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Abstract: Panoramic imagery from multi-camera systems often suffers the problem of geometric
mosaicking errors due to eccentric errors between the optical centers of cameras and variations in
object-distances within the panoramic environment. In this paper, an inverse rigorous panoramic
imaging model was derived completely for a panoramic multi-camera system. Additionally, we
present an estimation scheme aimed at extracting object-distance information to enhance the seam-
lessness of panoramic image stitching. The essence of the scheme centers around our proposed
object-space-based image matching algorithm called the Panoramic Vertical Line Locus (PVLL). As
a result, panoramas were generated using the proposed inverse multi-cylinder projection method,
utilizing the estimated object-distance information. The experiments conducted on our developed
multi-camera system demonstrate that the root mean square errors (RMSEs) in the overlapping areas
of panoramic images are no more than 1.0 pixel. In contrast, the RMSEs of the conventional traditional
methods are typically more than 6 pixels, and in some cases, even exceed 30 pixels. Moreover, the
inverse imaging model has successfully addressed the issue of empty pixels. The proposed method
can effectively meet the accurate panoramic imaging requirements for complex surroundings with
varied object-distance information.

Keywords: cylinder panorama; remote sensing; multi-camera; indirect imaging model

1. Introduction

In recent years, panoramic images have been extensively employed in ground remote
sensing applications, including street image acquisition, traffic monitoring, virtual reality,
robot navigation and mobile mapping applications, etc. [1–5]. At present, there are mainly
two types of panoramic imaging methods on the market, namely catadioptric imaging and
multi-camera imaging methods. The catadioptric panoramic method uses a plane mirror
to refract the surrounding light to a single camera [6–9]. Due to their complex imaging
mechanisms and manufacturing processes, catadioptric panoramic systems have been less
commonly used compared to the second methods. With the development of sensors and
computing abilities, many panoramic camera systems have been developed by a combi-
nation of multiple cameras [10–24], which can be divided into two categories: monocular
panorama systems and binocular panorama systems. Although a binocular panorama
system is able to provide the 3D scene information needed for seamless panorama genera-
tion and 3D reconstruction, it requires higher complexity of system design and processing
than that of the monocular panorama system [25]. Therefore, the development of monocu-
lar panorama systems using multiple cameras and the generation of accurate panoramic
images remain crucial in the fields of remote sensing and computer vision applications.

In recent years, several monocular panoramic imaging systems based on multiple
cameras have been developed. Among these, professional panoramic systems often incor-
porate multiple cameras, such as Point Grey’s Ladybug series cameras [10,11], Google’s
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vehicle NCTech [12], Leica’s mobile panoramic cameras [13], and more. To achieve precise
panorama generation with these integrated systems, relevant research can be categorized
into two main areas. The first approach is feature point-based algorithms [19–23]. Various
tools have been developed in the multimedia industry for panorama creation, such as Kolor
Autopano and Autostitch [19], among others.

Panoramas are generated based on the second method, which relies on a panoramic
imaging model derived from the pre-calibrated geometric relationships between cameras.
Both the ideal and rigorous panoramic spherical and cylindrical imaging models have
been proposed [24–28] and successfully applied for vehicle-based remote sensing mapping
and panoramic SLAM 3D reconstruction, particularly with the professional panoramic
camera LadyBug3 [25]. However, it is important to mention that both the ideal and rigorous
panoramic imaging models are developed under the assumption of constant object-distance
information in the surroundings.

In order to meet the requirements of accurate panoramic mapping and 3D reconstruc-
tion applications, the accuracy and robustness of virtual panorama still need to be improved
by embodying the varied object-distance information into a mosaicking imaging scheme.
In this case, it is a vital challenge to accurately estimate the object-distance information of
the surrounding scene. In addition, problems such as empty pixels and pixel aggregation
in the virtual panoramas generated by the direct panoramic imaging models may still exist.

This paper presents a panorama generation scheme and the advanced technologies
used for a monocular panoramic system. The primary contributions of this work lie in
three sides:

(1) In contrast to expensive panoramic camera systems that rely on professional cameras,
a low-cost panoramic camera system is developed by a combination of eight low-cost
web cameras in this paper.

(2) An inverse rigorous panoramic imaging model is derived completely based on the
pre-calibration of the inner orientation elements, distortion parameters of each camera,
and the relative orientation relationships between cameras.

(3) A scheme is proposed to estimate object-distance information within a surrounding
scene. By expending the traditional Vertical Line Locus (VLL) object-based image
matching algorithm [29], a panoramic Vertical Line Locus algorithm called PVLL is
proposed to derive the optimized object-distance grids.

The rest of the paper is organized as follows: Section 2 introduces a panoramic camera
system integrated with multiple cameras, developed by our team. Moreover, the inverse
rigorous panoramic imaging model is derived completely based on pre-calibration of the
panoramic camera system. In Section 3, we propose the panoramic generation method,
with a specific focus on the object-distance estimation algorithm. The detailed experiment
and analysis are provided in Section 4. Section 5 summarizes this research and provides
recommendations related to future research works.

2. Related Work
2.1. Feature Point-Based Panoramic Imaging Method

For a set of overlapping images acquired with a multi-camera panoramic system, it
is possible to generate a panoramic image relying on feature point-based methods. In the
approach, the SIFT feature points are detected and matched on the overlapping regions
of each pair of images from adjacent cameras [19–21]. Assuming that the scene is flat, the
homographic estimations [22,23] are performed based on corresponding feature-points
for each two adjacent cameras. At this point, all the transformations are modified relative
to the master image, which is required for the generation of the panoramic images. The
panoramic imaging approach is an extension of feature-based image registration and
stitching of a single pair of images, which can be applied in scenes with rich texture
features. However, this method heavily depends on achieving a sufficient distribution
and accurate matching of feature points, as well as requiring substantial overlap between
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adjacent cameras. Additionally, it requires less variation in object-distance information
from the surroundings, as the homographic transformation only exists between two planes.

2.2. Traditional Panoramic Imaging Model Based Method

The panoramic imaging model-based method, which departs from the feature-based
method, requires accurate inner orientation elements of each camera and the relative
orientation parameters between cameras to develop an accurate projection transformation
relationship from the coordinate system of a perspective camera to that of the virtual
panoramic camera.

Traditionally, the ideal panoramic spherical and cylindrical imaging model are formu-
lated by disregarding the eccentric error between the center of the virtual panorama camera
and that of an actual camera [26,27]. The rigorous panoramic imaging model is further
proposed by incorporating the eccentric vectors among the optical centers of the cameras
into the panoramic imaging model. The rigorous model is theoretically more accurate than
the ideal model [25]. However, both the ideal and rigorous panoramic imaging models
are developed without consideration of the varied object-distance information in a scene.
Lin [30] tries to estimate a unified cylinder projection radius based on a loss function to
minimize the projection error of the whole scene. Due to difficulties in fitting a regular
cylinder surface for a real environment, stitching errors may still appear where the projec-
tion radius departs from the object-distance information. In addition, traditional panoramic
models describe the transformation relationship from perspective imaging to panoramic
imaging, which can easily lead to pixel aggregation or empty pixels in panoramic images.

Aiming at accurate and seamless panoramic imaging with a multi-camera system,
an inverse panoramic imaging method is proposed by estimation of object-distance infor-
mation of the surrounding scene, construction of the inverse transformation model and
introduction of the eccentric errors.

3. Proposed Method
3.1. Overview of the Panoramic System

In this paper, we have designed a panoramic camera system that incorporates eight
low-cost, high-definition web cameras mounted on an octagonal platform, as illustrated in
Figure 1a. The panoramic camera system has a 360

◦
view field in the horizontal direction

and 45
◦

view field in the vertical direction. Each camera has 2952 × 1944 pixels and is
equipped with a lens of 5 mm focal length, with 60

◦
view field in the horizontal direction

and 45
◦

view field in the vertical direction.
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3.2. Proposed Inverse Panoramic Imaging Model
3.2.1. Relative Orientation between a Camera and the Panoramic Camera

According to the structure of our designed system in Figure 1, the relative orientation
relationships are derived in this section. Let Ci be the optical central point of the ith

camera (i = 1, 2, . . . , 8), and Ci − xyz be the image space coordinate system. The panoramic
cylindrical coordinate system is defined with its origin, set as O, located at the optical center
shared by all cameras. The X, Y, and Z axes of this coordinate system are aligned parallel to
the y, z, and x axes, respectively, of the image space coordinate system of the first camera,
as illustrated in Figure 2. Thus, the orientation rotation matrix of the ith camera can be
derived by Equation (1).

Ri = R′iΛ (1)

where Ri is the rotation matrix from the panoramic cylindrical coordinate system to the
camera coordinate system of the ith camera. R′i is the rotation matrix from the image
space coordinate system of the first camera to that of the ith camera, and Λ is a matrix,

Λ =

1 0 0
0 0 −1
0 1 0

.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 18 
 

3.2.1. Relative Orientation between a Camera and the Panoramic Camera 
According to the structure of our designed system in Figure 1, the relative orientation 

relationships are derived in this section. Let 𝐶௜ be the optical central point of the 𝑖௧௛ cam-
era (𝑖 = 1,2, … ,8), and 𝐶௜ − 𝑥𝑦𝑧 be the image space coordinate system. The panoramic 
cylindrical coordinate system is defined with its origin, set as O, located at the optical 
center shared by all cameras. The X, Y, and Z axes of this coordinate system are aligned 
parallel to the y, z, and x axes, respectively, of the image space coordinate system of the 
first camera, as illustrated in Figure 2. Thus, the orientation rotation matrix of the 𝑖௧௛ 
camera can be derived by Equation (1). 𝑅௜ = 𝑅௜ᇱ𝛬 (1)

where 𝑅௜ is the rotation matrix from the panoramic cylindrical coordinate system to the 
camera coordinate system of the 𝑖௧௛ camera. 𝑅௜ᇱ is the rotation matrix from the image 
space coordinate system of the first camera to that of the 𝑖௧௛ camera, and 𝛬 is a matrix, 𝛬 =  ൭1 0 00 0 −10 1 0 ൱. 

 
Figure 2. Transformation from panoramic plane to cylinder. 

In addition, it is required to calculate the relative translation vector, set as 𝑡௜, between 
point O and point𝐶௜ by Equation (2).  𝑡௜ = ∑ (𝑅௜)்𝑡௜ᇱ௜଼ୀଵ 8 − (𝑅௜)்𝑡௜ᇱ (2)

where 𝑡௜ᇱis the pre-calibrated relative translation vector between the optical centre point 
of the first camera and that of the 𝑖௧௛ camera. 

Aiming at removing empty pixels and pixel aggregation in virtual panoramas, an 
inverse panoramic imaging model is further derived in this paper. 

3.2.2. Inverse Panoramic Imaging Model 
Let point 𝑃  be projected on the cylinder surface, which is captured from the 𝑖௧௛ 

camera and mapped to point 𝑝௜ in the real image 𝐼௜. The ideal image model can be de-
rived based on a traditional collinear equation [11], as shown in Equation (3).  

൥𝑢௜,௣𝑣௜,௣1 ൩ = 𝜆𝐾௜𝑅௜ ൥𝑋௉ − 𝑋௜𝑌௉ − 𝑌௜𝑍௉ − 𝑍௜ ൩ (3)

where 𝜆  is the scale factor, 𝐾௜  is the inner orientation matrix of the 𝑖௧௛  camera, ൫𝑢௜,௣, 𝑣௜,௣൯  is the undistorted coordinate of 𝑝௜ . [𝑋௉ 𝑌௉ 𝑍௉]்  and [𝑋௜ 𝑌௜ 𝑍௜]்  are the 
cylindrical coordinates of points 𝑃 and 𝐶௜, respectively. In addition, the cylindrical pro-
jection point 𝑃 satisfies Equation (4): 𝑋௉ଶ + 𝑌௉ଶ = 𝑟ଶ (4)

where 𝑟 represents the cylindrical radius. 
The panoramic cylindrical surface is unwrapped onto a panoramic plane, with 𝑜 −𝑥𝑦 being taken as its panoramic planar coordinate system, as illustrated in Figure 2. Point 

Figure 2. Transformation from panoramic plane to cylinder.

In addition, it is required to calculate the relative translation vector, set as ti, between
point O and point Ci by Equation (2).

ti =
∑8

i=1 (Ri)
Tt′i

8
− (Ri)

Tt′i (2)

where t′i is the pre-calibrated relative translation vector between the optical centre point of
the first camera and that of the ith camera.

Aiming at removing empty pixels and pixel aggregation in virtual panoramas, an
inverse panoramic imaging model is further derived in this paper.

3.2.2. Inverse Panoramic Imaging Model

Let point P be projected on the cylinder surface, which is captured from the ith camera
and mapped to point pi in the real image Ii. The ideal image model can be derived based
on a traditional collinear equation [11], as shown in Equation (3).ui,p

vi,p
1

 = λKiRi

XP − Xi
YP −Yi
ZP − Zi

 (3)

where λ is the scale factor, Ki is the inner orientation matrix of the ith camera,
(
ui,p, vi,p

)
is the undistorted coordinate of pi.

[
XP YP ZP

]T and
[
Xi Yi Zi

]T are the cylindrical
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coordinates of points P and Ci, respectively. In addition, the cylindrical projection point P
satisfies Equation (4):

X2
P + Y2

P = r2 (4)

where r represents the cylindrical radius.
The panoramic cylindrical surface is unwrapped onto a panoramic plane, with o− xy

being taken as its panoramic planar coordinate system, as illustrated in Figure 2. Point P is
mapped to point p based on Equation (5), which is derived from Equations (3) and (4).

ui,p
vi,p
1

 = λKiRi


rsin πxp

L − Xi

rcos πxp
L −Yi

2πr/L
(
W/2− yp

)
− Zi

 (5)

where xp, yp stand for the coordinate of point p in the virtual image in the x- and y-
directions, respectively.

3.3. Object-Distance Estimation Algorithm

A panoramic image generated from the multi-camera system can be divided into
the overlapping areas projected from two adjacent cameras and non-overlapping areas
projected from only one camera, as shown in Figure 3. Traditionally, the panoramic images
can be generated with a single projection radius r under the assumption of a constant
object-distance in the surroundings. While projection errors may occur due to variations
in object-distance information, these errors are typically not easily discernible in the non-
overlapping areas of a virtual panoramic image. However, stitching seams and geometric
inconsistencies may become apparent and visible in the overlapping regions of a panoramic
image. For example, the object points Q1, Q2, and Q3 are respectively projected onto
distinct overlapping regions of a virtual cylinder surface with the radius r by individual
cameras, as shown in Figure 4. In this case, the displacements between corresponding
projection points Qk,L and Qk,R (k = 1, 2, 3) from the same object point are contingent upon
the difference between the object-distance dk and the radius r.
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Figure 3. The view of the panoramic cylinder projection structure.

In this case, a crucial challenge lies in estimating the object-distance information of
the surrounding scene captured within the overlapping regions of each pair of adjacent
cameras. To solve the problem, this paper presents a three-step algorithm for determining
object-distance information in the surroundings to create seamless panoramic images.

In the first step, we estimate the scope of overlapping regions in a panoramic image
and generate pyramid grids. In the second step, object-distance information is determined
using an improved VLL (Vertical Locus Line Method for the surroundings captured in the
overlapping regions of the panoramic image). Finally, we employ an interpolation method
to estimate object-distance information for each non-overlapping region.
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3.3.1. Generation Algorithm of Pyramid Grids in Overlapping Regions

In this paper, each overlapping region of a panoramic image is first generated around the
central line, which is defined as the angular bisector vector between two adjacent cameras.

As illustrated in Figure 3, let Qij be a point on the cylinder surface, and
−−−→
OQij be the

vector in the same direction as the angular bisector vector between
−−→
OCi and

−−→
OQj . The

vector
−−−→
OQij can be derived by Equation (6). In addition, Qij is then projected onto the

point qij within the panoramic image. The x-coordinate gapi,j of qij can be computed by
Equation (7). Further, the overlapping region Ai,j, with a width of w and gapi,j setting as
the central line, is generated, expanding xi,j pixels away from the y-axis.

−−−→
OQi,j = λ(

−−→
OCi
‖OCi‖

+

−−→
OCj∥∥OCj

∥∥ ) (6)

xi,j =
W
2π

arctan(
Yi,j

Xi,j
) (7)

In Equations (6) and (7),
→

OQij is set as
[
Xi,jYi,jZi,j

]T , where Xi,j, Yi,j, Zi,j represent
the X, Y and Z cylindrical coordinates of point Qij, respectively. λ is the scale factor, and
xi,j is the x-coordinate of qij in the panoramic image coordinate system. W is the width
of the virtual panorama image. The parameters i and j take on the following values:
i = 1, 2, 3, . . . , 8, j = 1, 2, 3, 4, . . . , 8.

By adopting a strategy of progressive refinement from coarse to fine, eight object-
distance maps (ODMs) are constructed for each overlapping region of a virtual panoramic
image. Assuming that the resolution of Ai,j is W ′ pixels by H′ pixels, a pyramid grid is
established with N levels for each overlapping region as follows:

First, the N th level of the pyramid grid is segmented into cells with dimensions W ′
2N by

H′
2N . Each cell at this level has a resolution of 2N pixels by 2N pixels, and the pixels within

the cell share the same object-distance.Second, the pyramid grids from the
(

N − 1)th to

the top layer of the tth level can be generated in a coarse-to-fine manner. At the lth level,
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the grid has dimensions of W ′
2l by H′

2l cells, and each cell has a resolution of (of 2l W ′
2N pixels

by 2l W ′
2N pixels), where l takes values from N−1 down to t.
Considering the balance of efficiency and accuracy, the parameters W ′, H′, N and t

are given empirical values, namely 256, 2560, 8, and 4, respectively.

3.3.2. Estimation of Object-Distance Pyramid Maps in Overlapping Regions

The traditional object space-based matching method, which was called the Vertical
Locus Line Method (VLL) [29], is often used to estimate depth information by accurately
matching a pair of image patches without directly calculating the three-dimensional com-
putation for object points. Previous approaches of the VLL matching algorithm are mainly
constrained to perspective projection images and require priori depth information. As a
result, the VLL matching algorithm may exhibit reduced efficiency or failure due to the ab-
sence of prior object-space information. This paper proposes the Panoramic Vertical Locus
Line (PVLL) matching algorithm to estimate the object-distance of panoramic surroundings
based on pyramid grids ranging from coarse to fine.

(1) Estimation of Candidate Object-Distance

An object-distance set is estimated priorly to increase the efficiency of the search-space
size for PVLL matching. Supposing that the minimum and maximum object-distances of
surroundings are defined as rmin and ∞, the reprojected locations of the object point Qij
(where rmin ≤ r ≤ ∞) will be restricted between point pi,min to point pi,max in image Ii, and
between point pj,min and point pj,min in Ij, respectively, as shown in Figure 5.
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Given the object-distance of point Qij is r, the horizontal displacement h(r) between
the projection location and point pi,max in image Ii can be approximately computed by
Equation (8).

h(r) ≈ L
α

arccos

 r− dcos
(

π
2n
)√

d2 + r2 − 2drcos
(

π
2n
)
 (8)

where L is the width of the image of the sub-camera, α is the horizontal field of view of the
sub-camera, and d is the displacement between the optical center Ci and the origin O of the
cylindrical projection coordinate system.

Further, the list of candidate object-distances, set as rlist = {r0, r1, r2, · · · , rT−1}, can
be acquired using Algorithm 1 based on Equation (8), where ε is the displacement steps
in pixels.

As the object-distance changes continuously from r0 to rT−1, the back-projection lo-
cation of an object point imaged in an overlapping region approximately moves along
a straight line by ε pixels in a real image, as shown in Figure 6. Here, ε has been set
to 1 pixel to provide an optimal balance between the object-distance resolution and
computational efficiency.
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Algorithm 1: Solution of Projected Radius List

Input: L, α, d, n, rmin, ε

Output: rlist = {r0, r1, r2, · · · , rT−1}
1: r ← rmin + 1 , r0 ← rmin , m← 1

2: h← L
α arccos(

r−dcos( π
2n )√

d2+r2−2drcos( π
2n )

)

3: repeat

4: hb ← L
α arccos(

r−dcos( π
2n )√

d2+r2−2drcos( π
2n )

)

5: if abs(h− hb) > ε then
6: rm ← r, m← m + 1 , h← hb
7: end if
8: r ← r + 1
9: until h < ε

Output: {r0, r1, r2, · · · , rT−1}

(2) Panoramic Vertical Line Locus Algorithm

Definition 1. The corresponding image patches are represented as Ii

(
Gl

i,j(ϕ, ψ), Rl
i,j(ϕ, ψ)

)
and

Ij

(
Gl

i,j(ϕ, ψ), Rl
i,j(ϕ, ψ)

)
at the lth pyramid level, respectively, where Gl

i,j(ϕ, ψ) be the grid cell

located at the ϕth row and ψth column of the pyramid grid in Ai,j, rRl
i,j(ϕ,ψ) be the object-distance in

this cell, Rl
i,j(ϕ, ψ) denotes the index of rRl

i,j(ϕ,ψ) in rlist, and here l takes values from N down to t.
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We can assume that the pixel point a in the grid cell is reprojected to locations of
(ua,i, va,i) in image Ii and

(
ua,j, va,j

)
in image Ij using rRl

i,j(ϕ,ψ) as the cylinder radius based

on Equation (9) derived from Equation (5), respectively. Thus, a pair of grey values can be
acquired based on the grey bilinear interpolation algorithm using four-pixel points around
the points (ua,i, va,i) and

(
ua,j, va,j

)
, respectively. In this way, Ii

(
Gl

i,j(ϕ, ψ), Rl
i,j(ϕ, ψ)

)
and

Ij

(
Gl

i,j(ϕ, ψ), Rl
i,j(ϕ, ψ)

)
can be generated with a resolution of 2l pixels by 2l pixels, respectively.

ua,i
va,i
1

 = siKiRi


rRl

i,j(ϕ,ψ)sin πxa
L − Xi

rRl
i,j(ϕ,ψ)cos πxa

L −Yi
2πr

Rl
i,j(ϕ,ψ)

L

(
W
2 − ya

)
− Zi

,

ua,j
va,j
1

 = sjKjRj


rRl

i,j(ϕ,ψ)sin πxa
L − Xj

rRl
i,j(ϕ,ψ)cos πxa

L −Yj
2πr

Rl
i,j(ϕ,ψ)

L

(
W
2 − ya

)
− Zj

 (9)
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Definition 2. Let NCC
(

Gl
i,j(ϕ, ψ), Rl

i,j(ϕ, ψ)
)

be the Normalized Cross-Correlation image match-

ing parameter between image blocks Ii

(
Gl

i,j(ϕ, ψ), Rl
i,j(ϕ, ψ)

)
and Ij

(
Gl

i,j(ϕ, ψ), Rl
i,j(ϕ, ψ)

)
.

The value of NCC(Gl
i,j(ϕ, ψ), Rl

i,j(ϕ, ψ)) can be computed by Equation (10).

NCC(Gl
i,j(ϕ, ψ), Rl

i,j(ϕ, ψ))

=
∑s

x=0 ∑s
y=0(gi(x,y)−gi)(g j(x,y)−gj)√

∑s
x=0 ∑s

y=0(gi(x,y)−gi)
2
√

∑s
x=0 ∑s

y=0 (g j(x,y)−gj)
2

(10)

where gi(x, y) and gj(x, y) are the greyscales located at (x, y) in the image block

Ii

(
Gl

i,j(ϕ, ψ), Rl
i,j(ϕ, ψ)

)
and Ij

(
Gl

i,j(ϕ, ψ), Rl
i,j(ϕ, ψ)

)
, respectively. gi, gj are the average

grey values of the two image patches, respectively, where s = 2l .

Object-distance estimation based on the above definitions: Different from previous
VLL-based methods that predict object-distance information directly, the proposed PVLL
object-space matching method computes the index of the required object-distance in the
estimated list rlist from coarse to fine.

First, an objective function Ei,j is generated at the Nth pyramid layer in the overlapping
region Ai,j to optimize the object-distance information of each grid cell. Ei,j is proposed
based on the similarity of the image intensity between a pair of corresponding image
patches and the smoothness of object-distance between adjacent grid cells, as depicted in
Equation (11).

Ei,j = ρ1

Φ−1

∑
ϕ=0

NCC(GN
i,j(ϕ, 0), RN

i,j(ϕ, 0))

Φ
+ ρ2

Φ−1

∑
ϕ=1

−
∣∣∣RN

i,j(ϕ, 0
)
− RN

i,j(ϕ− 1, 0))
∣∣∣

T
(11)

where ρ1 and ρ2 are the weight coefficients of similarity and smoothness, respectively. Ei,j is
the objective function; Φ− 1 is the count of rows for the Nth pyramid gird. Further, a group

of optimum object-distance indices, denoted by
(

RN
i,j(0, 0), RN

i,j(1, 0), · · · , RN
i,j(Φ− 1, 0)

)∗
,

can be estimated by iteratively solving Equation (12) using a dynamic programming
algorithm [31]. Then, an object-distance map (ODM) is generated for the overlapping region
Ai,j at a resolution of w

2N by H
2N in the Nth level, based on the optimal index parameters.

Additionally, a corresponding index map is also created.(
RN

i,j(0, 0), RN
i,j(1, 0), · · · , RN

i,j(Φ− 1, 0)
)∗

= argmax
RN

i,j(0,0),RN
i,j(1,0),··· ,RN

i,j(Φ−1,0)
Ei,j (12)

Second, from the (N − 1)th to the top pyramid layer tth, we employ an iterative image
matching procedure as follows:

Foreachgridcell Gl
i,j(ϕ, ψ), agroupofcandidateobject-distances

{
rRl

i,j(ϕ,ψ)+kζ

∣∣∣∣k = 0,±1, . . . ,±K;ζ = 1
K

}
are determined by Equation (13).

rRl
i,j(ϕ,ψ)+kζ = rbRl

i,j(ϕ,ψ)+kζc + kζ

(
rdRl

i,j(ϕ,ψ)+kζe − rbRl
i,j(ϕ,ψ)+kζc

)
(13)

where Rl
i,j(ϕ, ψ) are set as the optimum estimation of the object-distance index of the grid

cell at the ϕ
2 row and ψ

2 column in the previous layer, where l takes values from N − 1
down to t.

Then, these candidates are chosen with regular index increments ζ, changing between
the minimum object-distance rRl

i,j(ϕ,ψ)−1 and the maximum object-distance rRl
i,j(ϕ,ψ)+1. The

value of K has been determined through experimentation to achieve the optimal balance
between candidate performance and computational load. The optimum value of the
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parameter k, represented by k∗, is therefore extracted by searching the maximum NCC
value using Equation (14), which is derived from Equations (9) and (10).

k∗ = argmax
k

{
NCC

(
GN

i,j(ϕ, ψ), Rl
i,j(ϕ, ψ) + kζ

)∣∣∣k = 0,±1, . . . ,±K
}

(14)

where NCC
(

Gl
i,j(ϕ, ψ), Rl

i,j(ϕ, ψ) + kζ
)

is computed by a pair of corresponding image
patches based on Equation (10), and the image patches are generated by reprojection of
each pixel in Gl

i,j(ϕ, ψ) onto Ii and Ij based on Equation (9), respectively.

Therefore, the optimal object-distance is set as rRl
i,j(ϕ,ψ)+k∗ζ for the grid cell Gl

i,j(ϕ, ψ).

In this way, the resolution and structure of the object-distance maps, along with the
index maps, are updated with the optimum object-distance for each grid cell, until reaching
the top pyramid level.

3.4. Object-Distance Interpolation Method in the Non-Overlapping Regions

An interpolation method is adopted to derive object-distance information in the non-
overlapping regions. For a pixel point p

(
xp, yp

)
located in the non-overlapping region

between two overlapping regions Ai,j and Aj,k, its object-distance can be interpolated
from the known object-distance information of two points pl

(
xpl , yp

)
and pr

(
xpr , yp

)
using

Equation(15), as shown in Figure 7.

rt(xp, yp
)
=
(

xpr−xp
xpr−xpl−w

xp−xpl
xpr−xpl−w

)(rt(xpl , yp
)

rt(xpr , yp
)) (15)

where rt(xp, yp
)
, rt(xpl , yp

)
, and rt(xpr , yp

)
are the object-distances of pixel point p, pl and

pr, respectively. The object-distance information can be calculated using the object-distance
maps in the top-level of the aforementioned pyramid grids.
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The values of xpl and xpr are determined by xL
j,k −

w
2 and xL

i,j +
w
2 , respectively, where

w represents the width of an overlapping region. In this context, i takes values from 1 to 7,
j takes values from 2 to 7, and k takes values from 3 to 8, including 0. The parameters of
xL

i,j and xL
j,k represent the displacements of the centre lines gapi,j and gapj,k from the y-axis

of the panoramic image system, respectively. In the same way, the object-distances can be
estimated for all the pixel points in the non-overlapping regions.

Finally, a panoramic image can be generated based on Equation (9) with the estimated
object-distance information on the overlapping regions and non-overlapping regions.
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4. Experimental Results

In this section, we conducted detailed experiments and carried out a comprehensive
analysis for generating panoramic images using the panoramic camera system developed
in this paper. The algorithm for the panorama generation was implemented in C++ using
the OpenCV 4.3 development package on a computer equipped with an AMD Ryzen 7
5800H, 3.2 GHz processor, and 16 GB main memory.

4.1. Calibration of the Panoramic Camera

In this paper, the multi-camera system was fixed on an octagonal structure to ensure
the constant relationships among cameras. A two-step method is conducted to calibrate
the internal parameters of each camera and ROPs (relative orientation parameters). Firstly,
more than 30 images of a high-precision chessboard were taken with each camera at
different poses and positions, as shown in Figure 8. The inner orientation elements and the
distortion coefficients of each camera were calibrated by Zhang’s calibration method [32].
The interior orientation elements for each camera are shown in Table 1.
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Table 1. Inner orientation elements of each camera.

Cam fx fy cx cy k1 k2

1 2.2782 2.4294 1.3259 0.9473 0.0281 0.0098
2 2.2684 2.4194 1.1535 1.0435 0.0255 0.0036
3 2.2729 2.4238 1.3974 1.0620 0.0257 0.0045
4 2.2759 2.4256 1.2523 1.0469 0.0285 −0.0028
5 2.2601 2.4104 1.2447 9.4271 0.02718 0.0095
6 2.2744 2.4254 1.1629 1.0865 0.0253 0.0013
7 2.2761 2.4268 1.2567 1.0027 0.0253 0.0089
8 2.2731 2.4244 1.5161 1.0635 0.0306 −0.0094

Secondly, a professional three-dimensional calibrate field was used to calibrate the
ROPs. Ten groups of images were taken at different poses and positions, where each group
of images are captured at the same time, as shown in Figure 9.
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The external parameters of the ith camera at the kth exposure epoch were calibrated
based on the traditional PnP method [33]. Let the first camera be the master camera, while
the other seven cameras are slave cameras. Let Ri,k and ti,k represent the rotation matrix
and position of the ith camera relative to the world coordinate system at the kth exposure
epoch, where k = 1, 2, . . ., K. In this experiment, the value of K is 10. The ROPs between
the master camera and any slave camera can be computed by Equations (16) and (17). The
optimum relative orientation parameters can be seen in Table 2.

R′i = argmin
R′i∈SO3

K

∑
k=0

∥∥∥R′i − R1,k(Ri,k)
T
∥∥∥ (16)

t′i =
1
K

K

∑
k=0

(ti,k − R1,kti,k) (17)

Table 2. Relative orientation parameters of the combined cameras.

Cam α/rad β/rad γ/rad X/cm Y/cm Z/cm

1–2 0.0174 0.7814 −0.0029 4.8081 0.0295 −1.9565
1–3 0.0091 1.5850 0.0057 6.5616 −0.0294 6.6810
1–4 0.0046 2.3532 0.0038 4.8170 0.0683 −11.5291
1–5 −0.0205 −3.1253 −0.0108 −0.2132 0.1015 −13.3953
1–6 −0.0140 −2.3357 −0.0212 −4.7553 0.0871 −11.2954
1–7 −0.0011 −1.5729 −0.0238 −6.8198 0.0953 −6.7039
1–8 0.0105 −0.7723 −0.0197 −4.6815 0.0800 −1.8884

4.2. Visualized Analysis

We conducted a performance comparison of our proposed method (Method C) with
AutoStitch [19] (Method A) and the traditional cylindrical panoramic stitching method [32]
(Method B) using both indoor and outdoor scenes, as depicted in Figure 10.
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Figure 10. The image sequences of an outdoor and indoor scene (the numbers in the picture indicate
which camera numbered from 1 to 8 obtained the sub-images).

Figure 11 displayed the panoramas for an outdoor scene. In Figure 11a, stitching trun-
cation (resulting in structural discontinuity) can be observed in the roadway, highlighted
with an orange box. In Figure 11b, the repetition of road lamps is evident, highlighted with
the blue box. In contrast, the panoramic image generated by our algorithm (Method C)
demonstrates visual consistency within the highlighted overlapping regions, as depicted in
Figure 11c.
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Figure 12 displays the panoramas for an indoor scene. In Figure 12a, more truncation
and ghosting of the ceiling can be noticed, as highlighted with the orange box. Furthermore,
the panoramic image shows significant gaps, particularly in areas with a low-texture
environment lacking distinct feature points, which are highlighted with red boxes in
the overlapping regions. In Figure 12b, you can observe that the ceilings are repeatedly
generated, highlighted with an orange box. In contrast, the panoramic image generated
by our algorithm (Method C) is complete and seamless in the area highlighted within the
same orange box, as depicted in Figure 12c.
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Therefore, it becomes evident that when compared to Method A and Method B, our
approach (Method C) maintains visual consistency in both indoor and outdoor scenes and
effectively eliminates stitching gaps, especially in scenes with low-texture regions.

4.3. Quantitative Analysis

Our quantitative analysis was conducted based on the following steps:

(1) Each pixel within every overlapping region of a panoramic image was individually
projected onto two overlapping original images captured by adjacent cameras, and
the grayscale value of the projection points was obtained. In this way, two panoramic
image patches were generated for each overlapping region, as shown in Figure 13.

(2) The SIFT [34] feature points were then extracted and matched for each pair of
panoramic image patches. The average Euclidean distance was then computed be-
tween corresponding feature points in every pair of panoramic image patches. In
addition, the parameters of the Structural Similarity Index (SSIM) [31], Peak Signal-
to-Noise Ratio (PSNR) [35], Normalized Cross-Correlation (NCC) coefficients, and
Stitched Image Quality Evaluator (SIQE) [36] were determined to quantify the dissim-
ilarities between each pair of panoramic image patches. The Root Mean Square Error
(RMSE), average SSIM, average PSNR, and average NCC are further computed based
on the average Euclidean distances, SSIM values, PSNR values, NCC coefficients, and
SIQE respectively, obtained from the dataset of 160 panoramas.

(3) Moreover, using the open-source library functions [37], we calculated the Stitched
Panoramic Image Quality Assessment (SPIQA) [38] parameter for each group of
images from eight cameras and the corresponding generated panoramic images.
Then, we calculated the average of 160 SPIQAs.
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Figure 13. An image pair generated from adjacent cameras.

This comprehensive analysis allowed us to evaluate the quality and dissimilarities
based on various metrics and parameters, encompassing both structural and pixel-wise
differences, as depicted in Table 3.

Table 3. Stitching accuracy and efficiency.

Scene Method RMSE SSIM PSNR NCC SPIQA SIQE Time(s)

Method A 6.3341 0.5530 16.2321 0.7076 0.6131 60.0379 8.9112
Outdoor Method B 8.2422 0.5575 15.5963 0.5650 0.5839 54.7586 0.1251

Method C 0.7498 0.6003 20.6502 0.8157 0.8586 68.4837 0.7539

Method A 16.0997 0.7237 20.0779 0.8399 0.7582 51.6073 8.7745
Indoor Method B 34.9983 0.7579 17.4994 0.3803 0.7938 58.7872 0.1268

Method C 0.9837 0.8197 27.0731 0.8593 0.9047 63.0523 0.7473
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Because the object distance in the outdoor scene is significantly larger than the eccentric
distance between the optical center of a sub-camera and that of the virtual panoramic
camera, the stitching accuracy of a panorama is less affected by inconsistencies in object-
distance information within the surrounding scene. Thus, the proposed method only has a
small improvement compared to Methods A and B. However, due to the restricted range
of object-distances in indoor scenes, the eccentricity errors between cameras cannot be
disregarded and may lead to substantial stitching errors when employing both Method A
and Method B, especially when there are variations in the object-distance. Our proposed
algorithm generates a panorama by utilizing the multiple projection radiuses from the
estimation of object-distance information, which demonstrates far higher accuracy than
Method A and B. In addition, it can be seen clearly that the stitching time of Method C is
much higher than that of Method A and B.

5. Conclusions and Future Work

Aiming at remote sensing and mapping applications, we have designed a low-cost
360

◦
image acquisition system through the integration of eight web cameras, which were

securely mounted on a circular rig. To solve the mosaicking problems caused by inconstant
and inconsistent object-distance information within a scene, a panoramic image generation
algorithm was proposed to improve the existing direct mono-cylinder imaging model.
The key aspect of the algorithm is the Panoramic Vertical Line Locus matching algorithm
called the PVLL algorithm, which is proposed by extending the traditional VLL algorithm.
Moreover, the object-distance grids can be generated based on the PVLL algorithm in the
overlapping regions of a panorama. Thus, the panorama can be generated by utilizing
the multiple projection radiuses from the estimation of object-distance information. The
experiments show that the proposed imaging method successfully improves the stitching
accuracy and visual effects of virtual panoramas.

In summary, this paper discusses the problems of geometric mosaicking errors in
multi-camera panoramic systems and conducts research on the combination of accurate
calibration, depth estimation, and post-processing techniques to ensure a seamless and
accurate panoramic view, despite variations in object distances and eccentric errors between
camera optical centers. The method described in this paper is suitable for a multi-camera
system with an annular structure, and we plan to extend it to a panoramic system with a
720-degree spherical design in our future work for ground remote sensing applications in
both outdoor and indoor environments.
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