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Abstract: In this manuscript, we present the results of ecotoxicological tests conducted on the
Baltic microphytobenthos community consisting largely of cosmopolitan species showing the re-
sponses at the community (taxonomic composition and structure), population (abundance), and
cellular (chloroplast shape) levels. The tests were carried out for three chemicals with differ-
ent modes of action on photosynthetic organisms, i.e., copper (II) chloride (at concentrations of
2·10−5 g·dm3 and 2·10−3 g·dm−3), glyphosate in the form of Roundup® (concentrations ranging
from 4.2·10−2 to 8.5 g·dm−3), and the ionic liquid [BMIM]Cl (at concentrations of 1.13·10−3 g·dm−3

and 1.75·10−2 g·dm−3). The results of the study indicate that the responses of microphytobenthos
at each level analysed are highly variable and difficult to predict a priori based on experiments
performed on single strains. In addition, it was shown that microphytobenthic communities are
relatively resistant to the substances tested, which is due to taxonomic richness and the resulting
potential for substitution of sensitive taxa by more resistant taxa. The results obtained in the tests
also indicate that the number of cells of individual taxa can remain at a similar level or increase over
short periods of time despite the deformation of chloroplasts in a numerous group of cells.

Keywords: ecotoxicity; toxicity tests; microphytobenthic communities; diatoms; cyanobacteria;
copper chloride; glyphosate; ionic liquid

1. Introduction

More than 300 million tons of industrial chemicals were used in the EU in 2018, of
which more than two-thirds were classified by Eurostat as hazardous to health [1]. Many of
these substances end up in surface waters and affect aquatic organisms through, for exam-
ple, morphological changes, reduced reproductive capacity of aquatic mollusks, changes
in animal behavior, or changes in the composition and structure of microphytobenthic
communities [2]. Unfortunately, the effects of such changes are often difficult to predict.

Toxicological tests are currently carried out worldwide on a variety of organisms
belonging to different levels of the food web, ranging from plants, herbivores, and carni-
vores to bacteria [3,4]. Photosynthetic organisms are particularly important for ecosystems
due to the fact that they provide oxygen, participate in biogeochemical cycles, and pro-
vide food for other organisms. Hence, changes in plant organisms under the influence
of various factors will not only limit their growth but may also directly affect the struc-
ture and functioning of the entire ecosystem [5]. Until now, ecotoxicological tests have
mainly been conducted on monocultures of algae isolated from the environment. These are
extremely valuable but provide information on the response of organisms only in terms
of the fundamental niche, e.g., [6]. The use of whole communities in ecotoxicological
testing is rare, despite the fact that they are easily obtained from the environment and
do not require the labour-intensive and costly steps of isolating and maintaining individ-
ual strains in the laboratory [7–9]. Conducting toxicological tests that take into account
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whole communities makes it possible to understand the response of organisms in the
context of actually existing interpopulation interactions, e.g., competition (antagonistic
interaction) and symbiosis (non-antagonistic interaction). However, whole-community
tests are still rare due to various challenges, including the lack of a recommended consistent
methodology, the acquisition of a sizeable data set for a high number of taxa representing
a variety of taxonomic groups with different life strategies, and the associated problems
in interpreting the results. The microphytobenthos, which is the main element studied in
this work, is ecologically very important for aquatic ecosystems, including those of coastal
zones, estuaries, or shallow seas, as it is an important primary producer associated with the
bottom. Organisms forming microphytobenthic communities, due to their short life cycles,
are considered good indicators of environmental change [10], and their analysis provides
important information on the state of the marine environment [11]. It is worth emphasizing
that the tested Baltic microphytobenthic community includes many cosmopolitan species,
which makes it possible to assume that similar reactions to selected chemical substances
will be observed in communities occurring in brackish waters in other regions of the world.

The study aimed to test the effects of three compounds from different chemical groups
with different levels of toxicity on natural microphytobenthic communities. The first
substance used in the tests was copper in the form of copper (II) chloride. European refined
copper consumption reached around 3.78 million metric tonnes in 2021, but consumption
in the region has been gradually declining over the past decade [12]. Copper (II) chloride is
produced on an industrial scale by the chlorination of copper. The use of copper chloride
is very wide. CuCl2 is used as a wood preservative, fungicide, insecticide, and herbicide.
Due to its oxidising properties, it is used as a purifying agent, e.g., in water treatment, and
as a deodorising agent to prevent odour in the petroleum industry. Copper (II) chloride
is an important element in the production of vinyl chloride and dichloroethane and has
applications in the synthesis of organic and inorganic compounds as a catalyst. It is also
used in pyrotechnics as a blue-green colouring agent [13]. Copper is a compound of very
high functional importance to aquatic plant microorganisms and is a substance with a
relatively well-recognised effect and mechanism of action, e.g., [14–17]. Copper has an
essential role in the metabolism of photosynthetic organisms and is a component of many
proteins and enzymes involved in a number of metabolic pathways [18]. However, high
concentrations and prolonged exposure to copper ions inhibits photosynthesis and disrupts
physiological processes [19,20]. Copper compounds are used as algicides, as they are toxic
in large quantities to algae [21]. Copper (II) chloride may be a genotoxic compound, as
it causes chromosomal aberrations and mitotic cycle disruption in cells of A. cepa model
organisms [22]). Copper chloride also negatively affects aquatic and soil organisms [23].
In particular, denitrifying bacteria have been found to be very sensitive to its presence.
Copper (II) chloride at a concentration of 0.95 mg·dm−3 causes 50% inhibition (IC50) of the
metabolic activity of denitrifying microorganisms [24]. The US Environmental Protection
Agency allows concentrations of no more than 1.3 ppm of aqueous copper ions in drinking
water. Ingestion of copper ions in excessive quantities in humans can cause headache,
diarrhoea, decreased blood pressure and fever, and, in extreme cases, haemolysis [25].

The second substance used in the tests was glyphosate in the form of Roundup®.
Glyphosate in the form of Roundup is the most popular herbicide worldwide, with
825.8 million kilograms of glyphosate used worldwide in 2014 [26]. In Poland, 92 glyphosate-
based herbicides are currently registered, with more still being registered. The amount
of herbicides used worldwide is increasing despite the fact that the use of glyphosate
has been shown not to lead to a positive effect on yields compared to alternative weed
control methods such as mechanical and thermal weed control [27]. Glyphosate is the
active substance used in non-selective herbicides. It is an extremely effective compound
that has a broad spectrum of biological activity. The popularity of Roundup® herbicide has
increased with the spread of genetically modified crops in recent years [28]. Therefore, it
is very important to study the combined effect of the active substance glyphosate and the
other components of the preparation, as this is the form to which the natural environment is
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most often exposed. Once in the plant, glyphosate inhibits, for example, the production of
the enzyme EPSP (5-enolpyruvate-shikimo-3-phosphate) synthetase, which is responsible
for the formation by plants of aromatic amino acids that are important for their growth and
are included in the composition of many plant pigments [29] or the activity of microsomal
ATPases [28]. Glyphosate at concentrations above 400 µg·dm−3 is potentially toxic to some
aquatic species, including amphibians and fish [30–32]. Glyphosate and its breakdown
product, so-called AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), are
observed in crops in non-target plant species even after the recommended withdrawal
period. It is of concern that both glyphosate and AMPA have also been detected in crop
plants and in the leaves of trees of native forests after glyphosate application to neigh-
bouring crops [33]. The presence of glyphosate in marine ecosystems, as reported in some
studies, e.g., [34], indicates its widespread use and high potential for spreading. However,
glyphosate and AMPA pose a low risk to mammals, mainly due to low absorption through
the skin and gastrointestinal tract [33,35]. Both substances are excreted in the urine and
have a half-life of 3 to 15 h without any structural changes [36]. For these reasons, coupled
with the acute toxicity data set, glyphosate and AMPA have been classified by the EPA in
the category of least toxic substances (Category IV; virtually non-toxic and non-irritant) [33].

The third substance used was the ionic liquid 1-butyl-3-methylimidazolium chloride
([BMIM]Cl). Substances in this group are the new generation of polar organic solvents and
catalysts referred to as ‘green chemistry’. Ionic liquids are ‘designer solvents’ in which
the right choice of anions and cations allows the creation of chemical compounds with
appropriate properties depending on the future application [37–39]. Due to this unique
feature, it is difficult to determine the range of applications for ionic liquids worldwide.
One very good example of the use of ionic liquids in cellulose processing is provided, for
example, by [40]. However, after years of research, their ‘green’ nature has been questioned
due to their negative environmental impact [41–43]. The properties of ionic liquids (e.g.,
good solubility, stability) result in the potential for these substances to accumulate in
aquatic ecosystems, where they may enter, e.g., with wastewater [44,45]. Ionic liquids
can pose a potential hazard by contaminating water and soil through accidental spills or
ineffective wastewater treatment [46]. In studies conducted by different teams, imidazolium
and pyridinium cations have been shown to adsorb on various types of soils and marine
sediments, e.g., [47–50]. Furthermore, soil microorganisms also present in wastewater have
been shown to have the capacity to degrade imidiazole ionic liquids, e.g., [37,51]. However,
as shown by some authors [52], the way ionic liquids are degraded in the environment is
determined by numerous biotic and abiotic factors. Certain classes of imidiazole cations
of ionic liquids inhibit, in humans, the activity of acetylcholinesterase AchE, an enzyme
that breaks down one of the primary neurotransmitters, acetylcholine, into choline and
acetic acid residues. It is produced by the liver, among others, and is used in diagnostics
as a marker of the liver’s efficiency in protein production [53]. In addition, 1-octyl-MIM
bromide has been shown to cause liver damage in mice [54].

The research we conducted was aimed at updating the knowledge of the response
of microphytobenthic communities to the presence in the environment of substances of
anthropogenic origin with different toxic potential. The results of the study indicate that at
the level of communities, populations, and cells, the responses of microphytobenthos are
very diverse and difficult to predict a priori on the basis of experiments performed on single
strains. An important aspect of the work is its versatility, because the taxa comprising the
tested community are cosmopolitan (identified in various coastal waters in the world ocean).
In addition, the laboratory tests performed made it possible to systematise knowledge of
the methodological issues involved in this type of experimentation and indicate that the
newly applied indicator based on the deformation state of chloroplasts does not correspond
to the criteria of low labour and time consumption met by indicators commonly used in
ecotoxicological tests.



Appl. Sci. 2023, 13, 12238 4 of 19

2. Materials and Methods

In the first phase of the work, a number of preliminary tests were carried out during
which the most appropriate exposure time of the culture panels in the environment [55],
the duration of the ecotoxicological test, and the culture medium [9] were selected and
the analytical methods used to assess the changes occurring in the communities were
optimised [56].

2.1. Field and Laboratory Works

The microphytobenthos used in the laboratory study was collected from slides ex-
posed in the coastal zone of the southern Baltic Sea (Gulf of Gdańsk) at a station located at
54◦26′49′′ N, 8◦34′24′′ E for a period of 14 days in summer (August) 2015. The methodol-
ogy of the field work is presented in detail in Sylwestrzak et al. [57]. After transporting
the panels to the laboratory, the material was prepared for further testing. After sonifi-
cation and nitrogen desaturation to remove animal organisms, microphytobenthos cells
of 44,273 (±2151) in 1 mL were placed in 250 mL flasks in 100 mL of seawater collected
in situ. The measured concentrations of biogenic compounds in seawater were: N-NH4
9.4 mg·m−3, N-NO3 102 mg·m−3, P-PO4 36 mg·m−3, Si-SiO4 600 mg·m−3. Based on prelim-
inary tests, it was shown that such concentrations of biogenic salts do not limit the growth
of microalgae [57]. Light conditions with a PAR irradiance of 60 µmol photons m−2 s−1 and
an L:D photoperiod of 16:8 were obtained using an artificial light source: Phillips halogen
lamps (OSRAM L 36W/640-1).

In the tests, copper (II) chloride, glyphosate, and the ionic liquid BMIM[Cl] were used
to compare effects of substances from different chemical groups with distinct mechanisms
of action on living organisms and varying levels of toxicity on natural microphytobenthic
communities. The concentration values of the test substances were selected on the basis of
maximum acceptable concentrations of selected compounds in the environment introduced
by legislation [58] and the literature [37,59] as well as on the basis of previous studies of
our own [55]. The following concentrations were used in the ecotoxicological tests: for
copper (II) chloride, 2·10−5 g·dm3 and 2·10−3 g·dm−3; for glyphosate, 4.2·10−2 g·dm−3,
8.5·10−1 g·dm−3, and 8.5 g·dm−3; and for ionic liquid [BMIMC]l, 1.13·10−3 g·dm−3 and
1.75·10−2 g·dm−3. All variants of the experiment were carried out in 3 replicates. The values
used were high but were intended to reflect a sudden one-off influx of high concentrations
of test substances into the environment. Undertaking the study, it was assumed that the
microphytobenthic communities extracted from the environment had not adapted to the
elevated values of the compounds tested. For example, the content of copper ions in the area
of their cultivation is at the level of 1.3·10−7–1.1·10−6 g·dm−3 [60]. In turn, Skeff et al. [59]
showed that in river mouths in the Baltic Sea, concentrations of glyphosate range from
2.8·10−8 g·dm−3 to 1.68·10−6 g·dm−3, while APMA is detected in all of them. In studies
conducted in rivers in Germany, 1310 different ionic liquid pollutants were identified, but
only ca. 20 compounds were detected in concentrations of up to µg·dm−3 [61].

Observations of changes in the composition and structure of microphytobenthic com-
munities were carried out using the principles adopted in the OECD Guidelines for the
Assessment of the Effects of Chemical Toxicity on Plant Microorganisms [62]. The mi-
croalgae were identified using various taxonomic keys and floras [63–70]. Qualitative and
quantitative analysis of communities was conducted using a Nikon (Japan) 80i microscope
equipped with a DS-U2 camera at ×400 magnification. In addition, changes in the shape of
chloroplasts of microphytobenthic cells were analysed according to a previously developed
research methodology [9,55]. The state of the chloroplasts, determined by a change in shape
and structure, was introduced as an additional indicator to supplement information on the
cellular condition of the organisms composing the communities. Examples in the form of
diagrams and microscopic photographs of cells with normally formed chloroplasts and
chloroplasts with abnormal shape are shown in Figure 1.
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Figure 1. Diagrams and photographs of plant microorganisms with normally formed chloroplasts (A)
and with abnormal chloroplasts (marked with an arrow) (B). Tabularia fasciculata (Bacillariophyceae)
in control solution at the start of the experiment (A) and after 7 days of testing at a concentration of
8.5 g·dm−3 glyphosate (B); Rhoicosphenia abbreviata (Bacillariophyceae) in control solution at the start
of the experiment (A) and after 7 days at a concentration of 1.75·10−2 g·dm−3 ionic liquid [BMIM]Cl
(B); Melosira nummuloides (Coscinodiscophyceae) in control solution at the start of the experiment (A)
and after 7 days at a concentration of 2·10−3 g·dm−3 CuCl2 (B).

2.2. Statistical Analysis

The data obtained were processed with MS Excel. Student’s t-test was performed
to compare the significance of differences in cell numbers between tested substances’
concentrations and the control solution and to designate differences among successive test
days with STATISTICA version 10 (StatSoft, Kraków, Poland).

3. Results

One of the main elements analysed in the experiments was the qualitative and quanti-
tative composition of the microphytobenthic communities. A total of 58 microalgal taxa
were identified during the study (Appendix A). In the initial community, 87% of the taxa
were represented by diatoms, 11% by cyanobacteria, and green algae accounted for less
than 1%. Single Haptophyta cells were also identified, but their maximum percentage
contribution to the community was 0.3%; hence, they were not included in the graph.

3.1. Response at Community Level

In the case of copper (II) chloride in the solutions tested, the total abundance of com-
munities remained at a similar level throughout the study period, irrespective of the variant
tested (Figure 2). Only the community structure, i.e., the abundance of representatives of
individual microalgal taxa, changed. Glyphosate in the form of the Roundup® prepara-
tion influenced the reduction in the community abundance and its remodelling. At the
highest applied concentration of 8.5 g·dm3 of glyphosate, an increase in the proportion of
blue-green algae to 51% of the total community was observed. In the case of communities
treated with the ionic liquid [BMIM]Cl, most of the taxa composing the community under
study responded with a reduction in cell abundance.
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Figure 2. Average abundance of taxonomic groups in communities during tests. Designations
used: the first part of the caption encodes the concentration, e.g., C–control solution, 2·10−3–CuCl2
concentration; the second part encodes the day of the test—e.g., _3 is the third day, _7 is the seventh
day. Statistically significant differences were marked with * symbol.

3.2. Response at Population Level

Among the dominant species present in the initial communities and present in all
variants of the experiments, mainly diatoms were observed. The most abundant species
were Bacillaria paxillifera, Diatoma moniliformis, Diatoma vulgaris, Navicula perminuta, Tabularia
fasciculata (Bacillariophyceae), and Melosira nummuloides (Coscinodiscophyceae), among
others. Among Cyanobacteriota (formerly Cyanobacteria), the most abundant taxa were
Spirulina sp. and Merismopedia sp. Regardless of the degree of dominance in the initial
community, individual taxa showed different types of response to the presence of the tested
substance. Three types of response were identified: an increase in abundance, which was
interpreted as growth stimulation; no change in abundance, interpreted as no response
(‘indifferent’ taxa); and a decrease in abundance, interpreted as growth inhibition.

An example of a species that was stimulated by all the substances tested was Navicula
perminuta (Figure 3A). This species showed an increase in cell number, by approximately
50% relative to the control, under the influence of copper (II) chloride, an eightfold increase
in abundance in the presence of glyphosate, as well as a tenfold increase in abundance
in the presence of ionic liquid [BMIM]Cl on the seventh day of testing. An unusually
large, up to fourfold, increase in abundance under the influence of copper chloride was
also observed in Grammatophora marina (Bacillariophyceae) (Figure 3B) on the third day,
and, in the case of glyphosate and ionic liquid (1.75·10−2 g·dm−3), a twofold increase
on the seventh day of testing. Some taxa were stimulated by the presence of chemicals
only during the initial phase of testing. For example, the number of Achnanthes adnata
(formerly Achnanthes brevipes) (Bacillariophyceae) cells in the presence of copper (II) chloride
was 135% of the abundance in the control sample on the third day, but only 64% on the
seventh day (Figure 3C). Other taxa responded differently depending on the substance



Appl. Sci. 2023, 13, 12238 7 of 19

and/or concentration. For example, glyphosate stimulated the cells of representatives of
cyanobacteria to increase in abundance very intensively. Cell abundance of Spirulina sp.
increased by 17.5 times that of the control on the last day (Figure 3D), and abundance
of Merismopedia sp. increased by about four times for lower concentrations on the third
day (Figure 3E). However, the other substances did not affect the change in abundance
(neutral response for Spirulina sp. in [BMIM]Cl) or had an inhibitory effect (Spirulina sp.
and Merismopedia sp. in CuCl2). Similarly different responses were observed for the diatom
T. fasciculata (Figure 3F). In the case of glyphosate, a stimulation of up to 40% increase in
cell numbers relative to the control solution was observed at the highest concentration, no
response was observed at intermediate concentrations, and growth inhibition was observed
at the lowest concentration. In contrast, copper chloride had no significant effect on changes
in abundance for this taxon (p < 0.05).
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The group of taxa that showed a lack of response to copper (II) chloride also included,
for example, Diatoma moniliformis (p < 0.05) (Figure 4A) and Bacillaria paxillifera (p < 0.05)
(Figure 5B). However, in the presence of glyphosate and ionic liquid, few taxa showed a
lack of response, such as the aforementioned Spirulina sp. which, at 0.85 g·dm−3 glyphosate
and at both ionic liquid concentrations used, did not change its abundance over the course
of the tests. A table showing the results of the significance tests for the species in question
is included in Appendix B.
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A significant inhibition of growth was presented by one of the dominant diatom
species, B. paxillifera, in both copper chloride and ionic liquid tests (Figure 4B). In contrast,
growth inhibition of 15% in the presence of glyphosate and as much as 92% in the presence
of ionic liquid was observed for the diatom M. nummuloides (Figure 4C). For A. brevipes,
no cells of this taxon were observed in glyphosate and in ionic liquid on the seventh
day of tests (Figure 3C). The species Entomoneis paludosa (Bacillariophyceae) also reacted
negatively to the presence of ionic liquid and showed a 57% reduction in abundance on
the seventh day of tests, while glyphosate induced a complete growth inhibition of this
taxon (Figure 4D). It is noteworthy that, in the case of ionic liquid, more than 75% of the
identified taxa were sensitive to its effects, as manifested by growth inhibition.

3.3. Response at the Cellular Level

The effects of the tested chemicals on changes in the shape of chloroplasts in cells of the
selected two dominant diatom taxa are presented in Figure 5. Although the abundances of
T. fasciculata and B. paxillifera were similar and constituted about 17% of the total community
at the start of the tests, their responses at the cellular level differed depending on the
substance used and between concentrations. Chloroplast deformations were observed in
the presence of all tested substances in both species (Figure 5A). However, on the seventh
day at a copper chloride concentration of 2·10−3 g·dm3, 71% of the cells had abnormally
formed chloroplasts, while at the highest concentration of glyphosate, up to 86% of the
cells had abnormally formed chloroplasts. In contrast, in B. paxillifera, only 6% to 24% of
cells with abnormally shaped chloroplasts were observed at the copper chloride and ionic
liquid concentrations tested, while glyphosate at 8.5 g·dm3 caused changes in chloroplasts
in 95% of cells (Figure 5B).

4. Discussion

As shown in previous studies, the presence of substances of anthropogenic origin in
river basins, estuaries, or coastal zones can alter community structure and primary micro-
phytobenthic production, even if the pollution does not exceed acute toxicity levels [71].
To test the response of microphytobenthic communities developing in brackish waters of
the Baltic Sea, compounds were selected whose observed concentrations are not currently
very high, but whose popularity continues to grow. Previously, copper has been used
in antifouling products used for ship maintenance, which have been a source of copper
compounds released into marine waters [72]. Despite its use being banned [73], the use of
copper ions in many other industries means that the risk of introducing them in quantities
exceeding the detoxification capacity of organisms into surface waters is increasing. For
example, in recent years, there has been an increased interest in copper-based nanoparticles
for applications in cosmetics (cream additives), industry (e.g., metal coatings, inks, and food
packaging plastics), and medicine (e.g., disinfection and antimicrobial coatings) [74–76].
Coastal ecosystems and estuaries are also increasingly exposed to herbicide contamina-
tion [71]. A multiyear study of pesticide content in surface waters has shown that the most
common pesticides are bentazone and glyphosate [77]. Glyphosate as a pesticide is used on
an increasing scale due to the massive expansion of agricultural production, the high yield
of herbicide formulations with this substance, their low cost of production, and the still
liberal laws in many countries with highly developed agricultural economies [78]. In the
meantime, ionic liquids are gaining popularity due to their reputation as ‘green chemistry’
and are finding use in a variety of chemical processes, where they represent a new alterna-
tive to traditional organic solvents [79]. However, inadequate treatment of wastewater or
accidental spillage of ionic liquids can cause negative effects on the ecosystem [43].

4.1. Response at Community Level

Microphytobenthic communities are specific microecosystems with a complex taxo-
nomic structure. Each taxon has a unique tolerance to a specific environmental stressor, so it
can be expected that the response of communities will vary according to the stressor and its
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intensity. Tests showed that copper (II) chloride mainly altered the taxonomic composition
of the community, with no significant change in total cell abundance. Similar observations
on compositional and structural changes in freshwater microalgal communities treated
with copper ions were carried out by Sabater et al. [80]. In our tests, we have shown that in
the presence of Roundup® the proportion of cyanobacteria increased significantly. On the
one hand, glyphosate may have eliminated diatoms from the community as cyanobacteria
took advantage of the niches that formed; on the other hand, glyphosate decomposes
relatively quickly, and cyanobacteria show a competitive advantage to the introduction of
an additional carbon source, which is in line with the results of studies conducted on the
toxicity of glyphosate on six species of Cyanobacteriota [81]. In our tests, we also showed
that the ionic liquid [BMIM]Cl causes a reduction in the abundance of the entire community,
which is dominated by diatoms. Latała et al. [82] also suggested that diatoms, in particular,
are extremely sensitive to ionic liquids.

4.2. Response at Population Level

Among the dominant species present in the initial community and present during
the experiments, mainly diatoms and single cyanobacterial species were distinguished,
including numerous cosmopolitan taxa, e.g., B. paxilifera, N. perminuta, N. ramossisima,
T. fasciculata, M. nummuloides, and S. subsalsa [83]. Irrespective of the degree of dominance
in the initial community, cell size, or taxonomic group, individual taxa showed a variety of
responses to the presence of the chemicals tested. The rate of uptake of selected ions across
cell membranes and the internal detoxification mechanism were likely to be factors that
significantly influenced the toxicity of the tested substances [84]. We distinguished three
main types of response to the presence of potentially toxic chemicals. Some organisms
responded with an increase in cell numbers relative to control samples. This was found to be
a response characteristic of resistant species in which the chemical stimulates growth. Some
taxa remained indifferent to the presence of the toxicant and showed no significant change
in abundance. The last group was made up of sensitive taxa, which reacted by decreasing
cell numbers under the influence of the test substances. Unfortunately, in the case of our
tests, we are unable to determine whether the selected substances stimulated growth or
reduced competition, which ultimately manifested itself in an increase in population size.

An example of a particularly resistant species, which was stimulated by all the factors
tested, was N. perminuta. Other resistant taxa that increased their abundance, contributing
to the remodelling of the community structure were, e.g., G. marina (copper chloride II),
Cylindrotheca closterium, Spirulina sp. (glyphosate), and Merismopedia sp. ([BMIM]Cl). Plants,
including aquatic plants, have many defence mechanisms that enable them to survive under
unfavourable conditions. As a result of oxidative stress caused by pollution, the activation
of detoxification mechanisms and defensive antioxidant processes are observed, which
enable microalgae cells to defend themselves, but these are taxon-specific responses [85].
Important regulatory factors in the adaptation strategies of algae to chemical stress are
auxins and cytokinins, whose production rates vary between species [86]. Taxa identified
as indifferent to the tested chemicals in which these mechanisms were likely to have acted
included: C. pediculus, M. nummuloides, and N. gregaria in the case of copper (II) chloride.
In contrast, glyphosate did not affect changes in abundance in, e.g., Licmophora sp. and
T. fasciculata. In the case of ionic liquid, no species described as indifferent were observed.

A study by Yu et al. [87] showed that multispecies algal communities with interspecies
interactions respond differently to stress caused, for example, by the presence of chemicals.
The authors determined the sensitivity of algae to the presence of copper ions by measuring
the inhibition of the production of certain cellular enzymes and showed, among other
things, that the EC50 for Microcystis aeruginosa (Cyanobacteriota) in the community was
significantly higher compared to monocultures of this species and that cell metabolism is
also affected by interspecies interactions. Also, our previous studies indicate that taxa in
communities have a higher resistance to the stressors tested than individual microalgal
strains [45]. Microphytobenthic communities usually consist of a large number of species,
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even at early stages of succession [88]; hence, it is to be expected that the response of taxa
to the presence of toxic substances in communities will be different than in monocultures
and further enhanced or weakened by competitive relationships. In our tests, we showed
that high concentrations of Roundup® contributed to complete community conversion.
Cyanobacteriota were particularly resistant to this preparation. The presence of glyphosate
probably resulted in enrichment of the culture medium with phosphorus biogenic com-
pounds [89], leading to a dominance of the microphytobenthic community by them (e.g.,
Spirulina sp.). Similar results were obtained in community tests conducted in mesocosms,
where a receding of diatom species in favour of cyanobacteria was observed [90], and in
tests on pesticide toxicity in South American lakes [91]. It is probable that the receding of
diatoms contributes to the release of ecological niches that cyanobacteria exploit, as in the
case of our study; e.g., Spirulina sp. and Mersimopedia sp. showed an increase in abundance.

Copper at high doses reduces cell growth of individual taxa, as it inhibits photo-
synthesis [19]. In the experiment presented here, at concentrations of 2·10−5 g·dm3 and
2·10−3 g·dm3, the presence of copper resulted in a 57% reduction in the abundance of E.
paludosa compared to the control solution after seven days, while no representatives of C.
closterium were observed. In tests conducted on microalgae isolated from the Cochin estuary
in India, it was shown that the EC50 for the diatom Nitzschia closterium (synonym of Cylin-
drotheca closterium) was 2.045·10−6 g·dm−3 [92]. In tests on freshwater communities [80] at a
concentration of 1.5·10−5 g·dm−3 copper ions, a significant change in community structure
was observed with a marked decrease in the abundance of the diatoms Synedra ulna and
Achnanthes minutissima after seven days of testing. In our tests on brackish-water micro-
phytobenthic communities, the presence of copper ions at a concentration of 2·10−5 g·dm3

induced a reduction in the abundance of diatom species, e.g., B. paxillifera and T. fasci-
culata, and at concentrations of 2·10−5 g·dm3 and 2·10−3 g·dm3 of the cyanobacterium
Spirulina sp. In the course of the experiments described here, it was shown that many
diatom species, including A. brevipes, B. paxillifera, M. nummuloides, and Peridinium sp.,
are sensitive to glyphosate in the formulation Roundup® at concentrations ranging from
4.2·10−2 to 8.5 g·dm−3. Glyphosate-based herbicides are chemical stressors for microalgae
that can affect the structure of, among others, freshwater plankton [93]. Furthermore, a
study by Fan et al.in [94] showed that the ionic liquids [C10IM]Cl and [C10MIM]Cl, at con-
centrations ranging from 0.2·10−4 g·dm3 to 0.1·10−3 g·dm3, inhibited microalgal growth
by 50%. In our tests, a reduction in abundance at concentrations of 1.13·10−3 g·dm−3

and 1.75·10−2 g·dm−3 [BMIM]Cl was observed on the third day in dominant taxa such as
B. paxillifera and T. fasciculata, while some taxa, such as A. brevipes and C. closterium, were
not observed at all on the seventh day of testing.

4.3. Response at the Cellular Level

An innovative aspect of the study was the analysis of the state of chloroplasts, which
provides insight into the response of the taxa comprising the communities to the applied
chemical agents at the cellular level. Based on the tests carried out, it was observed that
species, despite a similar response at the population level, i.e., similar changes in abundance,
showed different proportions of cells with deformed chloroplasts compared to cells with
normally formed chloroplasts. For example, in T. fasciculata, the proportion of cells with
abnormally shaped chloroplasts ranged from 30% to 70% for copper (II) chloride, from
30% to 85% for glyphosate, and from 10% to about 50% for ionic liquid. In contrast, in
B. paxillifera, the number of cells with abnormally shaped chloroplasts was 20% to 30%
higher than in T. fasciculata at the same concentrations. Information on chloroplast structure
damage induced by the presence of chemicals can be found in the literature, e.g., [55,95],
but the value of such indicators seems small in relation to the effort and time required for
the analysis.
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5. Conclusions

Based on tests conducted on microphytobenthic communities with chemicals with
documented toxic effects on living organisms, changes were observed both at the com-
munity level (taxonomic composition and structure) and at the cellular level (chloroplast
shape). The relatively high resistance of microphytobenthic communities to the tested
substances was due to the taxonomic richness of the studied formation. Sensitive taxa
(e.g., E. paludosa, M. nummuloides) were replaced by species with higher resistance (e.g.,
N. perminuta, Spirulina sp.) so that the community abundance did not undergo significant
changes. Changes in the taxonomic composition and community structure of Baltic micro-
phytobenthos depended on the substance tested and its concentration. The results obtained
in the tests indicate that the number of cells of individual taxa can remain at a similar
level or increase over short periods of time despite significant deformation of chloroplasts.
The novel method of analysing the degree of chloroplast deformation makes it possible
to observe early responses of cells to a stress factor before the population size noticeably
changes, but the analysis of chloroplast status is difficult and time-consuming; hence, its
potential is limited.
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Appendix A

Table A1. List of taxa identified during experiments with various variants of experiments (+ sign
refers to presence).

Taxa Author CuCl2 Roundup® [BMIM]Cl

Bacillariophyta

Achnanthes brevipes Bory + + +

Achnanthes lemmermannii Hustedt + + +

Amphora ovalis (Kützing) Kützing + +

Amphora pediculus (Kützing) Grunow + + +

Amphora sp. Kützing + +

Bacillaria paxillifera (O.F.Müller) T.Marsson + + +
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Table A1. Cont.

Taxa Author CuCl2 Roundup® [BMIM]Cl

Berkeleya rutilans (Trentepohl ex Roth) Grunow + +

Brebissonia lanceolata (C.Agardh) R.K.Mahoney & Reimer + + +

Chaetoceros wighamii Brightwell + +

Cocconeis pediculus Ehrenberg + +

Cocconeis placentula Ehrenberg +

Cocconeis sp. Ehrenberg + +

Cyclotella sp. (Kützing) Brėbisson + +

Cylindrotheca closterium (Ehrenberg) Reimann & J.C.Lewin + + +

Diatoma moniliformis Kützing + +

Diatoma tenuis C.Agardh + +

Diatoma vulgaris Bory + +

Diploneis didyma (Ehrenberg) Ehrenberg + +

Diploneis interrupta (Kützing) Cleve + +

Encyonema prostratum (Berkeley) Kützing + +

Entomoneis paludosa (W.Smith) Reimer + + +

Epithemia gibba (Ehrenberg) Kützing +

Epithemia sp. Kützing + +

Fallacia sp. Kütz + + +

Gomphonella olivacea (Hornemann) Rabenhorst + + +

Grammatophora marina (Lyngbye) Kützing + + +

Gyrosigma sp. Kützing + +

Halamphora coffeiformis (C.Agardh) Mereschkowsky + + +

Licmophora gracilis (Ehrenberg) Grunow + +

Licmophora sp. C.Agardh +

Melosira moniliformis C.Agardh + + +

Melosira nummuloides C.Agardh + + +

Navicula gregaria Donkin + + +

Navicula meniscus Schumann +

Navicula palpebralis Brébisson ex W.Smith + + +

Navicula perminuta Grunow + + +

Navicula ramosissima (C.Agardh) Cleve + + +

Navicula sp. Bory de Saint-Vincent + +

Nitzschia dissipata (Kützing) Rabenhorst +

Nitzschia sigma (Kützing) W.Smith + +

Opephora sp. Petit +

Planothidium delicatulum (Kützing) Round & Bukhtiyarova + +

Pleurosigma aestuarii (Brébisson ex Kützing) W.Smith +

Pleurosigma sp. W. Smith + + +
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Table A1. Cont.

Taxa Author CuCl2 Roundup® [BMIM]Cl

Proschkinia poretzkajae (Koretkevich) D.G.Mann + + +

Rhoicosphenia abbreviata (C.Agardh) Lange-Bertalot + + +

Rhopalodia gibba (Ehrenberg) Otto Müller + +

Surirella brebissonii Krammer & Lange-Bertalot +

Tabularia fasciculata (C.Agardh) D.M.Williams & Round + + +

Tryblionella sp. (Grunow) + +

Cyanobacteria

Dolichospermum flos-aquae (Bornet & Flahault) P.Wacklin + + +

Cyanobacteria sp. +

Merismopedia sp. Meyen + + +

Microcystis sp. Lemmermann + +

Nodularia sp. Mertens ex Bornet & Flahault + +

Oscillatoria sp. Vaucher ex Gomont +

Spirulina major Kützing ex Gomont + +

Spirulina subsalsa Oersted ex Gomont + + +

Woronichinia sp. A.A.Elenkin + +

Dinophyceae

Peridinium sp. Ehrenberg + +

Chlorophyta

Pseudopediastrum boryanum (Turpin) E.Hegewald +

Scenedesmus sp. Meyen + +

Haptophyta

Prymnesium sp. N.Carter + +
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Appendix B

Table A2. Tables of the statistical analysis results for chosen taxa.

Taxon Day of
Experiment

CuCl_0.0002
g/dm3 CuCl_0.002 g/dm3 Glyphosate_0.042

g/dm3
Glyphosate _0.85

g/dm3
Glyphosate _8.5

g/dm3
[BMIM]Cl_0.00113

g/dm3
[BMIM]Cl_0.0175

g/dm3

Achnanthes brevipes
3 0 0 0 0 0 0 0

7 0.033 0 0 0 0 0 0

Bacillaria paxillifera
3 0.011 0 0 0 0 0 0

7 0 0 0 0 0 0 0

Diatoma moniliformis
3 0.0001 0.012 0 0 0 0 0

7 0 0 0 0 0 0 0

Entomoneis paludosa
3 0 0 0 0 0 0 0

7 0 0 1 0 0 0 1

Grammatophora marina
3 0 0 0 0 0 0 0

7 0 0 0 0 0 1 0

Melosira nummuloides
3 0 0 0 0 0 0 0

7 0.322 0 0 0 0 0 0

Merismpoedia sp.
3 0 0 0 0 0 0 0

7 0 0 0.0589 0 0 0 0

Navicula perminuta
3 0 0 0 0.0002 0 0 0

7 0 0 0 0 0 0 0

Spirulina sp.
3 0 0 1 1 0 1 1

7 0 0 1 0 0 1 1

Tabularia fasciculata
3 0 0 0 0.682 0 0 0.093

7 0 0 0 0.238 0 0 0
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(CuO-NPs) on parturition time, survival rate and reproductive success of guppy fish, Poecilia reticulata. J. Clust. Sci. 2020, 31,
499–506. [CrossRef]

5. Lewis, M.A. Use of freshwater plants for phytotoxicity testing: A review. Environ. Pollut. 1995, 87, 319–336. [CrossRef] [PubMed]
6. Zhu, Y.; Zhong, X.; Wang, Y.; Zhao, Q.; Huang, H. Growth Performance and Antioxidative Response of Chlorella pyrenoidesa,

Dunaliella salina, and Anabaena cylindrica to Four Kinds of Ionic Liquids. Appl. Biochem. Biotechnol. 2021, 193, 1945–1966.
[CrossRef]

7. Dahl, B.; Blanck, H. Pollution-induced community tolerance (PICT) in periphyton communities established under tri-n-butyltin
(TBT) stress in marine microcosms. Aquat. Toxicol. 1995, 62, 35–44. [CrossRef]

8. Blanck, H.; Eriksson, K.M.; Grönvall, F.; Dahl, B.; Guijarro, K.M.; Birgersson, G.; Kylin, H. A retrospective analysis of contamination
and periphyton PICT patterns for the antifoulantirgarol 1051, around a small marina on the Swedish west coast. Mar. Poll. Bull.
2009, 58, 230–237. [CrossRef]

9. Sylwestrzak, Z.; Pniewski, F. The influence of the culture medium on the results of experiments testing the impact of a toxic
substance on microphytobenthos communities. In Achievements of Young Scientists; Kuczera, M., Piech, K., Eds.; Creativetime:
Kraków, Poland, 2014. (In Polish)

10. Potapova, M.; Charles, D.F. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecol. Indic. 2007, 7, 48–70.
[CrossRef]

11. Pennesi, C.; Danovaro, R. Assessing marine environmental status through microphytobenthos assemblages colonizing the
Autonomous Reef Monitoring Structures (ARMS) and their potential in coastal marine restoration. Mar. Pollut. Bull. 2017, 125,
56–65. [CrossRef]

12. Garside, M. Statista. 2023. Available online: https://www.statista.com/statistics/1236733/europe-annual-refined-copper-
consumption/ (accessed on 17 October 2023).

13. Coates, R.M.; Denmark, S.E. (Eds.) Reagents, Auxiliaries, and Catalysts for CC Bond Formation; John Wiley & Sons: Hoboken, NJ,
USA, 1999.

14. Stauber, J.L.; Florence, T.M. Mechanism of toxicity of ionic copper and copper complexes to algae. Mar. Biol. 1987, 94, 511–519.
[CrossRef]

15. Manimaran, K.; Karthikeyan, P.; Ashokkumar, S.; Prabu, V.A.; Sampathkumar, P. Effect of copper on growth and enzyme activities
of marine diatom, Odontella mobiliensis. Bull. Environ. Contam. Toxicol. 2012, 88, 30–37. [CrossRef] [PubMed]
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69. Pliński, M.; Komárek, J. Cyanoprokaryota with the English key for the identification to the genus. In Flora of the Gulf of Gdańsk and
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