. Natl. Acad. Sci. USA 2009, 106, 21527–21532. [Google Scholar] [CrossRef]
- Katsman, C.A.G.; Oldenborgh, J.V. Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—The Netherlands as an example. Clim. Dyn. 2011, 109, 617–645. [Google Scholar] [CrossRef]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. Digital Shoreline Analysis System (DSAS) Version 4.3—An ArcGIS Extension for Calculating Shoreline Change. In U.S. Geological Survey Open-File Report 2008–1278; U.S. Geological Survey: Reston, VA, USA, 2009. [Google Scholar]
- Ojeda, J.; Álvarez, J.I.; Martín, D.; Fraile, P. El uso de las TIG para el cálculo del índice de vulnerabilidad costera (CVI) ante una potencial subida del nivel del mar en la costa andaluza. GeoFocus Int. Rev. Geogr. Inf. Sci. Technol. 2009, 9, 83–100. [Google Scholar]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Di Paola, G.; Rizzo, A.; Benassai, G.; Corrado, G.; Matano, F.; Aucelli, P.P.C. Sea-level rise impact and future scenarios of inundation riskalong the coastal plains in Campania (Italy). Environ. Earth Sci. 2021, 80, 608. [Google Scholar] [CrossRef]
- Bhable, S.; Kayte, S.; Mali, S.; Kayte, J.N.; Maher, R. A review paper on coastal hazard. Int. J. Eng. Res. Appl. 2015, 5, 83–93. [Google Scholar]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-leevl rise and coastal flooding-a global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.J.; Nicholls, R.J.; Ragoonaden, S.; Capobianco, M.; Aston, J.; Buckley, E.N. Technological options for adaptation to climate change in coastal zones. J. Coast. Res. 2001, 17, 531–543. [Google Scholar]
- Szlafsztein, C.; Sterr, H. A GIS-based vulnerability assessment of coastal natural hazards, state of Pará, Brazil. J. Coast. Conserv. 2007, 11, 53–66. [Google Scholar] [CrossRef]
- Balica, S.F.; Wright, N.G.; Van der Meulen, F. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat. Hazards 2012, 64, 73–105. [Google Scholar] [CrossRef]
- Vittal Hegde, A.; Radhakrishnan Reju, V. Development of coastal vulnerability index for Mangalore coast, India. J. Coast. Res. 2007, 23, 1106–1111. [Google Scholar] [CrossRef]
- Martínez-Graña, A.M.; Boski, T.; Goy, J.L.; Zazo, C.; Dabrio, C.J. Coastal-flood risk management in central Algarve: Vulnerability and flood risk indices (South Portugal). Ecol. Indic. 2016, 71, 302–316. [Google Scholar] [CrossRef]
- Martínez-Graña, A.; Gómez, D.; Santos-Francés, F.; Bardají, T.; Goy, J.L.; Zazo, C. Analysis of flood risk due to sea level rise in the Menor Sea (Murcia, Spain). Sustainability 2018, 10, 780. [Google Scholar] [CrossRef]
- Chazarra, A.; Flórez-García, E.; Peraza-Sánchez, B.; Tohá-Rebull, T.; Lorenzo-Mariño, B.; Criado, E.; Moreno-García, J.V.; Romero-Fresneda, R.; Botey, M.R. Mapas Climáticos de España (1981–2010) y Eto (1996–2016); Agencia Estatal de Meteorología (AEMET): Madrid, Spain, 2018.
- Martínez-Graña, A.M.; Goy, J.L.; Zazo, C. Cartografía Geomorfológica y Patrimonio Geológico Cuaternario en la Ría de Arosa (Pontevedra-La Coruña, Galice, España); Universidad Politécnica de Madrid: Madrid, Spain, 2007. [Google Scholar]
- Llana-Fúnez, S.; Marcos, A. The Malpica-Lamengo Line: A major crustal-scale shear zone in the Variscan belt of Iberia. J. Struct. Geol. 2001, 23, 1015–1030. [Google Scholar] [CrossRef]
- Cuesta, A. Petrología Granítica del Pluton de Caldas de Reyes (Pontevedra, España): Estructura, Mineralogía, Geoquímica y Petrogenesis; Nova Terra; Universidad de Oviedo: Oviedo, Spain, 1991; Volume 5, 363p. [Google Scholar]
- Gallastegui, G. Petrología del Macizo Granodiorítico de Bayo-Vigo (Provincia de Pontevedra, España). Ph.D. Thesis, Universidad de Oviedo, Oviedo, Spain, 1993; 363p. [Google Scholar]
- Pedraza, J. Geomorfología: Principios, Métodos y Aplicaciones; No. 551.4 PED; Rueda, 1996. Available online: https://www.researchgate.net/profile/Javier-De-Pedraza/publication/235864020_Geomorfologia_Principios_Metodos_y_Aplicaciones_Texto/links/5ebbb2bc299bf1c09ab944cf/Geomorfologia-Principios-Metodos-y-Aplicaciones-Texto.pdf (accessed on 10 October 2023).
- Martínez-Graña, A.M.; Arias, L.; Goy, J.L.; Zazo, C.; Silva, P. Geomorphology of the mouth of the Arosa estuary (Coruña-Pontevedra, Spain). J. Maps 2017, 13, 554–562. [Google Scholar] [CrossRef]
- Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob. Environ. Chang. 2009, 19, 240–247. [Google Scholar] [CrossRef]
- Hammar-Klose, E.; Thieler, E.R. Coastal Vulnerability to Sea-Level Rise, a Preliminary Database for the US. Atlantic, Pacific, and Gulf of Mexico Coasts; Digital Data Series DDS-68; US Geological Survey: Reston, VA, USA, 2001; Volume 1.
- Pilkey, O.H.; Davis, T.W. An analysis of coastal recession models, North Carolina coast. In Sea-Level Fluctuation and Coastal Evolution; Nummedal, D., Pilkey, O.H., Howard, J.D., Eds.; SEPM (Society for Sedimentary Geology) Special Publications: Tulsa, OK, USA, 1987; Volume 41, pp. 59–68. [Google Scholar]
- Masselink, G.; Russell, P.; Rennie, A.; Brooks, S.; Spencer, T. Impacts of climate change on coastal geomorphology and coastal erosion relevant to the coastal and marine environment around the UK. MCCIP Sci. Rev. 2020, 2020, 158–189. [Google Scholar]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.1 User Guide 2021–1091; US Geological Survey: Reston, VA, USA, 2021.
- Paleo, U.F. (Ed.) Incertidumbre en la tierra apacible. Los riesgos naturales en Galice. In Riesgos Naurales en Galice: El Encuentro Entre Naturales y Sociedad; Servizo de Publicacións e Intercambio Científico da USC: Santiago de Compostela, Spain, 2010; pp. 1–9. [Google Scholar]
- Luque, L.; Lario, J.; Civis, J.; Silva, P.G.; Zazo, C.; Goy, J.L.; Dabrio, J. Sedimentary record of a tsunami during Roman times, Bay of Cadiz, Spain. J. Quat. Sci. 2002, 17, 623–631. [Google Scholar] [CrossRef]
- Shi, C.; Hutchinson, S.M.; Yu, L.; Xu, S. Towards a sustainable coast: An integrated coastal zone management framework for Shanghai, People's Republic of China. Ocean. Coast. Manag. 2001, 44, 411–427. [Google Scholar] [CrossRef]
- Toubes, D.R.; Gössling, S.; Hall, C.M.; Scott, D. Vulnerability of coastal beach tourism to flooding: A case study of Galice, Spain. Environments 2017, 4, 83. [Google Scholar] [CrossRef]
- De Galice, A. Estudio Ambiental Estratégico. Plan de Xestión do Risco de Inundación da Demarcación. In Hidrográfica de Galice-Costa (Ciclo 2015–2021); Aguas de Galice 2016; Santiago de Compostela, Spain, 2016; Available online: https://www.miteco.gob.es/es/agua/temas/gestion-de-los-riesgos-de-inundacion/planes-gestion-riesgos-inundacion/evaluacion_ambiental_planes_gestion_ri.html (accessed on 10 October 2023).
- Ferreiro, F.J.; Vaquero, A. Análisis económico del litoral gallego: Situación actual y perspectivas futuras. Adm. Ciudad. 2010, 5, 47–66. [Google Scholar]
- Toubes, D.R.; Araújo-Vila, N.; Fraiz-Bera, J.A. Factors influencing the assessment of tourism damage caused by river floods. Rev. Tur. Desenvolv. 2021, 1, 51–61. [Google Scholar]
- Milner, A.M.; Robertson, A.L.; McDermott, M.J.; Klaar, M.J.; Brown, L.E. Major flood disturbance alters river ecosystem evolution. Nat. Clim. Chang. 2012, 3, 137–141. [Google Scholar] [CrossRef]
- George, S.D.; Baldigo, B.P.; Smith, A.J.; Robinson, G.R. Effects of extreme floods on trout populations and fish communities in a Catskill Mountain River. Freshw. Biol. 2015, 60, 2511–2522. [Google Scholar] [CrossRef]
- Adger, W.N.; Hughes, T.P.; Folke, C.; Carpenter, S.R.; Rockstrom, J. Social-ecological resilience to coastal disasters. Science 2005, 309, 1036–1039. [Google Scholar] [CrossRef]
- Malekpour, S.; Brown, R.R.; de Haan, F.J.; Wong, T.H.F. Preparing for Disruptions: A Diagnostic Strategic Planning Interpretation for Sustainable Development. Cites 2017, 63, 58–69. [Google Scholar] [CrossRef]
- Dedekorkut-Howes, A.; Torabi, E.; Howes, M. When the tide gets high: A review of adaptative responses to sea level rise and coastal flooding. J. Environ. Plan. Manag. 2020, 63, 2102–2143. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
- Anfuso, G.; Postacchini, M.; Di Luccio, D.; Benassai, G. Coastal sensitivity/vulnerability characterization and adaptation strategies: A review. J. Mar. Sci. Eng. 2021, 9, 72. [Google Scholar] [CrossRef]
- Bapalu, G.V.; Sinha, R. GIS in flood hazard mapping: A case study of Kosi River Basin, India. GIS Dev. Wkly. 2005, 1, 1–3. [Google Scholar]
- Di Luccio, D.; Benassai, G.; Budillon, G.; Mucerino, L.; Montella, R.; Pugliese Carratelli, E. Wave run-up prediction and observation in a micro-tidal beach. Nat. Hazards Earth Syst. Sci. 2018, 18, 2841–2857. [Google Scholar] [CrossRef]
Scenario | Fw | Fsl | Ftr | Total | ||||
---|---|---|---|---|---|---|---|---|
Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | |
Xa | 0.11 | 4 | 0.027 | 0.4 | 4.38 | 4.47 | 4.52 | 8.51 |
Xb | 0.11 | 4 | 0.11 | 0.16 | 4.38 | 4.47 | 4.60 | 8.63 |
Xc | 0.11 | 4 | 0.55 | 0.8 | 4.38 | 4.47 | 5.04 | 9.27 |
Xd | 0.11 | 4 | 1.1 | 1.6 | 4.38 | 4.47 | 5.59 | 10.07 |
Xe | 0.11 | 4 | 2 | 2 | 4.38 | 4.47 | 6.49 | 10.47 |
Xf | 0.11 | 4 | 8 | 8 | 4.38 | 4.47 | 12.49 | 16.47 |
Municipality | Area (km2) | Inhabitants | Population Density (Population/km2) | Elevation | Distance from Coastline | Exposed Urbanized Area (km2) | Exposed Inhabitants |
---|---|---|---|---|---|---|---|
Sangenjo | 45.08 | 17,760 | 393.97 | 52 | 0 | 1.76 | 693 |
El Grove | 21.86 | 10,809 | 494.46 | 64 | 0 | 1.91 | 944 |
Cambados | 23.44 | 13,671 | 583.23 | 15 | 0 | 1.52 | 886 |
Villanueva de Arosa | 38.84 | 10,240 | 263.65 | 50 | 0 | 0.90 | 237 |
Isla de Arosa | 7 | 4878 | 696.86 | 9 | 0 | 1.36 | 947 |
Total | 135.92 | 57,358 | 421.99 | 7.45 | 3707 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto, C.E.; Martínez-Graña, A.M.; Encinas, B. Analysis of the Risk of Coastal Flooding Due to Rising Sea Levels in Ría of Arosa (Pontevedra, Spain). Appl. Sci. 2023, 13, 12099. https://doi.org/10.3390/app132212099
Nieto CE, Martínez-Graña AM, Encinas B. Analysis of the Risk of Coastal Flooding Due to Rising Sea Levels in Ría of Arosa (Pontevedra, Spain). Applied Sciences. 2023; 13(22):12099. https://doi.org/10.3390/app132212099
Chicago/Turabian StyleNieto, Carlos E., Antonio Miguel Martínez-Graña, and Belén Encinas. 2023. "Analysis of the Risk of Coastal Flooding Due to Rising Sea Levels in Ría of Arosa (Pontevedra, Spain)" Applied Sciences 13, no. 22: 12099. https://doi.org/10.3390/app132212099
APA StyleNieto, C. E., Martínez-Graña, A. M., & Encinas, B. (2023). Analysis of the Risk of Coastal Flooding Due to Rising Sea Levels in Ría of Arosa (Pontevedra, Spain). Applied Sciences, 13(22), 12099. https://doi.org/10.3390/app132212099