The Bacteriocin-like Inhibitory Substance Producing Lacticaseibacillus paracasei LPa 12/1 from Raw Goat Milk, a Potential Additive in Dairy Products
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Safety Control of LPa 12/1 Strain Using Balb/c Mice
2.2. LPa 12/1 Strain Encapsulation Process (Freeze Drying)
2.3. Surviving and Stability of Encapsulated Strain LPa 12/1 in Ewe-Goat Milk Yoghurt
2.4. Surviving and Stability of Encapsulated Strain LPa 12/1 in Cow Milk Yoghurt
2.5. Bacteriocin-Like Inhibitory Substance Preparing and Inhibitory Activity Testing
3. Results
3.1. Safety Control of LPa 12/1 Strain
3.2. Stability and Surviving of LPa 12/1 Strain in Ewe–Goat Milk Yoghurts
3.3. Stability and Surviving of LPa 12/1 Strain in Cow Milk Yoghurts
3.4. Bacteriocin Activity and Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yami, A.; Merkel, R.C. Compositional and technological properties of goat milk and milk products A review. Con. Dairy Vet.Sci. 2020, 3, 295–300. [Google Scholar]
- Vaquil, R.R. A review on Health promoting aspects of goat milk. Pharma Innov. 2017, 6, 5–8. [Google Scholar]
- Lauková, A.; Focková, V.; Pogány Simonová, M. Enterococcus mundtii isolated from Slovak raw goat milk and its bacteriocinogenic potential. Int. J. Environ. Res. Pub. Health 2020, 17, 9504. [Google Scholar] [CrossRef]
- Lad, S.S.; Aparnathi, K.D.; Mehta, B.; Velpula, S. Goat milk in human nutrition and health-a review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1781–1792. [Google Scholar] [CrossRef]
- Lauková, A.; Micenková, L.; Grešáková, Ľ.; Maďarová, M.; Pogány Simonová, M.; Focková, V.; Ščerbová, J. Microbiome associated with Slovak raw goat milk, trace minerals, and vitamin E content. Int. J. Food Sci. 2022, 8, 4595473. [Google Scholar] [CrossRef] [PubMed]
- Quigley, L.; O’ Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Pogány Simonová, M.; Tomáška, M.; Kološta, M.; Drončovský, M.; Dvorožňáková, E. Lacticaseibacilli and lactococci from Slovak raw goat milk and their potential. Sci.Agri. Bohem. 2021, 52, 19–28. [Google Scholar] [CrossRef]
- Klapáčová, L.; Greif, G.; Greifová, M.; Tomáška, M.; Hanuš, O.; Dudríková, E. Antimicrobially active lactobacilli from goats milk that do not produce biogenic amines. J. Food Nutr. Res. 2015, 54, 270–274. [Google Scholar]
- Tolinački, M.; Kojič, M.; Lozo, J.; Teržič-Vidojevič, A.; Topisarovič, L.; Fira, D. Characterization of the bacteriocin-producing strain Lactobacillus paracasei subsp. paracasei BGUB9. Arch. Biol. Sci. Belgrade 2010, 262, 889–899. [Google Scholar] [CrossRef]
- Strompfová, V.; Marciňáková, M.; Simonová, M.; Bogovič-Matijašič, B.; Lauková, A. Application of potential probiotic Lactobacillus fermentum AD1 strain in healthy dogs. Anaerobe 2006, 12, 75–79. [Google Scholar] [CrossRef]
- Dvorožňáková, E.; Vargová, M.; Hurníková, Z.; Lauková, A.; Revajová, V. Modulation of lymphocyte subpopulations in the small intestine of mice treated with probiotic bacterial strains and infected with Trichinella spiralis. J. Appl. Microbiol. 2022, 132, 4430–4439. [Google Scholar] [CrossRef] [PubMed]
- Větvička, V.; Fornousek, L.; Kopeček, J.; Kamínková, J.; Kašpárek, L.; Vránová, M. Phagocytosis of human blood leucocytes, a simple micro-method. Immunol. Lett. 1982, 5, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Nataraj, B.H.; Azmal Ali, S.; Betore, P.V.; Yadav, H. Postbiotics-parabiotics:the new horizon in microbial biotherapy and functional food. Microb. Cell Fact. 2020, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Tomáška, M.; Fraqueza, M.J.; Szabóová, R.; Bino, E.; Ščerbová, J.; Pogány Simonová, M.; Dvorožňáková, E. Bacteriocin-producing strain Lactiplantibacillus plantarum LP17L/1 isolated from traditional stored ewes milk cheese and its beneficial potential. Foods 2022, 11, 959. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; O’ Toole, P.W. Commensal lactobacilli are good candidates for development as probiotics. Front. Biosci. (Landmark Ed.) 2009, 14, 3111–3127. [Google Scholar] [CrossRef]
- Smokvina, T.; Wels, M.; Polka, J.; Chervaux, C.; Brisse, S.; Boekhorst, J.; Vlieg, J.E.; van Hylckama, T.; Siezen, R.J.; Highlander, S.K. Lactobacillus paracasei comparative genomics: Towards species pan-genome definition and exploitation of diversity. PLoS ONE 2013, 8, e68731. [Google Scholar] [CrossRef]
- Krishnamoorthi, R.; Srinivash, M.; Mahalingam, P.U.; Malaikozhundan, B.; Suganya, P.; Gurushanakar, K. Antimicrobial, antibiofilm, antioxidant, and cytotoxic effects of bacteriocin by Lactococcus lactis strain CH3 isolated from fermented dairy products-An in vitro and in silico approach. Int. J. Biol. Macromol. 2022, 220, 291–306. [Google Scholar] [CrossRef]
- Biadala, A.; Szablewski, T.; Cegielska-Radziejewska, R.; Lasik-Kurdys, M.; Adzahan, N.M. The evaluation of activity of selected lactic acid bacteria for bioconversion of milk and whey from goat milk to release biomolecules with antibaterial activity. Molecules 2023, 28, 3696. [Google Scholar] [CrossRef]
- Lauková, A.; Strompfová, V.; Ouwehand, A. Adhesion properties of enterococci to intestinal mucus of different hosts. Vet Res. Com. 2004, 28, 647–655. [Google Scholar] [CrossRef]
- Lauková, A.; Tomáška, M.; Drončovský, M.; Maďar, M.; Bino, E.; Dvorožňáková, E.; Chrastinová, Ľ.; Pogány Simonová, M.; Kološta, M. Lactiplantibacillus plantarum LP17L/1 from ewes stored cheese, promising strain for use not only in dairy products. In Proceedings of the Scientific Works from the Conference Food Safety and Quality, Piešťany-Nitra, Slovakia, 29–31 March 2023; pp. 34–36, ISBN 978-80-8266-028-2. [Google Scholar] [CrossRef]
- Speranza, B.; Campaniello, D.; Monacis, N.; Bevilacqua, A.; Sinigaglia, M.; Corbo, M.R. Functional cream cheese supplemented with Bifidobacterium animalis subsp. lactis DSM 10140 and Lactobacillus reuteri DSM 20016 and prebiotics. Food Microbiol. 2016, 72, 16–22. [Google Scholar] [CrossRef]
- Patrovský, M.; Kouřimská, L.; Havlíková, Š.; Marková, J.; Pechar, R.; Rada, V. Utilization of bacteriocin-producing bacteria in dairy products. Mljekarstvo 2016, 66, 215–224. [Google Scholar] [CrossRef]
- Lauková, A.; Czikková, S.; Burdová, O. Anti-staphylococcal effect of enterocin in Sunar and yoghurt. Folia Microbiol. 1999, 44, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Leitner, G.; Krihechus, O.; Merin, U.; Lavi, Y.; Silamihove, N. Interactions between bacteria type, proteolysis of casein and physico-chemical properties of bacteriocin. Int. Dairy J. 2006, 16, 648–659. [Google Scholar] [CrossRef]
- Tomáška, M.; Drončovský, M.; Klapáčová, L.; Slottová, A.; Kološta, M. Potential probiotic properties of lactobacilli isolated from goats milk. Sci. J. Food Ind. 2015, 9, 66–71. [Google Scholar] [CrossRef]
- Zommiti, M.; Chikindas, M.L.; Ferchichi, M. Probiotics-live biotherapeutics: A story of success, limitations, and future prospects-not only for humans. Prob. Antimicrob. Prot. 2020, 12, 1266–1289. [Google Scholar] [CrossRef]
- Orlando, A.; Refolo, M.G.; Messa, C.; Amati, L.; Lavermicocca, P.; Guerra, V.; Russo, F. Antiproliferative and proapoptic effects of viable or heat-killed IMPC2.1 and GG in HGC-27 gastric and DLD-1 colon cell lines. Nutr. Cancer 2012, 64, 1103–1111. [Google Scholar] [CrossRef]
- Hsu, L.C.; Schnabel, B. The gut-liver axis and gut microbiota in health and liver disease. Nat. Rev. Microbiol. 2023, 21, 719–733. [Google Scholar] [CrossRef]
Faeces | LPa 12/1 | LAB | Amyl. Str. | Coliforms |
---|---|---|---|---|
Sampling 0/1 (n = 8) | nt | 5.48 ± 0.52 a | 5.49 ± 0.07 | 3.27 ± 0.49 |
Sampling 30EG (n = 5) | 3.64 ± 0.56 a | 6.07 ± 0.07 d | 5.16 ± 0.30 a | 4.66 ± 0.59 a |
Sampling 30CG | nt | 6.47 ± 0.51 | 5.04 ± 0.47 | 5.08 ± 0.42 |
Sampling 45EG | 2.62 ± 0.61 b | 7.04 ± 0.15 b | 5.59 ± 0.04 | 3.76 ± 0.44 b |
Sampling 45CG | nt | 7.1 ± 0.0 c | 6.05 ± 0.18 b | 2.28 ± 0.33 |
n = 5 | LPa 12/1 | LAB | Amyl. Str. | Coliforms |
---|---|---|---|---|
Sampling 30EG | 1.70 ± 1.30 | 6.03 ± 0.07 | 4.54 ± 0.11 | 5.33 ± 0.53 |
Sampling 30CG | nt | 6.04 ± 0.07 | 4.15 ± 0.52 | 6.07 ± 0.06 |
Sampling 45EG | 0.72 ± 0.08 | 6.04 ± 0.10 | 5.51 ± 0.3 | 5.96 ± 0.50 |
Sampling 45CG | nt | 6.47 ± 0.58 | 5.13 ± 0.21 | 5.71 ± 0.33 |
n = 5 | LPa 12/1 | LAB | Amyl. Str. | Coliforms |
---|---|---|---|---|
Sampling 30EG | 1.30 ± 0.0 | 4.23 ± 0.5 | 1.98 ± 0.40 | 2.93 ± 0.40 |
Sampling 30CG | nt | 4.25 ± 0.06 | 2.51 ± 0.58 | 1.98 ± 0.41 |
Sampling 45EG | <0.1 | 2.42 ± 0.55 | 1.30 ± 0.14 | 1.7 ± 0.30 |
Sampling 45CG | nt | 2.58 ± 1.60 | 2.85 ± 0.65 | 0.95 ± 0.0 |
n = 6 | PA | IPA |
---|---|---|
Sampling 30EG | 61.5 ± 1.05 a | 2.53 ± 0.21 |
Sampling 30CG | 60.0 ± 1.30 | 2.82 ± 0.11 |
Sampling 45EG | 62.0 ±2.37 b | 2.93 ± 0.10 |
Sampling 45CG | 61.0 ± 0.84 | 2.82 ± 0.11 |
pH | LPa12/1 | LAB | Amyl. Str. | |
---|---|---|---|---|
E/24 h | 3.90 ± 0.0 | 5.1 ± 0.0 | 5.1 ± 0.0 | 5.1 ± 0.0 |
C/24 h | 3.91 ± 0.0 | nt | 4.61 ± 0.2 | 4.41 ± 0.1 |
E/Day 7 | 4.55 ± 0.2 | 5.15 ± 0.1 | 6.1 ± 0.2 | 5.1 ± 0.0 |
C/Day 7 | 4.89 ± 0.1 | nt | 4.54 ± 0.5 | 5.30 ± 0.1 |
E/Day 10 | 3.70 ± 0.1 | 6.1 ± 0.1 | 6.1 ± 0.3 | 6.1 ± 0.0 |
C/Day 10 | 4.85 ± 0.2 | nt | 4.95 ± 0.1 | 6.1 ± 0.0 |
E/Day 14 | 4.0 ± 0.2 | 6.1 ± 0.1 | 6.1 ± 0.2 | 5.1 ± 0.0 |
C/Day 14 | 4.05 ± 0.20 | nt | 5.1 ± 0.0 | 5.1 ± 0.0 |
pH | LPa 12/1 | LAB | Amyl. Str. | |
---|---|---|---|---|
E/24 h | 3.59 ± 0.1 | 2.1 ± 0.0 | 4.76 ± 0.3 | 3.69 ± 0.2 |
C/24 h | nt | nt | nt | nt |
E/Day 7 | 3.70 ± 0.0 | 2.36 ± 0.2 | 6.1 ± 0.1 | 2.56 ± 0.1 |
C/Day 7 | 3.77 ± 0.2 | nt | 4.54 ± 0.1 | 2.75 ± 0.1 |
E/Day 10 | 3.80 ± 0.1 | 4.78 ± 0.3 | 6.1 ± 0.0 | 5.1 ± 0.0 |
C/Day 10 | 3.90 ± 0.3 | nt | 4.95 ± 0.1 | 5.1 ± 0.0 |
E/Day 14 | 3.60 ± 0.1 | 4.72 ± 0.1 | 5.1 ± 0.0 | 4.92 ± 0.2 |
C/Day 14 | 3.60 ± 0.1 | nt | 4.65 ± 0.2 | 4.70 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauková, A.; Dvorožňáková, E.; Vargová, M.; Ščerbová, J.; Focková, V.; Plachá, I.; Pogány Simonová, M. The Bacteriocin-like Inhibitory Substance Producing Lacticaseibacillus paracasei LPa 12/1 from Raw Goat Milk, a Potential Additive in Dairy Products. Appl. Sci. 2023, 13, 12223. https://doi.org/10.3390/app132212223
Lauková A, Dvorožňáková E, Vargová M, Ščerbová J, Focková V, Plachá I, Pogány Simonová M. The Bacteriocin-like Inhibitory Substance Producing Lacticaseibacillus paracasei LPa 12/1 from Raw Goat Milk, a Potential Additive in Dairy Products. Applied Sciences. 2023; 13(22):12223. https://doi.org/10.3390/app132212223
Chicago/Turabian StyleLauková, Andrea, Emília Dvorožňáková, Miroslava Vargová, Jana Ščerbová, Valentína Focková, Iveta Plachá, and Monika Pogány Simonová. 2023. "The Bacteriocin-like Inhibitory Substance Producing Lacticaseibacillus paracasei LPa 12/1 from Raw Goat Milk, a Potential Additive in Dairy Products" Applied Sciences 13, no. 22: 12223. https://doi.org/10.3390/app132212223
APA StyleLauková, A., Dvorožňáková, E., Vargová, M., Ščerbová, J., Focková, V., Plachá, I., & Pogány Simonová, M. (2023). The Bacteriocin-like Inhibitory Substance Producing Lacticaseibacillus paracasei LPa 12/1 from Raw Goat Milk, a Potential Additive in Dairy Products. Applied Sciences, 13(22), 12223. https://doi.org/10.3390/app132212223