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Abstract: To address the challenges of a long measurement period, high testing cost, and environ-
mental pollution of traditional milk composition detection methods, a portable detection instrument
was developed by combining multi-spectral sensors, machine learning algorithms, and an embed-
ded system to rapidly detect the main components of milk. A broadband near-infrared (NIR) LED
constant-current driver circuit and multi-spectral sensor module were designed to obtain six NIR
features of milk samples. Based on a comparison of several machine learning algorithms, the XG-
Boost model was selected for training, and the trained model was ported to a Raspberry Pi unit for
sample detection. The validation results showed that the coefficients of determination (R2) for the
investigated protein and fat models were 0.9816 and 0.9978, respectively, and the corresponding mean
absolute errors (MAE) were 0.0086 and 0.0079. Accurate measurement of protein and fat contents of
milk can be facilitated in a short time interval by using the proposed low-cost portable instrument.

Keywords: milk detection; machine learning; multi-spectral sensor; embedded system

1. Introduction

Milk is an important dairy product that is widely used in the food and nutrition
industry, and accurately determining its contents is important in ensuring food quality and
safety. Protein and fat are important components of milk, and protein plays a crucial role
in the growth and development of the human body as well as the immune system [1,2].
Fat is a high-energy nutrient [3]. Therefore, in the process of milk procurement and
production management, it is necessary to detect the contents of the main components of
milk accurately and quickly, as this can not only provide a reference basis for milk quality
analysis and production process quality control, but also provide scientific guidance for the
excellent rearing of cows [4].

At present, classic detection methods are usually based on chemical analysis with
typical standard detection methods such as the Kjeldahl nitrogen determination and Gable
methods. The Kjeldahl method [5] calculates protein content by measuring the total nitro-
gen content in milk, whereas the Gable method [6] separates fat by adding sulfuric acid to
calculate fat content. By contrast, traditional chemical analysis methods require longer de-
tection time and complex chemical reactions, consume a large amount of reagents, and can
also damage milk samples. This not only causes chemical pollution to the environment but
also cannot meet the needs of online rapid measurement. Instrument analysis technologies,
such as spectral technology, are widely used in milk composition analysis [7].

Optical testing methods are commonly used in non-destructive testing, mainly using
infrared light, ultraviolet light, and fluorescence. Middle infrared (MIR) spectroscopy and
near-infrared (NIR) spectroscopy are used extensively in the analysis of milk components [8,9].
Soyeurt et al. [10] used the MIR method to measure the fatty acid content in milk.
Bonfatti et al. [11] employed MIR data from milk to predict the protein and fat content in
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milk using Bayesian regression. Dabrowska et al. [12] applied broadband laser mid-infrared
spectroscopy with quantum cascade detectors for milk protein analysis. These studies
provide strong support for the application of MIR in the field of milk analysis. Although
MIR technology has significant advantages in providing more chemical information and
high resolution [13], it requires relatively complex instruments and operations and requires
high transparency of samples, which may have certain limitations in practical applications.
By contrast, near-infrared (NIR) spectroscopy technology is more suitable for the milk and
dairy industry [14,15].

NIR has the characteristics of fast analysis speed and easy online real-time mon-
itoring [16], meeting the needs of on-site measurement [17]. It is efficient, fast, and
non-destructive [18], thus having great potential in the development of spectroscopic
instruments [19]. Coppa et al. [20] predicted the composition of milk fatty acids using NIR
technology. Diaz Olivares et al. [21] designed and established an online milk composition
analysis system using NIR technology, with determination coefficients R2 of 0.947 and 0.989
for protein and fat prediction models, respectively. Saranwong et al. [22] developed a sys-
tem for the quality and safety assessment of heterogeneous raw milk using NIR technology.
Mohamed et al. [9] employed NIR spectroscopy technology to analyze the protein and fat
content in milk, with a wavelength range of 600–1050 nm and standard error values for
fat and protein prediction of 0.25% and 0.15%, respectively. These results demonstrate the
excellent performance of the NIR method in milk quality assessment.

Most NIR spectrometers are expensive and not suitable for a wide range of daily ap-
plications. In recent years, significant progress has been made in spectroscopic instruments,
achieving low-cost miniaturized infrared instruments [21]. Muñoz-Salinas et al. [23] used
a portable fluorescence detector to determine the protein content in milk. Zaky et al. [24]
proposed a novel biophoton sensor based on porous silicon ternary photonic crystals for
more effective detection of fat concentration in milk. Alamwgan et al. [25] used surface
plasmon resonance structural optics based on MXene to detect fat concentration in milk,
which was the first study to apply surface plasmon resonance to detect the fat concentration
in milk. Yang et al. [26] developed a portable milk composition detector based on an
NIR micro-spectrometer, which has driven the development of small spectral instrument
equipment. These studies further indicate that although spectral instruments still have a
certain cost and complexity, designing a portable milk composition detection instrument
with fast detection speed and easy on-site use is of great significance in milk quality control
and production. With the continuous development of micro-spectral instruments, it has
become possible to achieve detection speeds comparable to laboratory instruments.

The aim of this study Is to design a portable instrument that can quickly detect the
protein and fat content in milk using new sensor technology, machine learning algorithms,
and embedded systems. We designed a broadband near-infrared LED light source driver
circuit and a multi-wavelength sensor module, combined with the XGBoost machine learn-
ing model, to achieve highly accurate detection, overcoming the problems of traditional
methods such as a long measurement cycle, high cost, and high environmental pollution.
The development of a portable milk protein and fat detector is of great significance as it
provides an efficient, fast, green, and low-cost method for quickly measuring the protein
and fat content in milk on-site. This not only helps to improve milk quality control but also
provides practical tools for farms, dairy factories, and food testing departments, helping to
improve the production and processing processes of the milk industry. In addition, this
technology can also be applied to other fields, providing convenient solutions for food
analysis and quality control, and has broad application prospects, which can promote the
development of portable instruments for milk quality testing.



Appl. Sci. 2023, 13, 12320 3 of 15

2. Materials and Methods
2.1. Milk Samples

Sixty different types of milk samples were purchased from local supermarkets to
construct a dataset (see Supplementary Materials Table S1 for more information on the
milk samples) and stored in a refrigerator at 15 ◦C. Twenty sets of light-intensity data were
collected from six channels (610, 680, 730, 760, 810, and 860 nm) for each milk sample
as input labels for the model. The protein and fat contents were measured according
to international standards and were used as output labels to construct an XGBoost milk
composition prediction model. Each sample had six light-intensity features and two output
features. The milk sample dataset used in the experiment contained 60 × 20 data points.
First, 58 samples were randomly selected from the 60 milk samples, and 19 datasets were
selected from each sample for a total of 58 × 19 data points as training set 1. The remaining
58 × 1 datasets were used as Test Set 1. The untrained 2 milk samples with 2 × 20 datasets
were used as Test Set 2. Training set 1 was used to verify the accuracy of the model, and
Test Set 2 was used to verify its generalization ability.

2.2. Measuring Device

Figure 1 shows the overall architecture of the portable instrument for milk detection
based on a multi-spectral sensor. The instrument consists primarily of hardware and
software. The hardware includes a Raspberry Pi (Raspberry Pi 4 B) (Shenzhen, China) de-
velopment board, touch screen, lithium power module, cuvette, multi-spectral sensor, and
broadband NIR LED controlled by a constant-current driver circuit. PyQt5 (Version 5.15)
and Python codes (Version 3.7) were used to develop the software interface and implement
the required functions to train the model to detect the main components of milk. Integra-
tion of the hardware and software components resulted in a portable instrument for milk
composition measurements.
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2.2.1. Raspberry Pi

The Raspberry Pi 4 B is a small but powerful minicomputer with a rich interface and
flexible operating system serving as the hardware for developing portable instruments.
It has support for Wi-Fi, Python, C, and many other programming languages. The size
of the module is only 65 mm × 30 mm; it weighs approximately 10 g and has very low
power consumption. There is also a DSI interface for connection to the Raspberry Pi’s
dedicated touchscreen.

2.2.2. Multi-Spectral Sensor

Figure 2 shows the operating principle of the AS7263 circuit. U1 is the AS7263 multi-
spectral sensor. U2 is a flash memory chip that stores the firmware of multi-spectral sensors.
U3 is a low-dropout voltage regulator chip that converts the 5 V voltage from the Raspberry
Pi module to the 3.3 V required for the stable operation of the sensor. AS7263 is a 6-channel
spectral sensor that is used for spectral assessment employing NIR light. It consists of six
independent optical filters with spectral responses that are defined in the NIR wavelength
from approximately 600 nm to 870 nm, with a full width at half maximum of 20 nm. It is
highly accurate, stable, and independent of the time of use and temperature.
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Figure 2. Multi-spectral sensor circuit diagram. The dark blue solid wire is the direct connecting wire
of the component; The dark red solid line frame represents the chip; The red dashed box represents
the multispectral sensor and its corresponding physical object; The black dashed box represents the
multispectral sensor module.

2.2.3. Light Source and Constant-Current Driving Circuit

The constant-current driver circuit of the light source is shown in Figure 3. J1 is
used to connect lithium batteries and directly provide a working voltage of 7.2 V for the
constant-current driver circuit, and J2 achieves the LED control. D1 is a broadband NIR
LED. Potentiometer W1 is used to adjust the current level of D1. The Raspberry Pi’s GPIO
pin 29 is set to a high value for each measurement. Using J2, the voltage regulator TL431
outputs a 2.5 V reference voltage. After 5 s of D1 conduction, the GPIO pin outputs a low-
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level voltage, and D1 turns off. For each conduction time of 5 s, the LED heat generation
is small, which improves the service life of the LED and reduces power consumption by
using only the copper foil on the back of the PCB to dissipate heat.
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Figure 3. Light source and constant-current driving circuit.

The model of the broadband NIR LED is SFH4737, which is an infrared emitting source
designed by Osram Opto Semiconductors (Regensburg, Germany) to support spectral
emission in the range of 650–1050 nm, with a rated current of approximately 350 mA.

2.2.4. Power Supply Module

The Li-ion battery module was purchased from Microsnow Electronics (https://www.
waveshare.net/wiki/UPS_HAT) (accessed on 1 September 2023) model UPS HAT, Shenzhen
City, Guangdong Province. It is a power module designed specifically for the Raspberry
Pi 4 B. The 5 V output from the Li-ion battery module is used to power the Raspberry Pi
module, whereas the light source and constant-current circuit are directly powered by the
7.2 V Li-ion battery.

2.2.5. Software Setup

Figure 4 shows the milk analysis software (Version 1.2) used in this study. The software
was written using Python and pyqt5 code. The Read button reads the wavelength of the
milk sample, the Measure button predicts the fat and protein content, the Save button
saves this measurement and the predicted information, and the Close button exits the milk
composition analysis software.

https://www.waveshare.net/wiki/UPS_HAT
https://www.waveshare.net/wiki/UPS_HAT
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2.2.6. Operation Instructions

Figure 5 shows the flowchart of the portable instrument used to detect the main milk
components. First, 5 mL of a milk sample is measured and placed in a cuvette. The cuvette
is then placed in the measuring device. After the instrument is powered on and the Read
button is clicked, the LED source is turned on continuously for five seconds. Infrared
light is then transmitted through the milk sample, and the multi-spectral sensor acquires
six channels of wavelength data as the input features of the model. Finally, the Measure
button is clicked, and the model outputs the protein and fat content data.
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2.3. Measurement Methods

The Beer-Lambert law [27] is a basic law of spectrophotometry and is used to describe
the relationship between the absorbance of a species at a given wavelength and the concen-
tration and thickness of the absorbing species. The use of NIR light for the determination
of milk composition is consistent with the Beer-Lambert law:

A = −lgT = lg
(

I0

I

)
=

n

∑
i

dεc, (1)

where A, T, I0, and I denote the absorbance, transmittance, incident light intensity, and
transmitted light intensity, respectively; d, ε, and c denote the absorbing layer thickness,
molar absorbance coefficient, and concentration of the solution, respectively.

A milk solution is a scatterer, and the extraction of spectral information is complicated.
According to the Beer-Lambert law, the spectral characteristics of milk change with its
content. Figure 6 shows a schematic of the multi-wavelength data acquisition process.
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2.4. XGBoost Algorithms

A complex nonlinear relationship exists between milk composition and the correspond-
ing spectral data, and the model trained using the XGBoost machine learning algorithm can
fit this nonlinear relationship flexibly and facilitate accurate predictions. The XGBoost algo-
rithm [28] is a gradient-boosting-based machine learning algorithm that builds a stronger
model by integrating several weak models to solve predictive regression problems. It has
several advantages compared to other machine learning models, including high prediction
accuracy, high speed, and good generalization ability.

The model is continuously iterated, and each iteration generates a weak learner.
The model is trained based on the residuals of the previous round, which facilitates the
continuous improvement of prediction accuracy. Finally, all weak learner outputs are
accumulated to build a more accurate model.

The objective function of the XGBoost algorithms is given as follows:

Obj =
n

∑
i

l(yi, ŷi)+
T

∑
t

Ω( ft), (2)

where l(yi,ŷi) is the loss function, yi is the true value, ŷi is the predicted value, Ω(ft) is the
regularization term, T is the number of prediction trees, n is the number of samples, and
Obj is the objective function.

Training error:
ŷt

i = ŷt−1
i + ft(xi) (3)

Regularization term:

Ω( ft) = γT +
1
2

λ
T

∑
t=1

ωj
2, (4)

where γ is the model’s complexity variable, λ is the regular term parameter, and ωj is the
weight of leaf node j. Expanding the objective function using Taylor’s formula and setting
the derivation as equal to 0, the optimal weight is obtained as follows:

ω∗j = −
Gj

Hj + λ
, Gj = ∑ gi, Hj = ∑ hi, (5)

where gi and hi are the first- and second-order derivatives of the objective function, respec-
tively. The objective function can be written as:

Obj =
1
2

T

∑
j=1

Gj

Hj + λ
+ γT (6)
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2.5. Model Training

This section outlines the training of the milk composition prediction model, as shown
in Figure 7. Based on the following experiments conducted on a personal computer, a
predictive model for protein and fat in milk was successfully built using machine learning
algorithms. The accuracy of the model was verified after parameter tuning and performance
tests. It was successfully ported to a Raspberry Pi module, enabling real-time compositional
analysis of the embedded system.
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2.5.1. Correlation Analysis of Model Characteristics

Based on the data in training set 1, correlation analysis was performed using the six
input and output features of the trained XGBoost model. First, the input features and target
variables were extracted from the dataset, and the importance of the model input variables
was determined and ranked. In the protein prediction model, the 860 nm channel had the
highest relative importance of 0.32249, compared to the highest correlation between the
680 nm channel and fat content of 0.95566 in the fat prediction model.
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2.5.2. Model Parameter Setting

Before training the XGBoost model, the experimental data were preprocessed to
remove redundant data. The parameters were continuously adjusted during the model
training process to optimize the evaluation metrics. The parameters that affected the
performance of the model were max_depth, n_estimators, learning_rate, subsamples,
reg_alpha, and reg_lambda. The values obtained after tuning the reference are listed in
Table 1.

Table 1. Parameter values of XGBoost model.

Parameters Protein Model Fat Model

XGBoost

max_depth 6 8
n_estimators 235 220
learning_rate 0.14 0.20

subsample 0.6 0.8
reg_alpha 0 0

reg_lambda 0 1

The XGBoost model was mainly evaluated in terms of three evaluation indicators:
coefficient of determination (R2), mean absolute error (MAE), and mean square error (MSE).
They are calculated as follows:

R2 = 1− ∑m
i=1(ŷi − yi)

2

∑m
i=1(yi − y)2 (7)

MAE =
1
m

m

∑
i
|yi − yi| (8)

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (9)

For the aforementioned indices, R2 is used to evaluate the degree of model fit. The
closer the value of R2 is to one, the better the model fits. The smaller the MAE value, the
smaller the prediction error. The smaller the MSE value, the higher the accuracy of the
model for analyzing experimental data.

As shown in Table 2, the evaluation metrics of the XGBoost model improved after
parameter optimization. In the protein model, R2 increased by 6.11%, whereas MAE and
MSE decreased by 81.26% and 75.51%, respectively. R2 also increased in the fat model, but
the change was relatively small compared to the protein model at 0.80%, corresponding
to decreases in mean absolute error (MAE) and mean square error (MSE) of 84.84% and
78.57%, respectively. The changes in the evaluation indices before and after tuning of the
XGBoost model indicated that the tuned XGBoost model performed well.

Table 2. Comparison of XGBoost model before and after tuning.

R2 MAE MSE

Original model Protein 0.9251 0.0459 0.0049
Fat 0.9899 0.0521 0.0070

Optimized model Protein 0.9816 0.0086 0.0012
Fat 0.9978 0.0079 0.0015

Improvement Protein 6.11% 81.26% 75.51%
Fat 0.80% 84.84% 78.57%
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2.5.3. Repeat Verification

The 100 iterations of validation yielded high reliability. In the process, different
datasets were randomly used for training, and an average value was used to evaluate the
performance of the model. The mean values of R2, MAE, and MSE for the protein model
were 0.9825, 0.0084, and 0.0012, respectively. The variations in these evaluation indices
indicated relatively accurate predictions. The mean R2, MAE, and MSE values for the fat
model were 0.9981, 0.0070, and 0.0013, respectively. Compared to the protein model, there
were individual indicators with relatively large values but within the margin of error. Thus,
the prediction model was repeatedly validated to demonstrate that the XGBoost model has
good learning performance and can be used for the measurement of protein and fat content
in milk.

2.5.4. Five-Fold Cross-Validation

Five-fold cross-validation is a common evaluation method for machine learning mod-
els that can reduce the bias of evaluation results owing to the different methods of dividing
datasets to yield more reliable results. Table 3 shows that in the five-fold cross-validation
test, the mean R2, MAE, and MSE values for the protein model were 0.8677, 0.0301, and
0.0088, respectively. The mean determination (R2), mean absolute error (MAE), and mean
square error (MSE) values for the fat model were 0.9713, 0.0357, and 0.0158, respectively.
From the evaluation indices, the XGBoost milk component prediction model was found to
be more reliable, with better fitting and higher measurement accuracy.

Table 3. Five-fold cross-validation.

Data
Protein Fat

R2 MAE MSE R2 MAE MSE

Fold-1 0.8641 0.0325 0.0084 0.9831 0.0354 0.0127
Fold-2 0.9021 0.0238 0.0052 0.9209 0.0413 0.0319
Fold-3 0.7832 0.0395 0.0163 0.9787 0.0343 0.0135
Fold-4 0.8491 0.0307 0.0102 0.9903 0.0312 0.0078
Fold-5 0.9401 0.0244 0.0042 0.9837 0.0363 0.0132

Average 0.8677 0.0301 0.0088 0.9713 0.0357 0.0158

3. Results
3.1. Model Comparison

To evaluate the detection performance of the XGBoost model, the following algorithms
were selected for comparison: (1) Linear Regression [29] (LR), a classical machine learning
algorithm for solving regression problems; (2) Stochastic Gradient Descent [30] (SGD),
an optimization algorithm for minimizing the loss function (it is a variant of gradient
descent algorithms, which gradually reduce the value of the loss function by iteratively
updating the model parameters); (3) Multilayer Perceptron [31] (MLP), a neural network-
based machine learning model that is often used to solve classification and regression
problems; (4) Gradient Boosted Regression Tree [32] (GBRT), an integrated tree-based
learning algorithm that accumulates the results of all regression tree outputs; (5) Random
Forest [33] (RF), an integrated learning algorithm for solving classification and regression
problems based on an integrated approach of decision trees, which constructs multiple
decision trees and combines their predictions to perform classification or regression.

Table 4 presents the results of the performance analysis of the same dataset using the
stated models. The XGBoost model achieved a better learning rate and lower error than the
other machine learning algorithms, as well as accurate estimates of the protein and fat in
the milk samples.
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Table 4. Comparison of the performance of different models.

Method R2 MAE MSE

LR
Protein 0.1809 0.1806 0.0541

Fat 0.8624 0.2290 0.0946

SGD
Protein 0.1165 0.1866 0.0584

Fat 0.8112 0.2739 0.1300

MLP
Protein 0.6405 0.1155 0.0237

Fat 0.5792 0.1270 0.0278

GBRT
Protein 0.7905 0.0847 0.0134

Fat 0.9919 0.0959 0.0160

RF
Protein 0.9703 0.0136 0.0020

Fat 0.9951 0.0172 0.0035

XGBOOST
Protein 0.9864 0.0048 0.0009

Fat 0.9994 0.0079 0.0013

3.2. Instrument Validation Results

Figure 8 shows the results for Test Set 1. The MAE and MSE of the protein model
illustrated in Figure 8a were 0.0086 and 0.0012, respectively. The MAE and MSE of the
fat model illustrated in Figure 8b were 0.0077 and 0.0015, respectively. There were still
individual samples with large differences between the true and predicted values, which
may have been induced by the measurement process. The overall forecast had high accuracy
and a relatively small error. The XGBoost model showed better generalization in the case of
the unknown milk sample data used in the training process compared to the other models.
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However, the model did not learn all the milk samples. To further test the predictive
ability of the model for new samples, two milk samples, Milk-1 and Milk-2, from Test Set
2 were used. The results are shown in Figure 9. The dataset contains 40 unlearned milk
samples with an actual protein content of 3.3 and 3.5 g/100 mL and an actual fat content of
4.6 and 1.9 g/100 mL for the two milk samples.

The protein model illustrated in Figure 9a predicted more accurate results for Milk-1
and Milk-2. The average predicted values were very close to the mean of the actual
values of 3.3004 and 3.4976 g/100 mL, respectively. The MAE and MSE of the model
were 0.0660 and 0.0109, respectively. This indicates that the average prediction error of
the model was relatively small, and the difference between this value and the true value
was small.
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The prediction results of the fat model illustrated in Figure 9b were more accurate for
Milk-1 and Milk-2, with mean prediction values of 4.5861 and 1.9017 g/100 mL, respectively.
The MAE and MSE of the model were 0.0580 and 0.0072, respectively. This indicates that
the average prediction error of the model and the difference between this value and the
true value were small.

The mean error of the two milk samples was relatively low, indicating good general-
ization to the new samples and good accuracy of the XGBoost measurement model. By
testing the samples and comparing the data, our designed detection instrument can achieve
the expected accuracy.

4. Discussion
4.1. Near-Infrared Spectroscopy Analysis Using Machine Learning

The objective of this study was to improve the performance of traditional NIR milk
composition detection methods through machine learning algorithms and sensor technol-
ogy. Infrared spectroscopy, which is the method for detecting milk components, is fast and
capable of multi-component analysis and non-destructive testing. The NIR wavelength
is generally selected in the range of 400–1000 nm [34–36], and wavelength data are gener-
ally acquired through a spectrometer to obtain spectral data over the entire wavelength
range. However, the instrument structure using spectrometer technology is complex and
expensive. The portable milk composition detection instrument uses several typical NIR
wavelengths for milk detection, requiring multiple infrared receiving units combined with
a single wavelength filter to achieve multi-channel infrared measurement. The new type of
multi-wavelength sensor used in this article simultaneously obtains wavelength data from
six channels corresponding to representative wavelengths (610, 680, 730, 760, 810, 860 nm)
in the range of 400–1000 nm, which cover the infrared characteristics of protein and fat in
milk. Thus, an NIR detection method for milk is proposed.

In previous studies, the partial least-squares method was used for regression of spec-
tral data to measure the fat and protein contents in milk [36–38]. The coefficients of
determination (R2) of better protein and fat prediction models were 0.974 and 0.973, re-
spectively [36]. We use the machine learning algorithm XGBoost [28], which is a powerful
ensemble learning algorithm that can better fit the nonlinear relationship between wave-
lengths and components, significantly reduce the model bias, and increase the model
accuracy. With sufficient training with a large quantity of sample data and adjustment of
model parameters, the prediction model exhibited a good generalization ability and no
overfitting [39], indicating that the measurement results were accurate.
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4.2. Advantages of Proposed Method

The use of multi-wavelength sensors simplifies optical system design, multi-channel
sensor design, and optical signal acquisition and processing. The new sensor technology is
not affected by usage time and temperature and has extremely high accuracy and stability.
The collection of multiple wavelengths enables a milk sample to correspond to multiple
wavelength data, enabling the application of machine learning algorithms for sample
composition measurement. Machine learning algorithms can flexibly fit the nonlinear
relationship between milk wavelength and component content, with high measurement
accuracy, fast running speed, and good generalization ability. The application of broadband
NIR LED (SFH4737) can support the emission spectrum range of NIR) from 650 nm to
1050 nm, which can replace conventional NIR light sources such as incandescent lamps,
miniature tungsten halide lamps, and tritium lamps. The light source has good stability,
long lifespan, and high energy, and the small size design also increases the portability of the
detection instrument. The adoption of machine learning algorithms by embedded systems
has increased the intelligence of devices without the need for powerful computing devices,
reduced the demand for cloud computing, and reduced the cost of portable instruments.

4.3. Potential Interference

In the process of measuring milk composition, there are various potential interference
factors that may affect the accuracy, such as light scattering [40], environmental temperature
changes [41], sample bacterial infections [42], environmental light, and the material and
fixation of colorimetric plates.

Scattering interference is a common problem in the measurement of milk composi-
tion, and the propagation of light in milk is very complex. When light shines on milk,
scattering occurs on the surface of protein and fat particles. To reduce the impact of the
aforementioned interference factors, a new multi-wavelength sensor with temperature
compensation and strong penetration was adopted. It provides six channels of wavelength
data for milk samples. Calibration models were established between wavelength and
protein fat through machine learning algorithms, effectively eliminating the influence of
scattering and improving model prediction accuracy.

Temperature changes in the environment can cause instability of the light source,
and the scattering coefficient decreases with increasing temperature. The experiments in
this study were conducted at room temperature (25 ◦C), which had little impact on the
experimental results. In the next step of research, we will consider adding different temper-
atures as new features to machine model training to resist the influence of temperature on
the experiment.

When excessive external bacteria are mixed with milk samples [43], they decompose
the protein and fat in the milk, causing measurement errors, which cannot be completely
avoided. The material of the cuvette can affect the refraction of light. In this study, a glass
cuvette was used, and the measurement error in the visible light region can be ignored.
The colorimetric dish was fixed vertically through a spring lock to ensure that light shined
vertically onto the transparent surface.

5. Conclusions

This article applies embedded technology, multi-wavelength sensors, and machine
learning algorithms to develop a relatively portable instrument for detecting the main com-
ponents of milk. We designed a constant-current driving circuit and wavelength acquisition
module for broadband NIR LED light sources, established an optimal prediction model,
and transplanted the model into an embedded system. The model results indicate that the
MSE of the protein and fat models is 0.12% and 0.15%, respectively. It has good measure-
ment performance for protein and fat content in milk. The milk composition detector is
lightweight and low cost, has a small volume, simple operation, fast measurement speed,
and stable operation, and it can achieve on-site rapid detection of milk samples.
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