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Abstract: Considering the limitations of the current pavement crack damage detection methods,
this study proposes a method based on digital image processing technology for detecting highway
asphalt pavement crack damage. Firstly, a non-subsampled contourlet transform is used to enhance
the image of highway asphalt pavement. Secondly, the non-crack regions in the image are screened,
and the crack extraction is completed by obtaining and enhancing the crack intensity map. Finally,
the features of cracks are extracted and input into the support vector machine for classification and
recognition to complete the detection of cracks in highway asphalt pavement. The experimental
results show that the proposed method can effectively enhance the quality of a pavement image and
precisely extract a crack area from the image with a high level of damage detection accuracy.

Keywords: non subsampled contourlet transform; pavement cracks; feature extraction; support
vector machine; damage detection

1. Introduction

Road traffic has always occupied a pivotal position in many modes of transportation.
Compared with the United States, Japan, and other developed countries, China’s highway
construction was delayed. The completion of the Shanghai Jiaxing Expressway opened
the prelude to China’s highway construction. At present, China has gradually formed
a highway network that is compatible with its economy. The development of highways
brings convenience to people, but at the same time, it also poses a novel challenge: highway
maintenance and management [1,2]. There are many factors in daily life that cause damage
to roadways in various forms, such as cracks, pits, et cetera. That damage brings hidden
dangers to people’s traffic safety [3]. Therefore, timely and effective pavement damage
detection has become the most important part of highway maintenance, in which crack
detection of expressway asphalt pavement is a key part.

Zhang Tianjie et al. identified asphalt pavement cracks based on residual neural
networks [4]. A set of asphalt pavement images was established, and crack images were
cleaned using data-cleaning algorithms. A sample dataset of asphalt pavement crack
images was constructed. The image set was divided into training and testing sets in a ratio
of 8:2. The residual neural network ResNet50 was used to train the cleaned data, obtain
network weights, and then use the trained network to predict the asphalt pavement crack
data to complete crack damage detection. However, the image processed by this method
still has some noise, which reduces the accuracy of damage detection and is not conducive
to subsequent damage detection.

Li Yan proposed a three-dimensional crack detection method for asphalt pavement
based on a height intercept product [5]. First, the image is preprocessed using a bilateral
filter to achieve a smooth road texture and maintain crack contour features. Then, taking
advantage of the fact that the high–low–high degree of the crack contour is greater than the
texture area and has strong symmetry, a height difference product operator is designed. This
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operator could effectively amplify the difference between the crack and non-crack areas,
and the corresponding crack mapping image could be obtained through the processing of
this operator. Finally, dynamic threshold segmentation and denoising are performed on
the mapped image to obtain the final binary image of cracks and achieve crack damage
detection. However, this method does not screen for non-crack areas in the image and
cannot accurately extract crack areas, which affects the effectiveness of damage detection.

Hu Chengxue et al. proposed a crack detection method for asphalt pavement based
on neighborhood and gradient saliency feature fusion [6]. The image was denoised using
grayscale correction and morphology. This process involves extracting important features
in the image’s vicinity based on the significant differences between pixels and their sur-
rounding arias. Significant features in different directions are obtained through directional
adjustable filters, and feature fusion salient maps are generated through convolutional
operations. Then, the feature fusion salient map threshold is segmented to obtain suspected
crack aggregation areas, introducing a clustering analysis method to select crack candi-
date regions based on the different geometric features of the clustering region. Finally, a
region endpoint search and localization method is proposed, which eliminates subsets of
non-endpoint aggregation regions and connects endpoints of different regions, ultimately
achieving complete crack extraction. However, this method does not enhance the road sur-
face image, resulting in certain errors in image recognition, inconsistent damage detection
results with actual results, and reducing the accuracy of damage detection.

In order to solve the issues in the above methods, a method based on digital image
processing technology for detecting cracks in expressway asphalt pavement is proposed.
The main steps are as follows:

(1) Use the nonsubsampled contourlet transform to enhance the image of asphalt pavement
on highways, denoise, and select thresholds through principal component analysis;

(2) Use the Gaussian Laplace operator to filter non-crack images and obtain intensity
images based on the non-negative features of cracks;

(3) Enhance regional information and extract crack features through comparative crack
features;

(4) Use projection features and crack pixel features to classify crack images. The fea-
tures serve as input vectors for support vector machines, and when combined with
classification functions, the detection of crack diseases in highway asphalt pavement
is completed;

(5) Experiments and discussions show the overall effectiveness of the proposed method
through image enhancement, crack extraction, and damage detection tests;

(6) Conclusions.

2. Digital Image Processing
2.1. Image Enhancement Processing of Expressway Asphalt Pavement

The detection method of expressway asphalt pavement crack damage based on digital
image processing technology uses the non-subsampled contourlet transform (NSCT) to
enhance the image of expressway asphalt pavement.

NSCT can be divided into two translation invariant parts: a non-down sampling
pyramid and a non-down sampling directional filter bank. The combination of these
two parts ensures the multi-directional and multi-scale analysis characteristics of NSCT.
Moreover, the filter banks of these two parts avoid sampling, making NSCT translation
invariant. This feature ensures that the NSCT transformed image information is preserved
and the frequency domain characteristics of different subbands in the image are clear.

In the actual pavement crack damage detection process, the pavement image that
needed to be enhanced not only contains weak signal crack information but also contains
different noise levels. Therefore, the road image enhancement algorithm must keep the
crack edge information as far as possible, suppress noise, and enhance the contrast between
the road background image and the crack [7,8]. The idea of the NSCT image denoising
and enhancement algorithm is first to select an appropriate threshold to distinguish noise
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from weak edge information. Secondly, a suitable threshold function is selected to enhance
the contrast of pavement background and crack information [9,10]. Because the frequency
domain characteristics of noise are unstable, there is no fixed shape. The frequency dis-
tribution of weak edges is relatively stable, and the shape presents a certain geometric
structure, so this morphological difference can be used to distinguish the noise and weak
edge information in a road image. By incorporating the translation invariance of the NSCT
transform, the crack information in the road image can be enhanced and noise minimized.

A pavement image is transformed by NSCT to obtain the subband coefficients of the
image. According to these coefficients, the pixels in the image are divided into three cate-
gories: strong edge, weak edge, and noise. The classification of strong edges, weak edges,
and noise can be determined by the threshold T. This article uses principal component
analysis to determine the threshold T. There are many approaches to select the method,
and the proposed approach uses the principal component analysis method. In the field of
image processing, a standard denoising criterion considers that the information with large
changes is the target, the information with small changes is noise, and the size of changes
is described by variance. The idea of the PCA method is to project high-dimensional data
into a low-dimensional subspace, use new variables with fewer dimensions and mutual
independence to reflect most of the information provided by the original variables, and
then solve the problem by analyzing the new variables [11,12]. PCA has many different
calculation methods. The proposed method calculates the data matrix X covariance matrix
of COV the eigenvalues and eigenvectors of W for solving.

First, the pavement image of order M× N is represented by a matrix as X = [x1, x2, · · · ,
xn], using the X standardization process to obtain X′. As shown in Formula (1):

X′ = X− X (1)

where X = XT I/M, I by m × 1 dimensional vector; M is the number of observation
indicators of X.

Furthermore, each element in the covariance matrix X′ of the standardized matrix
COV can be calculated, as shown in Formula (2):

COV(i, j) = (∑
k=1

xki·xkj)/(m− 1) (2)

where xki, xkj standardize matrix X′ elements.
For the decomposition covariance matrix COV = UΛ, Λ = diag[λ1, λ2, · · · , λn] by

the COV characteristic value of λi diagonal matrix is formed; U = [u1, u2, · · · , un] is the
covariance matrix; COV is the eigenvector corresponding to the eigenvalue.

The formula for calculating the variance contribution rate ι of the standardized matrix
is shown in Formula (3):

ι = (λ1, λ2, · · · , λd)/trace(COV) (3)

When the value of ι reaches more than 70%, the main information of d contains a
feature vector xi. Before taking xi characteristic values and Λd = diag[λ1, λ2, · · · , λd] and
eigenvectors Wd = [w1, w2, · · · , wd] as the base coordinate of the subspace, the principal
component Y in the data matrix can be standardized by X′ to keep d projection on base
coordinates, as shown in Formula (4):

Y = WT
d X′ (4)

We apply the first d principal components to estimate the reconstruction model of X,
as shown in Formula (5):

X = WY + X′ (5)
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The proposed method uses the median X̂ of the absolute values of the standardized
data matrix as the threshold T for pixel classification in the image. The calculation formula
is shown in Formula (6):

T = median(
∣∣X̂∣∣) (6)

where median indicates the median value.
Based on the above steps, the threshold value in the NSCT image enhancement

algorithm can be determined. In the process of image enhancement, two factors directly
determine the enhancement effect: the selection of threshold and the threshold function. A
reasonable threshold can distinguish the noise from the image information and enhance
the weak edge information of the image.

The calculation formula for the enhancement function g(x) used in the proposed
method is shown in Formula (7):

g(x) =


1 x ∈ SE

maxx(T/
∣∣x∣∣p) x ∈WE

0 x ∈ Noise
(7)

where x is the pixel value after NSCT decomposition; p is the adjustment coefficient, which
can be taken from 0 to 1; SE indicates a strong edge; WE is a weak edge; Noise indicates
noise. This formula preserves the strong edge of the image, enhances the weak edge, and
suppresses the noise.

2.2. Crack Extraction

The crack damage detection method of expressway asphalt pavement based on digital
image processing technology mainly extracts cracks through three steps:

(1) Non-fracture image filtering;
(2) Intensity image acquisition;
(3) Regional information enhancement.

First, according to the high-frequency characteristics, the relevant algorithm is used
to calculate the target high-frequency signal in the pavement image. The image with a
weak target high-frequency signal is a crack-free image, and the processing is skipped.
Second, for images with possible cracks, relevant extraction algorithms are designed based
on the non-negative features and contrast features of the image crack regions to obtain
candidate information on cracks. Then, according to the linear characteristics of the image
crack region, relevant algorithms are designed to strengthen the breakpoints and weaken
the background noise. Finally, the false information is eliminated, and the cracks in the
asphalt pavement image of the expressway are extracted. It should be noted that in order
to ensure that the crack information in an image can be accurately captured and analyzed,
there are certain requirements for the size or resolution of the image. A larger image
size may require more computing resources and storage space, but it can also provide
more image information for crack detection. Higher resolution can provide more detailed
information, which helps to identify and locate cracks in crack detection more accurately.
However, higher resolution also increases the cost of computation and storage. Therefore,
it is necessary to ensure that the road surface image resolution used for detection is at least
150 dpi.

2.2.1. Non/Crack Image Filtering

Because in the actual detection, most of the pavement to be treated is damage-free, if
the cracks in these pictures are detected directly, it will cause unnecessary errors and affect
the speed of batch detection. Therefore, before crack detection, high-frequency features are
used to screen damage-free images.

(1) Zero intersection detection based on high frequency characteristics of cracks
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In the image, cracks belong to grayscale abrupt edges, and their grayscale values
show a step-like change, which can be considered high-frequency signals. Therefore, this
high-frequency feature can be defined as a characteristic of cracks.

The high-frequency features of cracks can be well expressed by edge detection [13,14],
and an improved Gaussian Laplacian operator is proposed. The core idea of the Gaussian
Laplacian operator [15,16] is to combine the Laplacian operator and the Gaussian smoothing
filter to detect the edge of the image. For the pavement crack image, the Gaussian smoothing
filter can effectively suppress the impact noise and other signals, which plays a good
auxiliary role in the expression of low-frequency information of the crack-free image. The
main principle is shown in Formula (8):{

F(x, y) = ∇2[G(x, y) ∗ f (x, y)] = ∇2G(x, y) ∗ f (x, y)

∇2G(x, y) = 1
πσ4 (

x2+y2

2σ2 − 1)e
x2+y2

2σ2
(8)

where ∗ is a convolution operation [17,18], F(x, y) is the image obtained after convolution
processing, f (x, y) is the original image. Setting k = 1

2πσ4 , ∇2G(x, y) can be separated into
two filters h1, h2. The above equation can be further improved, as shown in Formula (9):

F(x, y) = [h1(x)h2(y) + h2(x)h2(y)]⊗ f (x, y) (9)

Because the crack has no fixed direction, a multi-directional convolution template is
used to ensure that the edge information in all directions can be effectively detected. The
steps are: f (x, y) takes the convolution templates of horizontal and vertical, inclined at 45
degrees and inclined 135 degrees for operation, and the results of each template operation
are summed. As shown in Formula (10):{

d[i](x, y) = f (x + a, y + b)⊗ h1(x)
D[i](x, y) = d(x + c, y + d)⊗ h3−i(x)

(10)

where i = [1, 2]; by finding d[i], the convolution calculation result can be obtained by the

value of F(x, y) =
2
∑

i=1
D[i]. Taking the template in the horizontal and vertical directions:

a = d = 0, c = b, b ∈ [−8.5σ/2, 8.5σ/2]. Taking the 45◦ and 135◦ formwork: a = c = d =
−b, b ∈ [−8.5σ/2, 8.5σ/2]. By summing the convolution results of the four templates, the
high-frequency information of each main direction can be obtained, and then the enhanced
convolution map can be obtained. After convolution processing, the high-frequency signals
(cracks and other edges) of the image appear as zero intersections.

(2) Damage free image judgment

Considering that some zebra crossings and road signs have strong edge characteristics,
but their edges have regular shape and direction characteristics, they can be removed
according to the length-width ratio of their edge areas. The basic discrimination formula is
shown in Formula (11):

V[k] =
L[k]
W[k]

(11)

Among them, V[k] is the aspect ratio of the current connected domain, L[k] is the
length of connected domain, and W[k] is connected domain width. The judgment steps are
as follows:

(1) Calculate the length and width of each connected domain, such as L[k] > 4col/5 or
W[k] > 4/5row (image size is row× col), and continue to judge;

(2) Calculate the V[k] value. If satisfied by V[k] > 10 or V[k] < 0.1, determine that it is a
landmark edge, and delete the entire connection;

(3) Count the remaining zero crossings N, such as N < col/5 or perhaps N < row/5, then
it is judged that the image is mainly a low-frequency signal, which is a damage-free
image, and the processing step is skipped.
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2.2.2. Strength Image Acquisition Based on Non-Negative Characteristics of Cracks

After filtering out most of the non-crack images, the intensity image is obtained based
on the non-negative characteristics of the crack. In the process of road image achievement,
due to the illumination angle of the incident light, cracks appear as darker areas on the
image, whose pixel gray values are generally lower than the background pixels nearby and
generally have a substantial difference. This feature is defined as the non-negative feature
of cracks.

In some complex road sections, some crack areas with large widths will be filled or
covered by the dust on the road, resulting in a higher gray value of its pixels than the
nearby background pixels. At this time, the gray value of the pixel at the edge of the crack
is lower than that of the pixel filled with dust in the middle, which also has a significant
difference, so the non-negative feature is also applicable in this case. Non-negative features
mainly describe the gray value characteristics of a single crack point in the region. As the
most basic and main feature of crack pixels, they can be used to extract the most basic crack
information. The schematic diagram of non-negative characteristics is shown in Figure 1:
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Figure 1. Schematic diagram of non-negative characteristics.

Figure 1 is a schematic diagram of an image containing a crack area, the size of which
is a× b; the crack area is marked with a circle and a diamond. f (x, y) is the current point
to be processed; other points in the area can be represented as f (x + w, y + h), where:
w ∈ [−(a + 1)/2, (a + 1)/2], h ∈ [−(b + 1)/2, (b + 1)/2].

f (x + w, y + h) includes both cracked pixels and non-cracked pixels. Based on the
non-negative characteristics, design-related algorithms are used to obtain the intensity
map of the crack image. Considering that cracks are linearly distributed, the width is
small, and the closer the point is to the current point, the greater the influence factor on
the determination of crack points is, so a distance weight function is introduced. The
calculation formula for strength ςi is shown in Formula (12):

ςi = [ f (x, y)− f (x + w, y + h)]e
w2+h2

K (12)

When ςi < 0, we count the quantity n, e
w2+h2

K as the distance influence factor, which
is taken according to the size of the selected window K = 64. Calculated in this way,
the influence of edge pixels ςi is weakened, which can highlight the characteristics of the
crack area more. Then, we calculate the strength value O of the current point, as shown in
Formula (13):

O = |(
n

∑
i=0

ςi)/N| (13)

Among them, N is the total number of pixels in the region. In actual processing,
using a 21 × 21 size window scans the acquired image and calculates the intensity value
of each point according to Formulas (12) and (13) as O and the quantity influence factor
n. According to the prior knowledge obtained from a large number of experiments, the
best threshold suitable for fracture extraction is O < 30, n > 0.8N. When the calculated O
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and n meet the requirements, the value of O can be assigned to the current point f (x, y).
Otherwise, the value is assigned to 0.

Non-negative features mainly calculate and screen the differences shown by single
crack pixels and then obtain basic candidate crack information, including background
noise, non-crack edge signals, and other interference factors. The image obtained after
non-negative feature calculation mainly describes the strength information of the original
crack image, which is called the crack strength map for short.

2.2.3. Information Enhancement of Fracture Area Based on Contrast Characteristics

In image processing, contrast represents the intensity difference between adjacent
regions in the image [19,20]. The contrast of the crack information intensity image is very
low, and the spatial correlation of adjacent pixels is high. The target, background, details,
and noise in the image exist in a narrow gray range, so it is not meaningful to evaluate the
contrast of a crack pixel alone. Candidate crack regions and absolute non-crack regions
have been defined in the intensity image. When these regions are mapped to the original
image, the crack and background regions have a strong contrast relationship. The contrast
relationship between the crack region and the background region is defined as the contrast
feature of the crack. Therefore, after obtaining the intensity image, the information on the
crack area is enhanced based on the contrast feature.

In image processing, the contrast C between the target area and the background area
can be calculated using Formula (14):

C =
∣∣BT − BB

∣∣/σB (14)

where BT represents the average gray value of the target area, BB represents the average
gray value of the background area, and σB represents the mean square deviation of the
background area. The contrast feature describes the significant difference between the
fracture and background areas. Combined with the previous non-negative features, the
fracture area and the edge of the landmark can be well distinguished.

According to the relevant mathematical definitions of contrast features, combined
with the distribution of gray values in the crack area on the intensity map and the original
image, the contrast between the target area and the background area is calculated by
calculating the mean gray value and mean square deviation. When calculating the mean
grayscale of a region, considering the occurrence of sudden changes in the grayscale values
of individual pixels, extreme values are generally removed. The formula for calculating the
mean grayscale and mean square deviation of the target region is shown in Formula (15):

M1 =

i≤N
∑

i=0
Fi(x,y)−Fmax(x,y)−Fmin(x,y)

N−2

σ1 =

√
i≤N
∑

i=0
[Fi(x,y)−M1]

2

N

(15)

The calculation formula for the grayscale mean and mean square deviation of the
background area is shown in Formula (16):

M2 =

i≤n
∑

i=0
fi(x,y)− fmax(x,y)− fmin(x,y)

n−2

σ2 =

√
i≤n
∑

i=0
[ fi(x,y)−M2]

2

n

(16)

where M1 is the average gray value of the target area Area 1; M2 is the average gray
value of the background Area 2; σ1 is the mean square deviation of the target Area 1; σ2
is the mean square deviation of the background Area 2. Fi(x, y), Fmax(x, y) and Fmin(x, y),
fi(x, y), fmax(x, y), fmin(x, y) represent the gray value of each pixel in Area 1 and Area
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2, the maximum gray value of the region, and the minimum gray value of the region,
respectively; N/n is the number of pixels in each area. Based on the characteristics of the
crack area in the image, the calculation formula for the contrast C between the target area
and the background area is defined as Formula (17):

C =

{
|M1 −M2|/

√
σ1σ2 |M1 −M2|> T

0 |M1 −M2|< T
(17)

If Area 1 is a crack area, then |M1 −M2| is larger. However, if Area 1 is a non-fracture
candidate area, then the value of |M1 −M2| is smaller. The proposed method sets an
intensity factor T to make a judgment. After obtaining the contrast C, we normalize the
grayscale value using the following equation, as shown in Formula (18):

F(i, j) = Round[
f (x, y)× 255

fmax(x, y)
− fmin(x, y)] (18)

In the formula, ROUND[ f (x,y)×255
fmax(x,y) − fmin(x, y)] is a rounding function. In actual

processing, a 21 × 21 window is used to scan the intensity image, and the contrast cor-
responding to the current point to be processed is calculated according to the pixel gray
value in the original image. The contrast C is smaller when the target area Area 1 in the
intensity map corresponds to the non-crack area in the original image. The contrast C is
larger when the target area Area 1 in the intensity map corresponds to the crack area in the
original image. Normalizing C, the value is assigned to the current point to be processed,
effectively enhancing the crack information on the intensity map.

3. Detection of Cracks on Asphalt Pavement of Expressway

Typical damage to asphalt pavement includes cracks, ruts, deflections, potholes, and
looseness. Among them, crack damage is one of the most common and representative
types of damage to asphalt pavement. The cracks can be divided into four types: transverse
cracks, longitudinal cracks, mesh cracks, and cracking.

(1) The network cracks refer to the irregular network cracks on the road surface, in the
form of crisscross cracks, forming crack grids of different sizes, with an area between
0.092 m2 and 9.2 m2;

(2) The longitudinal cracks are parallel to the middle line of the pavement. The length
and width of the cracks depend on the damage to the pavement, and there may be a
small number of branch cracks;

(3) The transverse cracks are perpendicular to the middle line of the pavement, and there
may be a small number of branch cracks;

(4) Cracking is one of the most severe crack damages, generally caused by the long-
term rolling of heavy vehicles. Cracks cross each other and form many irregular
small cracks.

According to the Technical Specifications for Maintenance of Highway Asphalt Pave-
ment issued by the Ministry of Communications of the People’s Republic of China, evalua-
tion standards are provided for various damage types of asphalt pavement, in which the
classification and damage classification of asphalt pavement cracks are given, as shown in
Table 1:
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Table 1. Classification and damage classification of pavement cracks.

Classification Classification Appearance Description Grading Index Unit of Measurement

Transverse crack
light The seam wall does not fall off or falls off

less, and the buttress seam is less Seam width ≤ 5 mm
M2(length × 0.2 m)

heavy The seam wall falls off more, and there
are many branch joints Seam width > 5 mm

Longitudinal crack light The seam wall does not fall off or falls off
less, and the buttress seam is less Seam width ≤ 5 mm

M2(length × 0.2 m)

heavy The seam wall falls off more, and there
are many branch joints Seam width > 5 mm

Reticular fissure
light Fine seam, no shedding or less shedding,

large block size area Lumpness > 100 cm
m2

heavy The seam is wide, shedding more, and
the block is relatively broken Block size: 50 cm~100 cm

Craze
light Initial cracking, fine seam, no falling off

or deformation Fragmentation: 20 cm~100 cm
m2

in Obvious cracks, wide seams,
slight deformation

Fragmentation of small part of
cracks < 20 cm

heavy Broken blocks, wide seams, falling off
and serious deformation

Fragmentation of most cracks
< 30 cm

There are many methods to describe image features, such as texture description based
on a gray histogram, which is an effective method to describe gray images. The image
histogram is a normal distribution function, but for the processed binary image, the gray
histogram cannot describe the characteristics of the binary image. The proposed method
uses three features, the projection feature and the number of crack pixels, to describe the
crack image. For a size of M× N’s crack image B(i, j), the statistical level x direction and
perpendicular y direction, the number of crack pixels in the direction receives projection

vectors in both the
→
X and

→
Y directions. The calculation formula is shown in Formula (19):

→
X(i) =

M
∑

j=1
B(i, j)

→
Y(j) =

N
∑

j=1
B(i, j)

(19)

where i = 1, 2, · · · , N, j = 1, 2, · · · , M.
According to the statistical results, for longitudinal cracks along the y directional

projection x, an obvious peak value will appear on the axis. For transverse cracks, along
the horizontal x directional projection x, an obvious peak value will appear on the shaft.
According to the projection characteristics of the crack image, the maximum difference
value of the median value of each projection vector Xnum and Ynum are two characteristics
of cracks. The calculation formula is shown in Formula (20): Xnum = max

→
X(i)−min

→
X(i)

Ynum = max
→
Y(j)−min

→
Y(j)

(20)

The proposed method includes M× N, the third feature. The two eigenvalues can be
easily distinguished for transverse and longitudinal cracks, Xnum and Ynum, but they cannot
be effectively distinguished between a mesh crack and craze. Mesh cracks and crazes have
a higher pixel count compared to transverse and longitudinal cracks. The number of craze
crack pixels exceeds that of a mesh crack, so it is necessary to use the number of crack
pixels Tnum to distinguish them. The calculation formula is shown in Formula (21):

Tnum =
N

∑
i=1

M

∑
j=1

B(i, j) (21)
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The proposed method selects the above three features as the input vectors of the
support vector machine [21,22] to detect the crack damage of expressway asphalt pavement.

Assume that there is a linearly separable set of crack image samples in the feature
space T = {(x1, y1), (x2, y2), · · · , (xn, yn)}, where xi ∈ Rd is the first in the space i fracture
samples of known categories, yi, i = 1, 2, · · · , n the category properties of xi. According to
the idea of using straight lines to divide categories in two-dimensional space, the straight
line for classification in feature space is the classification hyperplane [23,24], which can
be expressed as wTx + b = 0, where w is an n dimensional vector, b is the offset. For∣∣wTx + b

∣∣= 1 , the sample points of the condition are closer to the ideal plane than other
sample points, so the interval between the sample and the hyperplane is 2/||w||. The
classification hyperplane is shown in Figure 2:
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In order to find the ideal plane for classification, the gap between the crack sample and
the plane should be maximized, that is 2/||w||maximum [25], which can be equivalently
expressed as ||w||2/2 minimum. Therefore, the solution for the optimal classification
hyperplane ϕ(w) can be calculated using Formula (22) as follows:{

min ϕ(w) =||w||2/2
s.t. yi(wTxi + b) ≥ 1, i = 1, 2, · · · , n

(22)

where w corresponds to the slope term in the straight line, which is the normal vector in
high-dimensional space; b is the intercept term of the hyperplane in high-dimensional
space.

The above is the problem of calculating extreme values in convex optimization, which
can be solved by the Lagrange multiplier method. Using the Lagrange multiplier method,
the functional form of the above equation can be calculated using Formula (23):

L(w, b, α) =
||w||2

2
−

n

∑
i=1

αi[yi(wTxi + b)− 1] (23)
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Among them, αi > 0, as a Lagrange multiplier, to further solve the problem, first
calculates the partial derivatives w and b and then makes the derivative result equal to 0.
Further results can be obtained, as shown in Formula (24):

w =
n
∑

i=1
αiyixi

n
∑

i=1
αiyi = 0

(24)

Based on the above formula, the problem of crack damage detection in the original
asphalt pavement of highways can be represented by Formula (25):

Q(α) =
n

∑
i=1

αi −
1
2

n

∑
i,j=1

yiyjαiαj(xT
i xj) (25)

After using the Lagrangian method, the above problem can be transformed into the
form of Formula (26): 

max
α

Q(α) =
n
∑

i=1
αi − 1

2

n
∑

i,j=1
yiyjαiαj(xT

i xj)

s.t. αi > 0, i = 1, 2, · · · , n
n
∑

i=1
αiyj = 0

(26)

The optimal solution to the optimization problem can be obtained by solving the
above equation, with α∗ representing the optimal solution. According to the KKT condition,
there are α∗i [yi(wTxi + b)− 1] = 0, only when xi satisfies yi(wTxi + b)− 1 = 0, α∗i 6= 0.
Correspondingly, xi falls on the optimal boundary, which is called the support vector. The
weight coefficient w∗ and offset term b∗ of the optimal hyperplane can be calculated using
Formula (27):  w∗ =

n
∑

i=1
α∗i xi

b∗ = −w∗(xr+xs)
2

(27)

Among them, xr and xs are any two crack samples in the two categories, belonging to
the support vector.

Usually, in the sample set, only a few samples α∗ have a non-zero value, but most
samples α∗ have a value of zero. Therefore, the best prediction classification plane is deter-
mined by α∗, which is determined by non-zero samples. These samples are support vectors.
The calculation formula for the optimal classification function is shown in Formula (28):

f (x) = sgn(w∗x + b∗) (28)

The above-extracted fracture features Xnum, Ynum, Tnum as the input vector x are input
into the above classification function to complete the crack damage detection of expressway
asphalt pavement.

In summary, the flowchart of the crack detection method for asphalt pavement on
highways designed in this article is shown in Figure 3.
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4. Experiment and Discussion

In order to verify the overall effectiveness of the digital image processing technology-
based crack detection method for expressway asphalt pavement, it is necessary to conduct
testing. In this experiment, a Windows 10 system with 32 GB of memory was selected,
equipped with an Intel Core i7-14700KF CPU@3.60 GHz. The processor is equipped with an
8-bit 74HC165D model data register, and the simulation software running is Matlab R2019a.

The experimental dataset was created using a randomly collected total of 1000 road
surface images, including road crack images (accounting for 75%) and crack-free images
(accounting for 25%). Using the Python random sampling algorithm, the dataset is divided
into a training set and a testing set, with a ratio of 8:2. The training set is trained to obtain
detection results and then compare the detection results with the actual results in the test
set to calculate accuracy and recall. Accuracy refers to the proportion of correctly predicted
samples to the total number of samples. The calculation method is: accuracy = (true
example + true counter-example)/(true example + false positive example + true counter-
example + false counter-example). The recall rate refers to the proportion of the number
of samples correctly predicted as positive cases (cracks) to the actual number of positive
cases (true cases + false negative cases). The calculation method is: recall rate = true
example/(true example + false counter-example).

Among them, true positive (TP): the number of samples predicted to be cracks and
actually cracked;

True negative (TN): the number of samples predicted to be normal and actually normal;
False positive (FP): the number of samples predicted to be cracks but actually normal;
False negative (FN): the number of samples predicted to be normal but actually cracked.
After obtaining the accuracy and recall rates, we verify the accuracy of different

methods for detecting road crack images through the comparative testing F1_score index.
The F1_score index is an evaluation indicator that comprehensively considers accuracy
and recall. The value range of the F1_score index is between 0 and 1. A higher value
approaching 1 indicates a superior performance of the application method, indicating a
greater ability to detect road cracks accurately.

The road crack image set used in this test is shown in Figure 4.
It can be seen from the analysis of Figure 4 that the images used for the test include

transverse cracks, longitudinal cracks, reticular cracks, and cracking. Due to the influence
of acquisition equipment, lighting, and other factors, the image clarity is low. Therefore,
the approach to detecting cracks in expressway asphalt pavement is based on digital image
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processing technology, specifically the literature-based method [4]. The methods in literature [5]
and literature [6] expand image enhancement processing, and the results are shown in Figure 5.
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Figure 5 shows that after using the method described in reference [4], strip noise
ripples are added to the image, resulting in a decrease in image clarity. Upon implementing
the method in reference [5], the image shows a slight distortion and serrated noise at the
crack edge, which reduces the image quality. After using the method in reference [6], the
image shows local exposure, an increase in highlights, and a lack of some details. After
using the proposed method, the clarity of the image is enhanced, noise is reduced, and
detailed information about cracks can be accurately obtained. The above tests show that
the proposed method has good image effects and can enhance the detailed information in
the image.

Extracting the crack area of the image is the key technology of crack damage detection.
The crack extraction results of the four methods are shown in Figure 6.
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According to Figure 6, the proposed method can completely extract the cracks in the
image without information loss. The literature [4] and literature [5] methods have also
extracted the non-fracture areas in the road. The literature [6] method extracts the missing
details of cracks. To sum up, the proposed method has a high fracture extraction accuracy.

The proposed method, literature [4] method, literature [5] method, and literature [6]
method are used to test the detection of highway asphalt pavement, and four F1 methods
are introduced. The detection accuracy of the F1_score index detection method is shown in
Formula (29):

F1_score =
2× precision× recall

precision + recall
(29)

where precision represents the accuracy rate; recall indicates the recall rate.
The detection accuracy of the four methods is shown in Table 2.

Table 2. Crack damage detection accuracy of different methods.

Number of
Images/Piece

F1_Score

Proposed
Method

Literature [4]
Method

Literature [5]
Method

Literature [6]
Method

10 0.987 0.946 0.952 0.944
20 0.976 0.913 0.927 0.903
30 0.912 0.854 0.872 0.862
40 0.886 0.811 0.835 0.827
50 0.875 0.763 0.796 0.774
60 0.863 0.725 0.755 0.716
70 0.861 0.686 0.702 0.643
80 0.857 0.637 0.648 0.599
90 0.854 0.592 0.611 0.541

100 0.851 0.557 0.571 0.502

Analysis of the data in Table 2 shows that the detection accuracy of the four methods
decreased with the increase in the number of images. Under the same number of images, the
proposed method shows the F1_score consistently above 0.85, indicating that the proposed
method is suitable for large-scale crack damage detection.

5. Conclusions

China’s intelligent transportation system is undergoing a critical development period.
The construction of an intelligent transportation system is important for controlling and
maintaining basic road facilities and road traffic environments. One of the tasks of the
intelligent transportation system is to achieve the high-quality maintenance management
of road facilities. Timely detection and repair of pavement damage is vital for road mainte-
nance work. Existing pavement crack damage detection methods have problems such as
poor image processing effects, low crack extraction accuracy, and low detection accuracy. A
crack damage detection method for expressway asphalt pavement based on digital image
processing technology is proposed, which enhances the pavement image, extracts the crack
area in the image, and obtains the crack characteristics. The proposed method has a good
performance in image processing, crack extraction, and damage detection.
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