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Featured Application: The XGBoost–GR–stacking gas outburst early warning model established
in this article demonstrates high accuracy and practical performance, making it suitable for gas
outburst risk warning in mining safety.

Abstract: To improve the accuracy of gas outburst early warning, this paper proposes a gas outburst
risk warning model based on XGBoost–GR–stacking. The statistic is based on gas outburst data from
26 mines and establishes a data generation model based on XGBoost. The obtained virtual datasets
are analyzed through visualization analysis and ROC curve analysis with respect to the original data.
If the augmented data has an ROC area under the curve of 1, it indicates good predictive performance
of the augmented data. Grey correlation analysis is used to calculate the grey correlation degrees
between each indicator and the “gas emission”. The indicator groups with correlation degrees greater
than 0.670 are selected as the main control factor groups based on the sorting of correlation degrees.
In this study, SVM, RF, XGBoost, and GBDT are selected as the original models for stacking. The
original data and virtual data with correlation degrees greater than 0.670 are used as inputs for SVM,
RF, XGBoost, GBDT, and stacking fusion models. The results show that the stacking fusion model has
an MAE, MSE, and R2 of 0.031, 0.031, and 0.981. Comparing the actual and predicted values for each
model, the stacking fusion model achieves the highest accuracy in gas outburst prediction and the
best model fitting effect.

Keywords: directional splitting; damage region; coalbed methane mining; coalbed permeability
enhancement

1. Introduction

Coal and gas outbursts are a frequent and dangerous occurrence in the coal mining
industry. These accidents pose a significant threat to both the equipment used in coal
mining and the safety of miners. As mining operations continue to deepen and intensify,
the frequency of coal and gas outburst accidents has been on the rise, greatly impacting the
safety of coal mine production. In fact, China has experienced a significant number of these
accidents, accounting for over 40% of the global total. As of 2022, approximately 33.6% [1]
of Chinese coal mines are classified as high-risk mines prone to coal and gas outbursts. To
address these challenges and support the goals outlined in the national “14th Five-Year
Plan”, experts and scholars have been conducting research and analysis to understand
the mechanisms and risks involved in coal and gas outbursts. Their aim is to predict and
prevent such accidents in order to ensure the safe production of coal mines and contribute
to the sustainable development of China’s energy sector.

Coal and gas outburst accidents are the result of complex phenomena, driven by
the dynamic interaction of coal and gas within the mine. This involves the uncontrolled
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evolution of various nonlinear factors, making it a highly destructive gas dynamic phe-
nomenon [2]. In studying the mechanisms behind these outbursts, scholars have examined
multiple factors such as ground stress, gas properties, and coal mechanical properties. They
have constructed theoretical models based on traditional algorithms, although traditional
algorithms often struggle to analyze the nonlinear relationship between these factors. With
advancements in intelligent algorithms and machine learning, more and more experts and
scholars are utilizing these technologies to analyze coal and gas outburst risks, yielding
promising results. The challenge lies in uncovering the nonlinear relationships between
various influencing factors, accurately predicting the risk and severity of coal seam gas
outbursts, and implementing early warning systems to prevent or mitigate the disasters
caused by these outbursts. This has become a critical task in ensuring the safe production
of mines [3].

Over the past century, experts and scholars from both domestic and international
institutions have conducted extensive research on the mechanism of coal and gas outbursts
and have proposed numerous hypotheses. However, there is still no unified theory that
can completely reveal the development mechanism of coal and gas outbursts. The theory
proposed by Pingping Ye [4] analyzed the mechanism of pore pressure on coal and con-
ducted deformation tests of coal rock under cyclic loading and unloading of pore pressure.
Norbert [5] derived a relationship model between coal porosity and mechanical strength
and used porosity and gas pressure to classify and predict the level of outburst hazards.
Zhao [6] through theoretical analysis, pointed out that structurally weak coal has a lower
bearing capacity, and the fine coal particles formed after fragmentation have an extremely
fast gas desorption rate. This can sustain the development of outbursts, making structurally
weak coal seams prone to coal and gas outbursts. Wold [7] suggested that coal and gas
outbursts are influenced by factors such as gas pressure, gas composition, coal permeability,
and adsorption desorption characteristics, and analyzed the relationship between these
influencing factors and the control of outbursts. Dazhao Li [8] proposed a coal and gas
outburst support model, and analyzed the mechanism of non synchronous deformation
induced coal and gas outburst in soft and hard layer. Chaolin Zhang [9] systematically
summarized the research progress on coal and gas outburst mechanisms in China from
three aspects: theoretical hypothesis, physical simulation, and numerical simulation. Hu
Qianting [10] described in detail the entire process of occurrence and development of out-
bursts based on numerical simulations and theoretical analysis. The process was ultimately
divided into four stages: preparation, initiation, development, and termination. Lijun
Zhao [11] summarized the research progress on the mechanism of coal and gas outburst,
and analyzed the shortcomings of existing theoretical models. Liangcheng Wang [12] and
Shoujian Peng [13], based on theoretical exploration combined with a large number of nu-
merical simulation analyses, discussed the evolution process of coal and gas outbursts. Guo
Pinkun [14], combining experimental research, established a model for the development of
layer fractures during the outburst process and explored the mechanism of layer fracture
development. Xu Mangui [15] and others constructed a microelement model of coal-rock
mass and believed that the destruction of coal and gas microelements is the primary cause
of outbursts.

With the increasing popularity of data analysis and data science theory, numerous
experts and scholars have extensively analyzed various factors related to coal and gas
outbursts using traditional algorithm and mathematical analysis methods. Dan Dakuo [16]
combined mathematical and statistical analysis methods to determine the prediction indi-
cators and critical values for coal and gas outbursts, with gas as the dominant factor. This
achieved the prediction of the risk level of coal and gas outbursts. Si Hu [17] extracted
27 factors that influence the occurrence of coal and gas outburst accidents. By using associ-
ation analysis and cross-coupling analysis, they conducted statistical analysis and in-depth
exploration of coal and gas outburst accidents of average and above average severity that
had occurred in the last 15 years. Wen Changping [18] constructed attribute measurement
functions to calculate single-index attribute measurements and comprehensive sample
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attribute measurements. By applying confidence criteria, they conducted attribute recog-
nition of gas outbursts in tunnel samples and established an attribute recognition model
for gas outburst evaluation in the tunnel survey and design stage. Wang Gang [19] ana-
lyzed the energy relationship in the process of coal and gas outbursts using the energy
method. They obtained the relationship between the energy conditions of coal and gas
outbursts, coal seam geostress, cohesion coefficient, coal seam thickness, and the risk of gas
outburst accidents. Cao Shugang [20] conducted experiments on the adsorption desorption
deformation process of outburst-prone coal under different gas pressure conditions. They
found a good power-function relationship and quadratic function relationship between the
desorption shrinkage deformation of coal samples and the original gas pressure. Dingding
Y [21] studied the influence of temperature on the "energy-mass" characteristics of gas and
discovered the function relationship between the initial gas expansion energy released and
temperature under different conditions, improving the prediction indicators for outburst
hazards. Li Yunbo [22] studied the initial gas desorption velocity and amount of gas-prone
coal and structurally weak coal using a self-made gas desorption experimental apparatus.
They analyzed and established mathematical models for the influencing factors during
the initial gas desorption period of structurally weak coal. They concluded that the initial
desorption velocity of gas exhibits a power-law relationship with adsorption equilibrium
pressure, and that the initial desorption curve of structurally weak coal conforms to the
Vent formula.

Based on mathematical theory and machine learning, predictive methods have shown
a high degree of adaptability to the complex problem of coal and gas outbursts, which
involve non-linear relationships among various factors. An increasing number of experts
and scholars are adopting intelligent algorithms to predict coal and gas outbursts and
they have achieved a certain amount of success. Xiang Zeng Du [23] used a grey compre-
hensive correlation analysis model to quantitatively analyze six predictive indicators of
coal and gas outbursts and determine the optimal prediction indicators. This provides
a quantitative basis for the selection of prediction indicators for coal and gas outbursts.
Zhou Xihua [24] predicted the intensity of coal and gas outbursts using an RBF neural
network model and principal component analysis, ultimately achieving high prediction
accuracy. Liu Xiaoyue [25], Cao Bo [26], Ren Shaowei [27], and others used the BP neural
network to predict coal and gas outbursts and optimized the dimensions of the influencing
factors through principal component analysis. By reducing the correlation among vari-
ables and selecting the main control factors, they improved the prediction efficiency of
the entire model. The optimized models also achieved high prediction accuracy. Zhao
Huatian [28], Zeng Weishun [29], Zhang Wenjuan [30], and others made full use of support
vector machines (SVMs) to address the advantages of solving small sample problems and
combined them with other optimization algorithms to predict coal and gas outbursts. Zhao
Huatian and Zeng Weishun used particle swarm optimization to optimize SVM, searching
for global optimal solutions from a global perspective and greatly reducing the probability
of local optimal solutions. Zhang Wenjuan utilized the least squares method to optimize
SVM, effectively removing noise from gas data and improving prediction accuracy. Wu
Yaqin [31] and others combined genetic algorithms with simulated annealing algorithms
to propose a genetic simulated annealing algorithm. They introduced adaptive learning
rates into the BP neural network and further optimized the BP network using the GASA
algorithm. They ultimately established an improved GASA—BP neural network model
for outburst prediction. The accuracy of the predicted results of this model was verified
through practical application in coal mines.Xuning Liu [32] proposed a hybrid prediction
model that combines feature extraction and pattern classification for coal and gas outbursts.
Experimental results on a coal and gas outburst dataset showed that, compared to other
models from the current coal and gas outburst prediction models, this method significantly
influenced various indicators. In the field of machine learning, the improvement in model
accuracy through dataset optimization often surpasses the improvement achieved through
algorithm enhancements [33]. However, in practical production activities, the occurrence
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of coal and gas outburst accidents may result in limited and missing accident data due to
the damage of monitoring devices. This leads to reduced model accuracy, overfitting issues,
and other problems.

In view of this, this paper analyzes the correlation between different indicators and
the risk level of coal and gas outbursts using the grey relational algorithm, aiming to select
feature indicators and perform attribute reduction based on the mechanism of coal and gas
outbursts. A data generation algorithm based on machine learning and data reconstruction
is constructed to generate virtual data from the original data. XGBoost, SVM, and GBDT are
selected as primary learners, and random forest is used as a secondary learner to construct
a predictive model for the risk level of coal and gas outbursts based on stacking ensemble
learning. This model predicts the magnitude of the risk level of coal and gas outbursts,
and the results are compared. This work aims to reduce personnel casualties and related
economic losses caused by coal mine accidents from coal and gas outbursts, and promote
the construction of a smart mine safety system.

This paper introduces the basic theoretical part of the gas outburst risk warning model,
including the process and principles of grey relational analysis and the XGBoost, SVM,
GBDT, and random forest algorithms. Then, a gas outburst risk warning model is con-
structed based on stacking ensemble learning. The construction process for this model
consists of three parts. The first step is to build a data generation model based on XGBoost-
Regressor to expand the capacity of the original dataset. The second step is the selection of
main control factors based on grey relational analysis. The factors with the highest grey
correlation coefficients, indicating the greatest relevance to coal and gas outburst risks, are
selected from a set of 20 indicators. The third step is to construct a warning model based
on the stacking fusion algorithm framework. Through the implementation of XGBoost,
SVM, GBDT, and random forest as the four learners, an effective warning for coal and gas
outburst risks is achieved. Furthermore, sufficient experimental analysis is conducted, and
the model’s performance is analyzed to select the factors that most influence gas outburst
risks. Finally, the experimental results are summarized and analyzed.

2. Basic Theory
2.1. Grey Relationship Analysis

Grey system theory can utilize limited small sample data to solve uncertainty problems.
Grey relational analysis, a prominent technique in the theory, is used to measure the degree
of correlation between influencing factors and the research issue. It finds wide application
in various domains for system diagnosis and analysis. The main principle is to assess the
correlation between factors based on the similarity or dissimilarity of their development
trends. By conducting grey relational analysis, one can analyze the impact of sub-factors
on the main factor, aiming to optimize the dimensions of the system.

Grey relational analysis typically begins with selecting a reference sequence. Due to the
varying dimensions among different influencing factors, direct comparison is not feasible.
Therefore, commonly used approaches such as mean normalization, initial value normal-
ization, standardization, or extreme value normalization are employed to eliminate the
dimensional differences. These techniques help convert the indicators into dimensionless
values, facilitating further analysis and comparison.

For grey relational analysis on processed data, the grey relational coefficient is calcu-
lated using Formula (1).

y(x0(k), xi(k)) =
a + ρb

|x0(k), xi(k)|+ρb
(1)

The a is the minimum value, b is the maximum value of the two levels, and ρ is the dis-
crimination coefficient (generally 0.5) [34]. y(x0(k), xi(k)) is the grey correlation coefficient,
representing the correlation degree value between the sequence and the reference sequence.

The grey correlation degree of each subsequence is calculated by Formula (2), and the
grey correlation degree is set as ri:
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ri =
1
n

y(x0(k), xi(k)) (2)

According to the obtained grey correlation degree ri, it is sorted according to the size
of ri. If r1 > r2, it means that r1 and the mother sequence are more related to r0 and more
correlated. According to the sorting results, the factor with the largest grey correlation
degree value is selected as the main control factor. As shown in Figure 1.
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2.2. Data Generation Algorithm

In machine learning, gas outburst is a prominent issue related to small sample prob-
lems. One important approach to improve model accuracy, prediction, and risk identifica-
tion is through data augmentation and reconstruction. This paper constructs a gas outburst
data generation model based on collected data to generate synthetic samples. This method
can generate data samples that are consistent with the real data distribution, enhancing
data and improving the effectiveness and quality of the model. The specific process of the
data generation strategy consists of three steps: (1) training feature models, (2) sampling
features to generate virtual data, and (3) generating the final synthesized data.

In the data generation algorithm, first, in the known data samples with certain features,
a feature in the data sample is designated as the label, while the remaining features are
treated as elements of the new feature vector to form new training samples. Based on
the new training samples, data are randomly sampled and recombined by analyzing the
correlations between various features, thus obtaining feature values for n features. Finally,
by selecting individual features, using Feature 1 as input to the model for training and
obtaining output F1, and using Feature 2 as input to the model for training and obtaining
output F2, after completing the sampling process for all indicators, a temporary data sample
can be obtained, thereby obtaining a complete dataset. Its data distribution characteristics
are similar to the original data and have good representativeness. As shown in Figure 2.
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2.3. XGBoost

XGBoost (eXtreme Gradient Boosting) is a powerful supervised multi-parameter
model that operates within the gradient boosting framework. It is an implementation of
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the boosting algorithm, designed to handle both classification and regression problems.
The fundamental concept behind XGBoost involves combining multiple weak learners to
form a robust learner using specific techniques. This method utilizes multiple classification
and regression trees in a collaborative manner, resulting in improved model performance.
The following steps outline the working process of XGBoost:

Step 1: Calculate the predicted results of the model on the samples after t iterations,
and then define a function that incorporates the model’s loss function and a regularization
term to suppress the complexity of the model.

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi) (3)

Here, xi represents the i-th feature in the feature vector, ŷ(t)i represents the predicted
value of sample i after t iterations, k is the number of base models, fk(xi) represents the kth
base model, and ŷ(t−1)

i represents the predicted value of sample after t − 1 iterations. fk(xi)
is the model of the t th tree.

Step 2: Calculate the loss function of the model and the objective function consisting
of the regularization term that inhibits the complexity of the model:

Obj(t) =
n

∑
i=1

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( ft) +

T−1

∑
t=1

Ω( ft) (4)

Here, yi represents true value,
n
∑

i=1
l(yi, ŷi) represents the loss function L, and Ω repre-

sents a regular term that suppresses the complexity of the model.
Step 3: Simplify the calculation to obtain the final objective function and solve the

model. The objective function is close to the Taylor expression, so the objective function
can eventually be simplified as follows.

Obj(t) '
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (5)

Here, gi, hi are the first derivative and the second derivative of the loss function L,
gi = ∂ŷ(t−1) l

(
yi, ŷ(t−1)

)
, hi = ∂2

ŷ(t−1) l
(

yi, ŷ(t−1)
)

. Therefore, as long as the loss function is

determined, then gi and hi are determined, and the objective function is determined.

2.4. SVM

Support vector machine (SVM) is a powerful generalized linear classifier primarily
employed for binary classification in supervised learning. The underlying principle in-
volves mapping the original data into a high-dimensional feature space through a series
of transformations, enabling efficient classification within this transformed space. SVM
exhibits strong generalization and self-learning capabilities, ensuring effective performance
even with limited statistical sample datasets. The following steps outline the working
process of SVM:

Step 1: Given the training set T = {(x1, y1), (x2, y2), . . . , (xn, yn)}.
Step 2: Solve the quadratic programming problem, which is solved by α∗ = (α∗1 , . . . , α∗n)

T.

min
1
2

n

∑
i=1

n

∑
j=1

aiajyiyj(xi.xj)−
n

∑
i=1

ai (6)

s.t.∑
i

aiyi = 0, ai ≥ 0 (7)

Here, xi represents the i-th feature in the feature vector, and yi represents true value.
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Step 3: Calculate the parameter w and take a positive component α∗i , and calculate
the b.

w∗ = ∑ α∗i yixi (8)

b∗ = yj −∑ a∗i yi(xi · xj) (9)

Step 4: Structural decision boundary: g(x) = (w∗ · x) + b∗ = 0, the decision function
is thus obtained:

f (x) = sgn(g(x)) (10)

2.5. GBDT

Gradient boosted decision trees (GBDT) is an iterative algorithm that combines the
concepts of boosting and gradient descent. It leverages the forward distribution algorithm
to train multiple weak learners, with each weak learner being constructed using a CART
regression tree. By combining these weak learners through an additive model, it forms
a powerful strong learner. The training process of each weak classifier is guided by the
negative gradient of the loss from the previous weak classifier. This iterative optimization
approach gradually reduces the loss, leading to the convergence towards the optimal
solution. The principles of GBDT can be summarized as follows:

The model constants are initially given:

F0(
→
x ) = argmin

γ

n

∑
i=1

L(yi, γ) (11)

Here, yi represents true value, and γ represents the prior probability of a class.
n
∑

i=1
L(yi, γ) represents the loss function.

For m = 1 to M, compute the pseudo-residual:

rim = −
[

∂L(yi, Fm−1(
→
xi))

∂Fm−1(
→
xi)

]
(i = 1, 2, . . . , n) (12)

Using data to calculate the basis function for fitting residuals, in gradient enhancement,
a decision tree is calculated based on pseudo residuals. The input space is divided into
disjoint regions, and the decision tree can provide a certain type of deterministic prediction
in each region.

Update the current model to:

Fm(x) = Fm−1(x) + γtm(x) (13)

Fm(x) = Fm−1(x) +
J

∑
j=1

γjm I(x ∈ Rjm) (14)

γjm = argmin
w

n

∑
→
xi∈Rjm

L(yi, Fm−1(xi) + w) (15)

Here, xi represents the i-th feature in the feature vector, and tm(x) is the basis function
that fits the residual. I(x) represents indication mark.

The final model as:

FM(x) = F0(x) +
M

∑
m=1

J

∑
j=1

γjm I(x ∈ Rjm) (16)

2.6. Random Forest

Random forest is an ensemble learning algorithm in the field of machine learning. It
consists of multiple decision trees as classifiers. Each decision tree independently outputs
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a class, and the final prediction is determined by taking the majority class among these
decision tree outputs. Random forest integrates the predictions of multiple trees using
the idea of ensemble learning. By combining the effects of random forest, we can obtain
more robust and accurate classification results. Random forest is widely used in practical
applications, especially for handling large-scale datasets and high-dimensional features. It
can not only effectively handle classification problems but also be used for regression and
feature selection tasks.

The root of the decision tree algorithm is information. The basic concepts of entropy
and information gain can be understood through these three concepts to determine the
order of feature selection in the decision tree.

H(x) =
n

∑
i=1

p(xi)I(xi) = −
n

∑
i=1

p(xi) logb p(xi) (17)

Here, H(x) indicates entropy, which depends on x. The distribution, but with x It
doesn’t matter. In the decision tree. In the middle, the greater the entropy. The greater
the category uncertainty, the smaller the reverse. Information gain is used to select feature
indicators in the decision tree. The greater the information gain, the better the selectivity of
features. A feature corresponds to multiple categories, and conditional entropy needs to be
introduced in the calculation. The formula is as follows:

H(Y|X) = ∑ p(x)H(Y|X = x) (18)

In fact, the information gain also expresses the difference between the entropy of
the set to be classified and the conditional entropy of selecting a feature. Therefore, the
information gain formula is introduced:

IG(Y|X) = H(Y)− H(Y|X) (19)

The prediction effect of ensemble learning is judged by the error rate. According to
the Hoeffding inequality, the error rate of ensemble learning is:(where T is the number of
decision trees):

P(H(X) 6= f (x)) =
T/2

∑
k=0

(
T
k

)
(1− ε)kεT−k ≤ exp(−1

2
T(1− 2ε)2) (20)

The algorithm steps are as follows:
Step 1: Using the Bagging method, randomly select N samples from N sample sets, and

use these N samples to train a decision tree as samples for the root node of the decision tree.
Step 2: From the sample M Random selection among the features m Characteristics,

satisfied m << M, Select a feature from m features using a certain strategy (information
gain, Gini index, etc.) as the splitting feature of the node.

Step 3: Repeat step 2 to split the node until it cannot be split, forming a decision tree.
Step 4: Follow steps 1~2. Establish a large number of decision trees to form ran-

dom forests.

3. An Account of Stacking-Framed Coal and Gas Outburst Risk Warning Model

All data undergo pre-training data cleaning, data filtering, and data sorting. The
influence of dimensionality differences among different indicators is removed through
standardization processing. Missing values are filled in using data cleansing techniques,
and certain data points are identified or removed. Once data processing is complete, model
training can commence.

Step 1: Training feature model. In the known presence ofIn the data sample of features,
each dataset has its own characteristics. One feature of the given data sample is used as a
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label, and the rest of the feature are used as elements of the new feature vector to form a
new training sample.

Step 2: Sampling features to generate virtual data. From the collection, replace a value
of the sample: the The value is the characteristic of the temporarily synthesized data sample.
1. The first eigenvalue, and then the remaining features are taken in turn, and finally you
can getthe eigenvalues of the feature.

Step 3: The features to be generated in the temporary data sample 1. As an output,
characteristics 2 and other features are used as input respectively. . . Put in the feature
matrix and put The output value of the model is characteristic.1The virtual generation
value of In the same sense, all virtual values are obtained.

Step 4: Based on the original data and the newly generated data, calculate the grey
correlation coefficient between the degree of gas outburst and various factors.

y(x0(k), xi(k)) =
a + ρb

|x0(k), xi(k)|+ρb
(21)

Step 5: Calculate the grey correlation between each subsequence, and sort each indica-
tor according to the grey correlation.

ri =
1
n

y(x0(k), xi(k)) (22)

Step 6: Divide indicator groups based on the size of grey correlation degree, and use
XGBoost, RF, GBDT, and SVM training data to comprehensively compare MAE, MSE, and
R2 in each indicator. Select the data group with the smallest error and the best fit degree as
the main control factor.

Step 7: Based on the main control factors of coal and gas outburst, SVM, XGBoost,
GBDT, and RF training models are selected to predict the situation of gas outburst.

Step 8: Using the above predictions on the training set as the training set and the
predictions on the test set as the test set, retrain the data to obtain new prediction results.
Stacking combines steps 7 and 8 together, using the output of step 7 as the input to step 8
to obtain the final output result.

Step 9: Compare the training effects of SVM, XGBoost, RF, GBDT, and Stacking fusion
models under the main control factors, and select the Stacking fusion model with the best
prediction effect to construct a gas outburst risk warning model.

The occurrence of coal and gas outbursts is comparatively intricate. It is influenced by
multiple factors and exhibits a certain degree of nonlinearity. This article employs grey rela-
tional analysis to explore the nonlinear relationship between coal and gas outburst issues. It
aims to unveil the correlation between influencing factors and the occurrence of outbursts.
A set of key controlling factors that impact gas outburst situations is selected. By doing so,
the prediction work is streamlined, resulting in improved model forecasting performance.

Due to variations in gas outburst factors among different mines, there is a certain
relationship between these factors and the mining environment and coal occurrence con-
ditions. Therefore, when constructing a gas outburst risk warning model, the model’s
generalization ability should be considered. Integrated models have better generalization
ability compared to single machine learning models, which can improve the accuracy of the
model. Classic methods of integration include bagging, boosting, and stacking. The main
idea of stacking ensemble learning is to combine multiple models and fully utilize their
respective advantages to make final predictions and achieve the best results. As shown in
Figure 3.
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4. Experimental Simulation
4.1. Data Source

The influential factors of gas outburst can include the static data of the mine and the
dynamic data of real-time monitoring. The static parameters of the outburst mine partially
reveal the potential patterns of gas outbursts. To study the laws of gas outbursts, this paper
collected relevant data on gas outbursts from 26 mines in the Southwest China, North
China, and Central China regions, as well as numerical simulation indicators. The related
data indicators included mining depth, coal solidification coefficient, ash content, volatile
matter, initial gas emission velocity, gas adsorption constants a and b, ∆h2, absolute gas
outburst (m3/min), relative gas outburst (m3/t), K1, Smax (kg/m), q (L/min), and ejection
amount. At the same time, this paper used numerical simulation experiments to simulate
the dynamic slope of gas pressure, geostress, goaf thickness, fault height, and fitting curve of
pre-gas outburst data with similar ejection amounts. Part of the raw data is shown in Table 1.

Table 1. Part of the original data.

Mining
Depth

Coefficient
of Coal

Firmness

Ash
Content

Volatile
Matter

Seam
Thickness

Initial
Velocity of

Gas Release

Gas
Adsorption
Constant a

Gas
Adsorption
Constant b

∆h2

Absolute
Gas

Emission

Relative
Gas

Emission

800 0.34 0.18 0.12 1.25 14.84 38.59 0.787 170 32.01 13.94
452.7 0.31 0.15 0.1 5.69 12.16 37.32 0.723 140 6.58 4.21
850 0.39 0.23 0.12 4 18.6 18.13 2.3445 180 34.8 15.09
600 0.49 0.12 0.08 1.7 28 30.303 1.3346 175 32.04 13.95
500 0.24 0.18 0.12 1.25 31 33.4832 1.6166 170 32.01 13.94
515 0.17 0.17 0.11 4.6 38 31.08 1.13 172 16.01 10.88
500 0.23 0.17 0.11 3.2 26.3 26.3459 1.2572 160 9.78 10.45
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K1 Smax q

Initial
gas

pres-
sure

Numerical simulation of gas
pressure

Numerical
simulation
of ground

stress

Numerical
simulation

of stone
gate

thickness

Numerical
simulation of
fault height

Dynamic
slope

0.36 3.5 57 0.75 28 4 5 15 0.75
0.32 3.4 26.05 0.75 35 4 1 2 0.75
0.34 3.7 34 2.4 16 0.2 1 5 2.4
0.41 2.1 38 0.75 10 3 5 7.5 0.75

0.413 2.2 42 2.4 35 4 1 1.1 2.4
0.36 2.2 83 0.75 10 0.2 5 20 0.75
0.47 2 36 0.75 22 1 1 1.5 0.75
. . . . . . . . . . . . . . . . . . . . . . . . . . .
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4.2. Data Generation

Part of the virtual data is shown in Table 2. The data samples contained in this table
were part of the virtual samples generated based on the above methods, and their data dis-
tribution characteristics were similar to the original data, which had a good representation.
This study tested the effect of the model based on the following data.

Table 2. Partial virtual data tables.

Mining
Depth

Coefficient
of Coal

Firmness

Ash
Content

Volatile
Matter

Seam
Thickness

Initial
Velocity of

Gas Release

Gas
Adsorption
Constant a

Gas
Adsorption
Constant b

∆h2

Absolute
Gas

Emission

Relative
Gas

Emission

681.0 0.474 0.124 0.299 1.277 5.118 27.82 0.949 152.6 30.85 681.0
400.0 1.499 0.310 0.210 1.320 16.39 38.58 0.790 150.0 2.490 400.0
400.0 1.500 0.310 0.210 1.320 16.39 38.59 0.790 150.0 2.490 400.0
399.9 1.499 0.310 0.210 1.320 16.39 38.59 0.790 150.0 2.490 399.9
400.0 1.499 0.310 0.209 1.321 16.39 38.58 0.790 150.0 2.490 400.0
450.0 0.490 0.131 0.100 1.550 18.35 33.09 1.120 179.9 27.58 450.0
450.0 0.490 0.130 0.100 1.550 18.35 33.09 1.120 180.0 27.59 450.0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K1 Smax q Initial gas pressure
Numerical

simulation of
gas pressure

Numerical
simulation
of ground

stress

Numerical
simulation

of stone
gate

thickness

Numerical
simulation of
fault height

Dynamic
slope

0.403 2.949 42.681 0.962 1.766 21.832 2.222 2.868 3.967
0.389 2.800 43.000 1.500 1.300 16.000 0.200 1.001 5.000
0.390 2.800 43.000 1.500 1.300 16.000 0.200 1.000 5.000
0.389 2.800 43.000 1.499 1.300 16.000 0.200 1.000 5.000
0.390 2.800 43.000 1.500 1.300 16.000 0.200 1.001 5.000
0.340 2.900 38.000 0.650 2.399 16.000 0.200 1.000 4.500
0.340 2.900 38.000 0.650 2.400 16.000 0.200 1.000 4.500

. . . . . . . . . . . . . . . . . . . . . . . . . . .

The diagram directly reflects the distribution of the original data and extended data.
It also standardizes the original data and extended data of the 20 index groups to remove
the dimensional influence. The experimental results are shown in Figure 4.
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By comparing the distribution of the original data and the extended data, it was
found that the distribution interval of the 20 indicators of the extended data was basically
consistent with the distribution interval of the original data, indicating that the extended
data was consistent with the distribution of gas outburst indicators in the mine, had strong
credibility, and could be used for the construction of the gas outburst warning model.

In order to verify whether the generated virtual data could effectively improve the
training effect of the model in this paper, the original data samples and the expanded
data samples were respectively placed in the stacking fusion model for training. Then, we
analyzed the ROC curve of the stacking fusion model to prove the feasibility of the above
methods. The experimental results are shown in Figure 5.
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Figure 5. Comparison of the effects of the stacking model between original data samples and
expanded data samples.

For comparing the ROC curve of the original data and the extended data, it is generally
believed that the closer the area under the ROC curve is to 1, the better the classification
prediction of this model is. When the value is greater than 0.5, the model is better than
random guessing. If the model sets a reasonable threshold, the classifier can have predictive
value. For the expanded data, the ROC curve area value of the stacking model was equal
to 1, so the prediction results were perfect. This model belongs to a good predictor. For the
raw data, where the ROC curve area of the stacking fusion model was equal to 0.86, the
prediction effect was acceptable. The ROC curve shows that the expanded data model was
better than that for the original data.

In addition, this paper trained XGBoost, GBDT, SVM, RF, and stacking prediction
models based on the original and extended data. After visual comparison of the difference
between the real value and the predicted value (Figures 6 and 7), it was found that the
error between the real value and the predicted value of the expanded data was significantly
smaller than that between the real value and the predicted value of the original data. The
error of SVM-predicted value and true value was the largest for raw data and extended
data, but the prediction error was larger for the raw data. The errors between the predicted
values and the true values of the stacking model were the minimum for the original data
and the expanded data, and the prediction effect was better for the expanded data. The
actual values and errors of the five models showed that the extended data model was better
than that for the original data.

All in all, the ROC curve comparison between the original data and the extended data
and the errors between the real and predicted values of the XGBoost, GBDT, RF, SVM,
and stacking models trained with the original data and the extended data, respectively,
indicated that the model effect after data expansion was significantly improved compared
with the model effect with the original data. This paper used extended data to train
the model.
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4.3. Analysis of Correlation Degree of Risk Factors of Gas Outburst

This paper explored the concept of throw-out quantity as the main factor, with other
indicators as subsidiary factors. The dimensional unit of each data group was eliminated
through standardization processing. By calculating the grey correlation coefficient using
Formula (1), combined with Formula (2), the magnitude of the grey correlation degree
between the grey subsequence and the main sequence was obtained. The results were then
sorted based on the grey correlation degree, as shown in Table 3:

Table 3. Grey correlation degree ranking of subsequence and parent sequence.

Name Grey Correlation Degree Value Rank

Dynamic slope 0.830 1
Initial velocity of coal gas release 0.745 2
Initial velocity of coal gas release 0.742 3
∆h2 0.728 4
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Table 3. Cont.

Name Grey Correlation Degree Value Rank

q 0.727 5
Relative abundance of methane 0.709 6
Numerical simulation of fault height 0.699 7
Absolute gas emission rate 0.691 8
Coal firmness coefficient 0.678 9
Ash content 0.670 10
Thickness of coal seam 0.668 11
Exploitation depth 0.667 12
Numerical simulation of gas pressure 0.666 13
K1 0.649 14
Initial gas pressure 0.646 15
Volatiles 0.638 16
Numerical simulation of ground stress 0.635 17
Gas adsorption constant a 0.593 18
Numerical simulation of stone gate thickness 0.578 19
Smax 0.572 20

The results in the table indicate a clear distinction in the grey correlation of all 20 indi-
cators, ranging from 0.572 to 0.830. Among the 20 indicators, the grey correlation value
between the dynamic slope and gas emission is the highest at 0.830. This suggests that there
is a strong and close relationship between the dynamic slope and gas emission. Following
that, the grey correlation values decrease significantly for the initial gas emission velocity
of coal and the gas adsorption constant b, reaching 0.745 and 0.742, respectively, indicating
a weakening correlation. Among the twenty indicators, the grey correlation between Smax
and gas emission is the lowest, at 0.572, implying the weakest and least significant relation-
ship between Smax and grey correlation. The value of 0.578 for the simulated thickness of
the gate in numerical simulations indicates a loose relationship between the simulated gate
thickness and gas emission.

According to the results of grey correlation degree calculated in Table 2, we set five
conditions respectively for prediction, and then selected the main influencing factors
according to the error of the predicted results. We set up five groups of experiments to
study the correlation and influencing factors. The correlation degrees were, respectively,
ri > 0.700, ri > 0.670, ri > 0.650, and ri > 0.630. The results are shown in Table 4:

Table 4. Classification of influencing factors based on correlation degree.

Group Grey Relational Degree Influence Factors

1 ri > 0.700 Dynamic slope, initial velocity of coal gas release, gas adsorption
constant, q, relative abundance of methane.

2 ri > 0.670
Dynamic slope, the initial speed of gas dispersion of coal, gas
adsorption constant, q, relative gas outflow, numerical simulation fault
height, absolute gas outflow, coal toughness coefficient, ash content.

3 ri > 0.650

Dynamic slope, initial velocity of coal gas release, gas adsorption
constant, q, relative gas emission, numerical simulated fault height,
absolute gas emission, coal firmness coefficient, ash content, coal seam
thickness, mining depth, numerical simulated gas pressure.

4 ri > 0.630

Dynamic slope, initial velocity of coal gas release, gas adsorption
constant, q, relative gas emission amount, numerical simulated fault
height, absolute gas emission amount, coal firmness coefficient, ash
content, seam thickness, mining depth, numerical simulated gas
pressure, K1, original gas pressure, volatile content, numerical
simulated ground stress.

5 ri > 0.570 All factors.

The impact of various factors on the level of gas outburst hazard differed based on
the grouping results shown in the above table. Furthermore, there existed either strong or
weak relationships among these factors. By conducting error analysis and analyzing the
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fitting degree of the models for each indicator group, the key controlling factor indicator
group was determined. The comparative effects of each model are shown in Table 5.

Table 5. Comparison of model results.

Model XGBoost SVM RF

Index MAE MSE R2 MAE MSE R2 MAE MSE R2

Group 1 0.091 0.091 0.933 0.152 0.152 0.888 0.061 0.061 0.955
Group 2 0.031 0.031 0.981 0.094 0.094 0.944 0.031 0.031 0.978
Group 3 0.091 0.091 0.933 0.242 0.303 0.776 0.091 0.091 0.933
Group 4 0.152 0.152 0.900 0.424 1.152 0.244 0.091 0.091 0.940
Group 5 0.121 0.121 0.920 0.333 0.333 0.781 0.091 0.091 0.940

Model GBDT Stacking

Index MAE MSE R2 MAE MSE R2

Group 1 0.061 0.061 0.955 0.061 0.061 0.955
Group 2 0.031 0.031 0.981 0.031 0.031 0.981
Group 3 0.091 0.091 0.933 0.091 0.091 0.932
Group 4 0.061 0.061 0.960 0.121 0.121 0.920
Group 5 0.091 0.091 0.940 0.152 0.152 0.900

For the five models (XGBoost, GBDT, RF, SVM, and stacking), the table above presents
metrics such as MAE, MSE, and R2, which reflect the performance of the models. MAE and
MSE represent the errors of the models, and a lower value indicates higher accuracy in the
predictions. The R2 coefficient represents the goodness of fit of the models. Within a certain
range, a higher value indicates a better fit and a more effective prediction. Based on the
data in the table:

For the first set of indicators, the XGBoost predictive model yields an MAE, MSE, and
R2 of 0.091, 0.091, and 0.933, respectively. The SVM predictive model scores an MAE, MSE,
and R2 of 0.152, 0.152, and 0.888, respectively. The RF predictive model, on the other hand,
performs with an MAE, MSE, and R2 of 0.061, 0.061, and 0.955. As for the GBDT predictive
model, it achieves an MAE, MSE, and R2 of 0.061, 0.061, and 0.955. Lastly, the stacking
predictive model exhibits an MAE, MSE, and R2 of 0.061, 0.061, and 0.955.

For the second index group, the MAE, MSE and R2 of the XGBoost prediction model
are 0.031, 0.031 and 0.981, respectively, while the MAE, MSE and R2 of the SVM prediction
model are 0.094, 0.094 and 0.944. The MAE, MSE and R2 of the RF prediction model are
0.031, 0.031 and 0.978, respectively, and the MAE, MSE and R2 of the GBDT prediction
model are 0.031, 0.031 and 0.981, respectively. The MAE, MSE, and R2 of the stacking
prediction model are 0.031, 0.031, and 0.981, respectively.

For the third group of indicators, the XGBoost predictive model exhibits an MAE, MSE,
and R2 of 0.091, 0.091, and 0.933, respectively. The SVM predictive model shows an MAE,
MSE, and R2 of 0.242, 0.303, and 0.776, respectively. For the RF predictive model, the MAE,
MSE, and R2 are 0.091, 0.091, and 0.933, respectively. The GBDT predictive model demon-
strates an MAE, MSE, and R2 of 0.091, 0.091, and 0.933, respectively. Lastly, the stacking
predictive model yields an MAE, MSE, and R2 of 0.091, 0.091, and 0.932, respectively.

For the fourth group of indicators, the XGBoost predictive model achieves an MAE,
MSE, and R2 of 0.152, 0.152, and 0.9, respectively. The SVM predictive model presents an
MAE, MSE, and R2 of 0.424, 1.152, and 0.244, respectively. For the RF predictive model,
the MAE, MSE, and R2 are 0.091, 0.091, and 0.94, respectively. The GBDT predictive
model demonstrates an MAE, MSE, and R2 of 0.061, 0.061, and 0.96, respectively. Lastly, the
stacking predictive model yields an MAE, MSE, and R2 of 0.121, 0.121, and 0.92, respectively.

For the fifth group of indicators, the XGBoost predictive model exhibits an MAE, MSE,
and R2 of 0.121, 0.121, and 0.92, respectively. The SVM predictive model shows an MAE,
MSE, and R2 of 0.333, 0.333, and 0.781, respectively. For the RF predictive model, the
MAE, MSE, and R2 are 0.091, 0.091, and 0.94, respectively. The GBDT predictive model
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demonstrates an MAE, MSE, and R2 of 0.091, 0.091, and 0.94, respectively. Lastly, the
stacking predictive model yields an MAE, MSE, and R2 of 0.152, 0.152, and 0.9, respectively.
As shown in Figure 8.
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Figure 8. Average indicators of each group.

By plotting bar charts for the average MAE, MSE, and R2 of the five datasets, it is
visually evident that the second group of metrics performs optimally. Specifically, the MAE,
MSE, and R2 for this group are 0.0436, 0.0436, and 0.973, respectively. On the other hand,
the fifth group exhibits the poorest performance with MAE, MSE, and R2 values of 0.1576,
0.1576, and 0.8962, respectively. As shown in Figure 9.
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Figure 9. MAE index diagram for each mode.

By drawing five models, it was concluded that the change in MAE for the different
data groups directly reflected the prediction effects of the different indicator groups in each
model. By comparing the five points on the same line, it was found that the MAE value of
the second indicator group was the smallest, while the MAE value of the fourth indicator
group was the largest in SVM and XGBoost. The fifth indicator group had the largest MAE
value in stacking, RF, and GBDT. As shown in Figure 10.

By drawing five models, it was concluded that the change about MSE values for
the different data groups directly reflected the prediction effects of the different indicator
groups in each model. By comparing the five points on the same line, it was found that
the MSE value of the second indicator group was the smallest, while the MSE value of the
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fourth indicator group was the largest in SVM and XGBoost. The MSE value of the fifth
indicator group in stacking, RF, and GBDT was the largest. As shown in Figure 11.
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Figure 11. R2 indicators for each model.

By drawing five models, it was concluded that the change in R2 values for the different
data groups directly reflected the prediction effects of the different indicator groups in each
model. By comparing the five points on the same line, it was found that the R2 value of the
second indicator group was the largest, while the R2 value of the fourth indicator group
was the largest in SVM and XGBoost. The R2 value of the fifth indicator group in stacking,
RF, and GBDT was the largest.

After a comprehensive analysis of the aforementioned results, it was observed that the
average MSE and MRE of the five models, with the second set of indicators as the main
controlling factor, were the lowest, while the average R2 was the highest. This indicated
that, when the second set of indicators was used as the main controlling factor, the models
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had the lowest errors and the best fitting performance. Therefore, it was possible to select
the datasets with a grey correlation degree greater than 0.670 as the main controlling factors,
namely, “dynamic slope”, “q”, “absolute gas emission volume”, “coal seam thickness”,
“coal hardness coefficient”, “relative gas emission volume”, “volatile matter”, and “gas
adsorption constant b”. Furthermore, among the first three sets of indicators, the stacking
fusion model showed the best performance. As for the fourth and fifth sets of indicators,
GBDT and RF demonstrated relatively good performance, but the overall performance was
inferior to that of the stacking fusion model of the first three sets of indicators.

4.4. Analysis of Gas Outburst Risk Early Warning Model

The present study conducted a series of experiments to investigate the training perfor-
mance of different models when input with gas outburst factor data under various degrees
of relevance. Specifically, the gas outburst data were categorized into several groups based
on their grey relevance, including factors with relevance degrees ri > 0.700, ri > 0.670,
ri > 0.630, ri > 0.570, and all factors combined. The GBDT, RF, SVM, XGBoost, and stacking
ensemble models were employed for training. In order to visually compare the differences
between the actual values and predicted values, line graphs were plotted as shown in
Figures 12–19.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 24 
 

After a comprehensive analysis of the aforementioned results, it was observed that 
the average MSE and MRE of the five models, with the second set of indicators as the main 
controlling factor, were the lowest, while the average R2 was the highest. This indicated 
that, when the second set of indicators was used as the main controlling factor, the models 
had the lowest errors and the best fitting performance. Therefore, it was possible to select 
the datasets with a grey correlation degree greater than 0.670 as the main controlling fac-
tors, namely, “dynamic slope”, “q”, “absolute gas emission volume”, “coal seam thick-
ness”, “coal hardness coefficient”, “relative gas emission volume”, “volatile matter”, and 
“gas adsorption constant b”. Furthermore, among the first three sets of indicators, the 
stacking fusion model showed the best performance. As for the fourth and fifth sets of 
indicators, GBDT and RF demonstrated relatively good performance, but the overall per-
formance was inferior to that of the stacking fusion model of the first three sets of indica-
tors. 

4.4. Analysis of Gas Outburst Risk Early Warning Model 
The present study conducted a series of experiments to investigate the training per-

formance of different models when input with gas outburst factor data under various de-
grees of relevance. Specifically, the gas outburst data were categorized into several groups 
based on their grey relevance, including factors with relevance degrees ir  > 0.700, ir  > 

0.670, ir  > 0.630, ir  > 0.570, and all factors combined. The GBDT, RF, SVM, XGBoost, 
and stacking ensemble models were employed for training. In order to visually compare 
the differences between the actual values and predicted values, line graphs were plotted 
as shown in Figures 12–19. 

 
Figure 12. Comparison between the predicted value and the true value of each model under the first 
set of indicators in the original data. 

 

Figure 12. Comparison between the predicted value and the true value of each model under the first
set of indicators in the original data.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 24 
 

After a comprehensive analysis of the aforementioned results, it was observed that 
the average MSE and MRE of the five models, with the second set of indicators as the main 
controlling factor, were the lowest, while the average R2 was the highest. This indicated 
that, when the second set of indicators was used as the main controlling factor, the models 
had the lowest errors and the best fitting performance. Therefore, it was possible to select 
the datasets with a grey correlation degree greater than 0.670 as the main controlling fac-
tors, namely, “dynamic slope”, “q”, “absolute gas emission volume”, “coal seam thick-
ness”, “coal hardness coefficient”, “relative gas emission volume”, “volatile matter”, and 
“gas adsorption constant b”. Furthermore, among the first three sets of indicators, the 
stacking fusion model showed the best performance. As for the fourth and fifth sets of 
indicators, GBDT and RF demonstrated relatively good performance, but the overall per-
formance was inferior to that of the stacking fusion model of the first three sets of indica-
tors. 

4.4. Analysis of Gas Outburst Risk Early Warning Model 
The present study conducted a series of experiments to investigate the training per-

formance of different models when input with gas outburst factor data under various de-
grees of relevance. Specifically, the gas outburst data were categorized into several groups 
based on their grey relevance, including factors with relevance degrees ir  > 0.700, ir  > 

0.670, ir  > 0.630, ir  > 0.570, and all factors combined. The GBDT, RF, SVM, XGBoost, 
and stacking ensemble models were employed for training. In order to visually compare 
the differences between the actual values and predicted values, line graphs were plotted 
as shown in Figures 12–19. 

 
Figure 12. Comparison between the predicted value and the true value of each model under the first 
set of indicators in the original data. 

 
Figure 13. Comparison between the predicted value and the true value of each model of the original
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For the comparison of errors between actual values and predicted values, Figures 6 and 7 rep-
resent the complete set of indicators, which is the fifth group of indicators. The agreement
between the actual values and predicted values for the expanded data in all five indicator
groups was higher than that for the original data. This indicates that the predictive perfor-
mance of the models was better for the expanded dataset compared to the original dataset.
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Among the original and expanded datasets, the second group of indicators exhibited the
highest agreement between the actual values and predicted values among the XGBoost,
SVM, RF, GBDT, and stacking prediction models. This suggests that selecting the second
group of indicators as the main control factor leads to the best predictive performance.
Among the XGBoost, RF, GBDT, SVM, and stacking models, it is observed that, particularly
for models trained on the second group of indicators from the expanded data, the stacking
fusion model shows a closer fit between predicted values and actual values. The higher the
accuracy of the model, the better the predictive performance.
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In the course of the experiment, we utilized various evaluation metrics to comprehen-
sively assess the performance and effectiveness of the model. These metrics included mean
squared error (MSE), mean absolute error (MAE), and the coefficient of determination (R2),
among others.
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Based on the comparison and analysis of the experimental results, stacking and
RF exhibited the best predictive performance among the first set of metrics, while SVM
performed the poorest. In terms of the second set of metrics, RF and stacking showed
the most favorable outcomes with the selected controlling factors, while SVM performed
the worst. However, overall, the predictive efficacy with the second set of metrics as
controlling factors surpassed that of the first set. Regarding the third set of metrics, stacking
demonstrated relatively good predictive performance. However, for models other than
stacking, there were significant errors when comparing the actual values with the predicted
values, making them unsuitable for forecasting purposes. As for the fourth and fifth sets
of metrics, SVM again displayed the worst predictive performance, and stacking also
exhibited inferior results compared to the previous sets. Additionally, by examining the
data in Tables 4 and 5, we found that when selecting data with r > 0.700 as input for the
model after augmentation, all models performed relatively well except for SVM. However,
the comparison between actual values and predicted values in the analysis table indicated
that stacking and RF achieved superior results with minimal error. Conversely, SVM
performed the worst in terms of the comparison. Therefore, we concluded that stacking
demonstrates greater stability and reliability compared to the RF model. Taking into
consideration all the aforementioned factors, we chose stacking as the final gas outburst
risk warning model.

5. Conclusions

1. This paper proposes a data generation model based on XGBoost to address the issue
of coal and gas outburst risk warning. Virtual samples are generated to expand the
dataset. By comparing the original data with the expanded data, it is found that
the expanded samples outperform the original data in multiple methods. After data
expansion, the model’s predicted ROC curve area (AUC) value increased from 0.86
to 1.00, indicating a significant improvement in prediction effectiveness using the
expanded data model.

2. The process of gas emission is influenced by various factors, and the relationship
between each factor and the emission rate is nonlinear. This paper proposes the use of
grey correlation analysis to select the main controlling factors based on the magnitude
of the grey correlation degree. The experiments conducted indicate that the model
with a grey correlation degree ranging from 0.67 to 0.70 achieves the best predictive
performance, with average MSE, MRE, and R2 values of 0.0436, 0.0436, and 0.973,
respectively. Therefore, the model with the least prediction error and the optimum
model fit is identified. The group of factors includes “Dynamic Slope Indicator”,
“q”, “Absolute Gas Emission Rate”, “Coal Thickness”, “Coal Firmness Coefficient”,
“Relative Gas Emission Rate”, “Volatile Matter”, and “Gas Adsorption Constant b”.

3. This paper proposes the XGBoost–GR–stacking model for addressing the issue of coal
and gas outburst risk warning. The XGBoost algorithm is utilized to generate data,
while the GR algorithm is employed for feature selection. Furthermore, a prediction
model based on the stacking fusion algorithm is established. The results show that the
MSE, MRE, and R2 predictions of this model are 0.031, 0.031, and 0.981, respectively,
which are superior to those of the XGBoost, GBDT, RF, and SVM models. This indicates
that the proposed model exhibits lower prediction errors and a higher fitting degree,
making it highly applicable in the domain of gas outburst warning.
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