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Abstract: The presented work studies the processes of synthesis of ZnO microstructures using
atmospheric-pressure microwave nitrogen plasma and investigates their photocatalytic activity in
the processes of degradation of 2,4-dinitrophenol and the antibiotic ciprofloxacin when irradiated
with sunlight. The work proposes an effective method for formation of photosensitive ZnO powders.
Due to the features of plasma treatment in the open atmosphere of zinc metal microparticles, ZnO
structures are formed with sizes from hundreds of nanometers to several micrometers with various
micromorphologies. The lattice parameters of ZnO structures are characteristic of a hexagonal
unit with a = 3.258 Å and c = 5.21 Å, volume 47.95 Å3. The size of the crystallites is 48 nm. The
plasma treatment was performed by means of a 2.45-GHz plasmatron at a power input of 1 kW in
nitrogen flow at a rate of 1–10 L/min. Zn microparticles were injected into the microwave plasma
at a mass rate of 20 g/min. High photoactivity was demonstrated (rate constants 0.036 min−1

and 0.051 min−1) of synthesized ZnO structures during photo-degradation of 2,4-dinitrophenol
and ciprofloxacin, respectively, when exposed to solar radiation. Photo-active structures of ZnO
synthesized using microwave plasma can find application in processes of mineralization of toxic
organic compounds. Structures of ZnO synthesized using microwave plasma can find application in
processes of mineralization of toxic organic compounds, and also in scintillation detectors, phosphors.

Keywords: microwave plasma; zinc oxide; antibiotic; dinitrophenol; solar radiation; photocatalysts

1. Introduction

All over the world today there is a shortage of clean water due to rapid population
growth, environmental degradation, uncontrolled disposals from industrial enterprises,
and the widespread introduction of chemical technologies in agriculture. Despite the
widespread construction of modern treatment facilities, it is not possible to achieve com-
plete wastewater treatment. This is due to the presence of difficult-to-oxidize organic
pollutants, the most common of which are phenol-containing substances and antibiotics.
Traditional treatment methods include mainly biological treatment and a number of physic-
ochemical methods such as adsorption, ion exchange, and reverse osmosis. The disad-
vantages of these methods include the non-destructive nature of cleaning, high energy
and operating costs, low efficiency, and the generation of large amounts of waste. In re-
cent years, environmentally friendly and energy-efficient advanced oxidation technologies
have been actively developed, among which photocatalysis (PC) occupies an important
place [1,2]. An important advantage of PC is the possibility of oxidation at relatively low
concentrations of pollutants [3], which is important for the mineralization of toxic organic
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pollutants with low maximum permissible concentrations. The efficiency of PC is deter-
mined by the efficiency of formation and separation of photo-charges. For a long time,
the main photocatalyst produced on an industrial scale was titanium dioxide (TiO2) from
Degussa (P-25) [4]. The disadvantage of TiO2 is its significant band gap (Eg = 3.2 eV) and
its maximum photocatalytic activity when irradiated with ultraviolet (UV) light. Ultraviolet
radiation makes up only 5–7% of solar radiation. At the same time, visible radiation makes
up about 45% and the search for photocatalysts active in the visible region is very relevant.
A huge number of works are devoted to heterostructural and composite photocatalysts
exhibiting activity in the visible region [5–10]. Despite individual studies demonstrating
the effectiveness of hybrid photocatalysts, the traditionally utilized TiO2 still remains the
most popular. This is due to the lack of economically accessible technology for mass
production of hybrid photocatalysts. As an alternative to TiO2, ZnO [11,12], which is
not inferior in efficiency and availability, has recently been actively studied. Despite the
similarity of the band gap of ZnO (3.37 eV) with TiO2 (3.2 eV), a distinctive feature of
the band structure of ZnO is the presence of isolated energy levels in the band gap as-
sociated with point defects, mainly oxygen vacancies [13]. With a significant increase in
the concentration of vacancies, photosensitivity can expand into the visible region of the
spectrum. Dislocations are an additional source of levels in forbidden zones. The band
structure is distorted around the dislocation core and a level is introduced closer to the
center of the band gap. In n-type crystals, which include ZnO, dislocations can capture
electrons and prevent their recombination. The highest concentration of defects is observed
in crystals synthesized under conditions that are far from ideal: high saturation, unstable
temperature gradient, and chaotic influx of atoms. Such conditions can be created using
plasma synthesis of metal–oxide structures [14]. Plasma synthesis using gas-discharge
plasma is not only energy-efficient but also has high productivity. Of greatest interest is
the microwave (MW) discharge at atmospheric pressure, which has a much higher charge
density and, consequently, greater reactivity compared to other discharges at the same
power. In some types of atmospheric pressure discharges (corona, spark, and arc), plasma
is “contaminated” by the material of internal discharge electrodes. This can be avoided
for microwave discharges excited in chambers in the absence of direct contact with the
metal electrodes, which is of fundamental importance in the generation of high-purity
plasma. It should be noted that the possibility of using microwave plasma for the synthesis
of photocatalytically active ZnO tetrapods was previously studied in [15]. However, the
authors pay attention only to plasma regions in which the conditions for the formation
of ZnO tetrapods are realized. This approach generally limits the performance of the
photoactive ZnO catalyst. It seems to us that loading zinc metal powder directly into
the gas transportation system is an important technological solution. Thus, the residence
time of zinc metal in the plasma increases. Considering the plasma temperature of several
thousand Kelvin, one can expect the instantaneous evaporation of zinc and the formation
of individual ZnO elements with a wide range of sizes and different micromorphologies. It
should be noted that micron-sized particles injected into a gas-discharge plasma become
centers of recombination of plasma electrons and ions (sometimes a source of electrons
owing to thermo-, photo-, and secondary electron emissions) and acquire a negative electric
charge because of the greater mobility of electrons. In this case, the microparticle charge
can reach significant values of up to 103–105 electron charges [16,17]. Owing to electrostatic
interaction, particles of the same charge sign experience mutual Coulomb repulsion, which
prevents them from sticking together and forming agglomerates. As a result, the form of
individual ZnO elements with a large variation in size and different micromorphology
with a developed surface can be expected. In order to enhance the photosensitivity of ZnO
powder in the visible region, one can resort to nitridation of ZnO [18]. For this purpose, it
is possible to utilize nitrogen as a buffer plasma-forming gas.

In the presented work, the processes of synthesis of ZnO structures using microwave
plasma were studied and their photocatalytic activity in the processes of degradation of 2,4-
dinitrophenol and the antibiotic ciprofloxacin under irradiation with sunlight was investigated.
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2. Materials and Methods
2.1. Materials and Sample Preparation

For the experiment, zinc powders (99.98% purity) 30–40 µm mean particle size pro-
vided by OCHV, Russia, were utilized. The waveguide microwave atmospheric-pressure
plasmatron was utilized for ZnO plasma synthesis (Figure 1).

To mix the powder with working gas, a simple transparent sealed container with
visual control was constructed. Zinc powder was poured from the container into the
discharge tube from the gas supply side and passed through the microwave discharge
region inside the waveguide. Next, the particles of the treated Zn powder were collected
through the open end of the discharge tube into a quartz cup. Zn microparticles were
injected into the microwave plasma at a mass rate of 20 g/min. To organize the injection of
microparticles into a discharge, several features of the microwave discharge at atmospheric
pressure should be considered. Commonly, to maintain the stability of the discharge and
isolate it from the walls of the discharge tube, various schemes for gas jet “swirling” are
utilized. However, when solid dispersed particles are injected into the gas flow, they are
centrifugally ejected from the central region onto the tube wall. To reduce the deposition of
powder onto the walls, plasma-forming gas was introduced without swirling.

We utilized the microwave plasmatron developed on the basis of a 2.45-GHz mag-
netron with an output power of 1.1 kW. Unlike microwave plasmatrons of a “classical” de-
sign, our plasmatron is constructed using the simplified scheme “power supply–magnetron–
waveguide–gas-discharge device–load”. The WR-340 waveguide was fabricated from a
stainless-steel rectangular profile. At the end of the waveguide, there is a resonant water
load. In the middle of the wide walls of the waveguide central part, two pipe nozzles for
the gas discharge device input were coaxially welded. A dielectric (quartz) tube with an
internal diameter of 3 cm was placed through the perpendicular to the waveguide wide
wall. A volumetric atmospheric-pressure stationary gas discharge was excited in the tube
by microwaves inside the waveguide operating in the H10 mode. Thus, the tube acted as a
plasma–chemical reactor in which microwave plasma was generated through which the
plasma-forming gas flowed along with the dispersed particles being treated. High-purity
nitrogen (99.998%) was utilized as the plasma-forming gas, and was introduced into the
tube at a flow rate of 1–10 L/min.

To operate the magnetron, a high-voltage power supply circuit, which provides up
to 3 kW of continuous output power from the magnetron, was utilized. The microwave
discharge in a continuous wave (CW) regime can be obtained with the help of ‘seed’
ionization using a thin metal wire tip brought into the tube.
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Figure 1. Microwave plasmatron image (a) and Scheme (b) of the experimental setup with the
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flame with synthesized ZnO.

2.2. Testing

For microscopic studies, the JCM-6000 (JEOL, Tokyo, Japan) desktop scanning electron
microscope (SEM) equipped with an energy dispersive X-ray (EDX) microanalyzer was
utilized. X-ray studies were carried out on an X’PERTPRO diffractometer (PANalytical,
Almelo, The Netherlands) in the Bragg–Brentano “reflection” geometry using CuKα radia-
tion (λ = 1.54 Å) with a Ni β-filter. Previously, the powder was thoroughly rubbed. X-ray
photoelectron spectroscopy (XPS) utilizing the Specs spectrometer (Specs, Berlin, Germany)
equipped with Al and Mg anodes was utilized to determine the chemical composition of
the surface layer and to measure the valence band of the samples. The spectrometer is
metrologically verified. In this work, we utilized Al anode excitation. The anode material
was chosen in such a way that the useful signal did not overlap with the Auger lines. The
spectra were recorded in the binding energy range from 0 to 1200 eV. The binding energies
were calibrated over the C-C line of the C1s spectrum (Eq = 284.6 eV). The etching was
conducted with argon ions with energy of 4 keV for 2 min. To determine the band gap
by UV/VIS spectroscopy, a spectrometric complex based on the MDR-41 monochromator
(NPO Spektr, Novocherkassk, Russia) was utilized. The material powder was poured onto
a special holder and compacted thoroughly. Diffuse reflectance spectra were taken in the
wavelength range of 200 to 500 nm.

To study the photocatalytic activity of the synthesized materials, ZnO powder (25 mg)
was placed in aqueous solutions of 2,4-dinitrophenol (DNP) and ciprofloxacin (CIP) (vol-
ume 50 mL with a concentration of 5 mg/L), stirred in the dark for 30 min, then the
suspension was irradiated with light with constant stirring. A solar radiation simulator
(xenon lamp, 100 mW/cm2) was utilized as a light source. The DNP concentration was de-
termined spectrophotometrically based on the absorption maximum at 358 nm (Shimadzu
UV-1800 spectrophotometer).

3. Results

Let us describe the advantages of the microwave plasma method for the synthesis
of ZnO structures. In some types of atmospheric-pressure discharges (corona, spark, and
arc), the plasma is inevitably “contaminated” by the material of the internal discharge
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electrodes. This can be avoided using dielectric tubes that cross the waveguide. Since in
this case there are no electrodes or direct contact of the plasma with the conductive parts of
the gas-discharge device, this type of discharge is called “electrodeless”. This characteristic
is fundamental for generation of high purity plasmas.

It should be emphasized that when it comes to the efficiency of a discharge device,
it is necessary to consider the materials of all internal elements that may be exposed to
plasma particles. Energy losses due to interaction with the electrode metal, even if this
does not lead to noticeable contamination of the treated materials, reduce the efficiency of
the reactor. Utilizing a microwave plasmatron for material plasma modification renders it
possible to combine the advantages of pure electrodeless discharge with the convenience of
electromagnetic energy supply through waveguides [19].

In our method, the powder was injected into the discharge tube from the side of the gas
supply. This led to intensive plasma treatment because the particles passed through both
the discharge zone in the waveguide and the region of the plasma jet (plasma flame) behind
the exit of the branch pipes. Without particles, a microwave plasmatron of a “classical”
electrodeless design generates atmospheric-pressure plasma with a gas temperature of
several thousand degrees. From the results of spectral diagnostics of a microwave discharge
plasma in nitrogen flow, it is known that at a power input of about 1 kW the gas temperature
on the axis of the discharge tube is 5000–6000 K, while the concentration and temperature
of electrons in the plasma are 1013 cm−3 and 1 eV, respectively [20].

3.1. ZnO Powder Characterization

According to electron microscopy data (Figure 2a), a morphologically heterogeneous
crystalline precipitate is formed during synthesis. Among the individual elements of the
precipitate, tetrapods, or hexagonal rods, can be observed. The structures range in size
from hundreds of nanometers to a few micrometers. According to EDX (Table 1), the
composition of the ZnO powder contained, in addition to the main components of zinc and
oxygen, an atomic fraction of nitrogen of the order of 4%, which confirms the nitridization
of the precipitate. The observed excess oxygen content is associated with water vapors
and oxygen absorbed by the surface of ZnO structures as well as contained in the pores
of ZnO powder. Diffraction reflections on the X-ray diffraction spectrum of oxidized zinc
microstructures correspond to the hexagonal wurtzite structure of ZnO (JCPDS no. 05-0664).
The most intense reflections are observed at 31.68 ◦, 34.35 ◦, and 36.16 ◦, corresponding to
reflections from planes (100), (002), and (101) ZnO. The lattice parameter d is determined
from the Bragg–Wulff equation:

2d ∗ sin (θ) = λ, (1)

where θ is the diffraction angle and λ is the wavelength of the utilized radiation.

Table 1. Concentrations (in %) of the main components of ZnO powder before photocatalysis
according to EDX data.

Element Zn O N

Quantity % 27.56 68.32 4.12

The sizes of coherent scattering regions (CSRs) in the samples under study were
estimated using the Debye–Scherrer formula:

D =
k·λ

β· cos θ′
(2)

where D is the average size of CSRs, which can be less than or equal to the grain size; k is the
dimensionless particle shape coefficient (Scherrer constant); λ is the wavelength of copper
X-ray radiation; β is the width of the reflection at half maximum; and θ is the diffraction
angle. The lattice parameters of ZnO powder are characteristic of a hexagonal unit with
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a = 3.258 Å and c = 5.21 Å, volume 47.95 Å3. The a and c values are higher than that of ZnO
standard (JCPDS card no. 05-0664): a = 3.249 Å and c = 5.205 Å, volume 47.58 Å3. The sizes
of the crystallites 48 nm were estimated from formula (2).
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Displacement may be due to an increase in the lattice parameter ZnO due to partial
substitution of oxygen with nitrogen. Since the radius of nitrogen (1.46 Å) is greater
than oxygen (1.38 Å), replacing oxygen with nitrogen in the ZnO lattice can cause it to
deform. A similar effect was observed in [21]. According to XPS date (calculation was
conducted for the spectra of Zn2p, O1s, and C1s), we calculated the concentrations of the
main components of the powders (Table 2). It can be seen that the powder composition
according to XPS was different from that obtained according to EDX (Table 1). The Zn-to-O
atomic ratio, in this case, is closer to the stoichiometric value, however, there is an excess of
zinc. For qualitative XPS analysis, the surface of the samples is previously etched, which
results in surface cleaning. The excess of zinc found in the measurements is associated
with a feature of the thermodynamically stable wurtzite phase of ZnO, in which oxygen
vacancies and interstitial zinc are always present. These types of defects determine the
electronic conductivity type ZnO. The presence of carbon (peak 285 eV corresponding
to the C–O bond) is associated with hydrocarbon contamination of the surface, which is
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difficult to remove. Of particular note is the absence of nitrogen in the surface layer, which
was previously evident in the EDX data.

Table 2. Concentrations (in %) of the main components of ZnO powder before and after photocatalysis
according to XPS data.

Sample Zn O C N

Initial 49.6 40.8 9.6 0

After photocatalysis 49.5 41.3 9.2 0

The melting and evaporation temperatures of zinc are 419.5 ◦C and 907 ◦C, respec-
tively. As the particle size decreases, their thermodynamic characteristics change, and
the melting and evaporation temperatures decrease. Under microwave discharge condi-
tions, the gas temperature without particles is 5000–6000 K. Given the decrease in particle
size after plasma treatment and their large size difference (Figure 2a), evaporation of Zn
microparticles at the initial stage can be assumed. This assumption is supported by the
presence of ZnO sharp structures, the growth of which is determined exclusively by zinc
pairs. As noted above, micron-sized particles acquire a negative electrical charge due to
incoming fluxes of electrons and ions from the surrounding plasma. Electrostatic repulsion
of microparticles prevents their agglomeration. As a result, we observe a large variation
in particle size and shape after plasma treatment. Zinc atoms enters a gaseous phase and
reacts with active ionized nitrogen and oxygen diffusing from the open end of the quartz
tube. If nitridization processes prevail at the initial stage. Oxidation processes prevail as
the particles move to the open end of the tube. Zinc nitride phases have low stability at
high temperatures in the presence of oxygen. It can be assumed that at the final stage there
is a substitution of nitrogen atoms with oxygen atoms in the ZnO lattice in the direction
from the surface deep into the sample. In addition, the enthalpy of ZnO formation is
−350 kJ/mol and energy is released during zinc oxidation, which additionally heats the
plasma. As a result, the distribution of temperature and other thermodynamic plasma
parameters may be heterogeneous and a variety of ZnO forms is also associated with this.
In addition, according to XRD (Figure 2b), there is no zinc metal in the synthesized ZnO
powder. The presence of an oxide film allows complete oxidation of particles even at
temperatures above the melting point of zinc [22], the diffusion of oxygen through the
oxide layer limiting the liquid zinc in the central part of the particles.

3.2. Photocatalytic Properties of ZnO Powder

The photodegradation of DNP and CIP was evaluated under simulated solar light.
Figure 3a,b represents absorption spectra of unirradiated (0 min) and irradiated DNP
(Figure 3a) and CIP (Figure 3b) for 2, 5, 10, 20, 30, 40, and 60 min. The peculiarities of
irradiation absorption are studied in [23,24]. As a result of irradiation of a semiconductor,
surface photocatalytic reaction is initiated during which a photoelectron is promoted from
the filled valence band to the empty conduction band of the semiconductor generating
electron and hole pair (e−/h+). The photogenerated holes at the valence band can react
with water to produce OH˙ radical. The electron in the conduction band is taken up by
the oxygen in order to generate anionic superoxide radicals. These powerful oxidizing
agents attack adsorbed organic molecules non-selectively causing their mineralization [25].
Degradation of most organic compounds by photocatalysis may be described using a
pseudo-first-order kinetic model for reactions that occur at the solid–liquid interface [26].
The ln (C/C0) graph against time producing a linear line verifies that the reaction towards
DNP and CIP follows the pseudo-first-order kinetic model. The apparent first-order
rate constants (kapp) were 0.036 and 0.051 min−1 for DNP and CIP, respectively. During
photocatalytic degradation of CIP antibiotic, complex organic molecules are converted into
low molecular weight species. However, a tentative CIP photodegradation mechanism
can include some pathways of the reaction: substitution of the F atom by the hydroxyl
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group and the ring opening of the CIP molecule. The complete mineralization of CIP
antibiotic occurs through the formation of CO2, H2O, and NO3

− [27]. Oxidation of 2,4-
dinitrophenol may occur through the ring opening by the attack of the OH radical. The
overall degradation of 2,4-dinitriphenol results in the formation of smaller byproducts
which may lead to mineralization [28].
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The results of this study are compared to those of similar papers that investigated the
photodegradation of DNP and CIP (Table 3).

Table 3. Comparison of some of the recent literature reports on the photocatalytic degradation of CIP
and DNP by various photocatalysts with our study.

Photocatalyst Pollutant Catalyst
Dosage

Pollutant
Concentration Light Source (g L−1) kapp

(10−3 min−1) Reference

ZnO/g-C3N4 CIP 0.5 5 mg L−1 32 W compact
fluorescent bulb 24 [29]

ZnO nanoparticles CIP 0.6 12 mg L−1 Natural sunlight,
221 W/m2 13 [30]

TiO2/SnO2 nanocomposite CIP 0.5 5 mg L−1 Three UVC lamps
with 35 W (253 nm) 28.2 [31]

carbon-nano-onion-
functionalized
ZnO tetrapods

DNP 2 0.1 mM 60 W tungsten bulb 18.34 [32]

Commercial P25 DNP 2 5 µM 266 W/m2 Hg lamp 32 [33]

ZnO powder
(microparticles)

CIP 0.5 5 mg L−1 500 W Xenon lamp 51 This work
DNP 0.5 5 mg L−1 500 W Xenon lamp 36 This work
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The mass photoactivity of commercial nanopowder photocatalysts is evidently higher
than the one of the synthesized microparticles due to its lower particle size, higher surface
area, and more active sites exposed for photoreaction [34]. However, on the one hand, the
rate of collision and agglomeration is considerably higher for the lower particle size, leading
to the formation of much larger agglomerates during the cycling test of the photocatalytic
degradation. Particle aggregation and agglomeration influence the optical properties
of materials and, therefore, their ability to absorb and scatter the incoming radiation,
also affecting their photocatalytic activity. Moreover, the highly active nanoparticles are
more vulnerable to photocorrosion when compared to microparticles [35]. On the other
hand, nanoparticle synthesis requires more time and cost. Furthermore, it is not always
possible to scale the nanoparticle synthesis process. In this work, the processing rate of Zn
microparticles was 20 g/min and this can be increased in the future.

There may be several reasons for the high photoactivity of ZnO microstructures. First
of all, it may be due to a structural factor. It was found [36] that nanorods have the
greatest photocatalytic activity and this is associated with a high proportion of (100) texture.
According to [37,38], in the plane (100) is the lowest energy of formation of defects, in
particular, oxygen vacancies. According to XRD (Figure 2b), the ratio is I100/I001~1.27.
Taking into account the large number of rod-like (001) structures of ZnO (Figure 2a), the
value of the ratio 1.27 indicates the presence of a high fraction of (100) texture in the
ZnO powder.

The next important factor is the adhesion levels of charge carriers in the ZnO band
gap, which are associated with defects. Adhesion levels inhibit recombination of charge
carriers and enhance photocatalytic activity. To determine the energy zone structure of the
ZnO powder, XPS valence band spectra were obtained and the band gap was determined
(Figure 4). The presence of energy state density near Fermi energy can be seen. These levels
expand the photosensitivity of ZnO to the visible area. The VBmax energy was estimated to
be 2.3 eV. Based on this, CBmin was estimated to be −0.9 eV. The levels in the band gap are
mainly associated with oxygen vacancies and interstitial zinc [39]. For oxygen vacancies in
the neutral VO and 2+ charge states VO

2+, a localized occupied state is recognized in the
band gap at 2.5–2.6 eV and 0.9–1 eV below the conduction-band minimum [40], respectively,
and this suggests the activity of ZnO tetrapods in the visible region of the spectrum.
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This correlates with the structural features of ZnO powder and their effect on photocat-
alytic properties. As can be seen, the presence of nitrogen in the volume of ZnO structures
does not lead to a narrowing of the band gap; however, energy levels associated with the
nitrogen mixture in the band gap are present. For example, the energy state (0.3–0.4) eV
below the bottom of the conduction zone is associated with the VO-N defect complex [41].
There are also data on the acceptor level N2p above the valence zone by 0.76 eV [18].

3.3. Reproducibility of Photocatalyst Characteristics in Cyclic Processes

An important characteristic of the photocatalyst is the preservation of structural-phase
properties, composition, and surface state. These characteristics affect the reproducibility
of results in processes of photocatalytic degradation of organic pollutants. Samples of ZnO
powder utilized in one CIP photodegradation cycle were examined. As shown by the XRD
(Figure 2b) data, the structure-phase composition of the ZnO powder does not change.
Figures 5 and 6 show the overview spectra of ZnO powder and individual components
Zn2P3/2 (a) and O1s (b) before and after photocatalysis. It can be seen that the spectral
lines coincide. In addition, the compositions found according to XPS data (Table 2) coincide
within the limits of the error of the measurement.
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Analysis of features in the XPS spectra before and after photocatalysis also demon-
strates the presence of the same components: 530.1 eV (the peak is characteristic of O2−

ions of the surface lattice oxygen in ZnO matrix), 531.3 eV (attributed to oxygen defects in
the matrix of metal oxides, related to oxygen vaccines), and 532.6 eV (the band is related to
the surface hydroxyl (Zn–OH) group).

4. Conclusions

The presented work studies the processes of synthesis of structures of ZnO using
atmospheric pressure microwave nitrogen plasma and investigates their photocatalytic
activity in the processes of degradation of 2,4-dinitrophenol and the antibiotic ciprofloxacin
when irradiated with sunlight.

1. The work proposes an effective plasma method for formation of photosensitive ZnO
powders. Zn microparticles were injected into the microwave plasma at a mass rate
of 20 g/min;

2. Treatment of zinc metal powders using microwave nitrogen plasma has a number
of advantages: a high gas temperature that promotes zinc evaporation and charging
of microparticles by incoming fluxes of electrons and ions from the surrounding
plasma that prevents the formation of agglomerates. Both of these factors contribute
to the formation of ZnO structures ranging in size from hundreds of nanometers to
several micrometers;

3. Study of the band gap parameters of ZnO structures using X-ray photoelectron
spectroscopy demonstrates a high density of states near the Fermi level associated
with defects contributing to the expansion of the photosensitivity range into the
visible range;

4. High photoactivity was demonstrated (rate constants 0.036 min−1 and 0.051 min−1)
of synthesized ZnO structures during photodegradation of 2,4-dinitrophenol and
ciprofloxacin, respectively, when exposed to solar radiation.

Structures of ZnO synthesized using microwave plasma can find application in pro-
cesses of mineralization of toxic organic compounds.

In addition, ZnO microstructures can be utilized in scintillation detectors and phos-
phors, as well as being utilized as a binding component of strong composite materials.
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