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Abstract: Manufacturing industries are in a constant state of competition to attract customers in a
variety of methods. Group Technology (GT) is a term used in the field of manufacturing for grouping
similar elements based on their similarities in production and design. Cellular manufacturing (CM) is
an application of Group Technology (GT) that has gained widespread traction in Small- and Medium-
Sized Enterprises (SMEs) during the recent years in order to increase the production floor’s efficiency
and output. A Cell Formation consists of grouping identical machinery and assigning them on
similar functions. There are three main decisions involved in designing the Cellular Manufacturing
System (CMS): Group Scheduling (GS), Group Layout (GL), and Cell Formation (CF). In this study,
the primary challenge associated with the CMS is not only the formation of cells but also the optimal
placement of machinery within each cell. This paper’s objectives are therefore twofold: the formation
of cells and the optimal placement of machinery within cells. For the purpose of Cell Formation
and the position of machinery within the cell, a Genetic Algorithm (GA) and Encoding Scheme are
employed. In this study, a Genetic Algorithm is used to classify machines and parts, while MATLAB
is used for the simulation and encoding scheme. To evaluate the developed objective function and
GA, a layout problem of medium size is solved. Results indicate that the proposed strategy is effective
for resolving CMS issues and increasing productivity by 8.85%.

Keywords: cellular manufacturing system (CMS); cell formation (CF); optimal machine location;
intracell formation; genetic algorithm (GA); encoding scheme

1. Introduction

As a result of international competition, rising consumer expectations, and global
governance policies, the global economy of the twenty-first century is dominated by the
manufacturing sector. In order to increase the efficacy and output of their manufacturing
systems, manufacturers are confronted with the difficulties of a short product life cycle, a
lengthy time to market, and diverse consumer demands. In order to compete in the global
marketplace, the world’s manufacturers are presently attempting to find cost-effective,
time-efficient, high-quality, and customer-satisfying production processes for their goods,
which will allow them to maintain a competitive manufacturing advantage. In addition,
the manufacturing systems should be able to regulate or respond rapidly to changes in
product design and market demand without requiring significant investment.
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To prepare for upcoming difficulties and improvements, manufacturing organizations
devote a significant portion of their resources—both financial and human—to the design
or redesign of their facilities. Manufacturing companies typically invest a significant sum
of money in the design of new facilities or the renovation of old ones. One of the key
elements that determine an industry’s productivity is layout design. Industries have long
employed functional layouts, but in an effort to boost production, modern layouts are
gradually replacing them [1].

Manufacturers must shrink costs in order to stay alive in the present-day economy.
During the last few years, many firms have begun to focus on increasing productivity
with optimized utilization of human resources. Due to the optimization in labor resources,
investments in equipment costs have increased. Among concerns of these strategies are mo-
mentous savings in the direct employment cost, which in effect makes material supervision
cost more imperative than before. Material handling cost reductions can be obtained by
designing effective layouts [2]. Effective layouts acquired by solving machine and facility
layout problems successfully can keep an organization competitive in the global market.

Group Technology is applied in Cellular Manufacturing Systems (CMSs), which are
used to create production system architectures. A CMS is a system that enables the pro-
cessing of many parts in cells that share the same geometry, design, or method. A basic
stage in Group Technology (GT) and CMS is cell creation. It benefits from both job shop
and flow line production. In manufacturing systems, cells are classified as either process or
product types. In process layouts, parts with different qualities but the same manufacturing
method are made in the same cell, whereas in product layouts, similar products based
on their shape, design, and other attributes are processed in the same cell [3] as depicted
in Figure 1. The Cellular Manufacturing System is an effective use of Group Technology
that can combine flow line and job shop standards, adapt to changing market demands,
and overcome some of the limitations of the past. The Cellular Manufacturing System is
a good example of a Group Technology application that meets contemporary needs [4].
Furthermore, because of its short life cycle, which causes variations in product mix and
demand over time, it is more realistic to focus on dynamic rather than static situations in
the manufacturing system. These days, dynamic CMS has drawn the attention of a majority
of researchers, since it is more realistic and useful. The issues of Cellular Manufacturing
Systems and dynamic environments have attracted significant attention from researchers
in recent times [5]. Reduced movement of parts, throughput time, customer order response
time, and work-in-process (WIP) are a few of the benefits of cellular manufacturing. All
of these reductions contribute to a rise in profitability. The reduction in response time to
customer orders enables businesses to respond swiftly to alterations in customer require-
ments and, as a result, to maintain a competitive advantage despite the rapid evolution of
market demands.
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The parts in a Cellular Manufacturing System are grouped according to common char-
acteristics such as shape, tolerance, and process plan. We refer to these sets of components
as part families. In CMS, there are numerous machine cells, and within each machine cell
are various machines devoted to producing one or more part families. By cutting down
on setup, wait, and move times, the CMS installation shortens throughput times. It also
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lowers material handling costs and inventory levels while speeding up market reaction
times [6].

The sequencing of the machines in each cell or group and the IDs of part families
are all part of the Cellular Manufacturing System (CMS) implementation process. Cell
creation is the grouping of machines into cells on the shop floor [7]. Grouping machines
(Cell Formation) is a crucial step in the design of a Cellular Manufacturing System [8]. Parts
that share the same manufacturing needs are now organized into part families and assigned
to distinct pieces of machinery for processing. In the realm of cellular manufacturing, the
generation of cells or groups of machines is a thoroughly researched problem with a wealth
of reviews and taxonomies available [9,10], but the layout delinquent in CMS has rarely
captivated researchers’ attention as much as Cell Formation (grouping of machines) [11].

The objective of facility layout is to arrange a collection of facilities so as to minimize
the qualitative (information flow, noise disturbance, and work between parts) or quantita-
tive (material handling cost, product manufacturing cost, scheduling cost, etc.) objective
functions on the shop floor [12].

Material handling is considered the most time-intensive objective function in manufac-
turing system layout design. The objective of CMS facility layout problems is to determine
the arrangement of facilities in machine cells and the shop floor layout of cells. The pri-
mary objective of this paper is to optimally position machines within the cell. Genetic
Algorithms (GAs) with machine encoding schemes have been proposed for this purpose.
The remainder of this paper is organized as follows. In Section 2, the literature review is
presented. The Genetic Algorithm and mathematical model are, respectively, illustrated
in Sections 3 and 4. The analysis of results is discussed in Section 5. Finally, the paper
concludes with Section 6.

2. Literature Review

CMSs emphasize the organization of production processes into self-contained cells,
each of which is capable of producing a distinct product family. In the context of Small-
and Medium-Sized Enterprises (SMEs) in the Kingdom of Saudi Arabia (KSA), adoption of
a content management system (CMS) has become a strategic imperative. The Kingdom of
Saudi Arabia’s pursuit of economic diversification and its Vision 2030 initiative highlight
the importance of cultivating a competitive and adaptable manufacturing sector. CMSs
have become a focal point of research and implementation efforts due to their potential to
enhance operational efficiency and agility.

In this modern manufacturing research of Group Technology, the problem of Cell
Formation is considered as the subject of study. This research is essential to the development
of Group Technology (GT), as it involves the identification of similar parts of families and
groups of machines, such that each group of machines processes the number of a part family.
This Cell Formation offender is investigated using a variety of methods and techniques
to address the issue. There are two broad approaches to solving Cell Formation: the
design-oriented approach and the production-oriented approach [13].

2.1. The Design-Oriented Approach

In the design-oriented technique, the parts are congregated into families based on the
classification and design features; after grouping, a coding technique is executed on the
parts to be produced. The coding technique and overview of classification is developed
by [14]. A number of researchers have considered artificial-based neural networks in order
to arrange part families centered on the design structures and to develop a method of self-
organizing neural networks by focusing manufacturing and design features simultaneously,
recommending a technique named interactive activation and competition [15].

2.2. The Production-Oriented Approach

In order to form machine cells, production-oriented methods are established on the
routing information and processing of parts. The absolute technique of production-oriented
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methods is known as Production Flow Analysis (PFA), propagated by Hameri and Ari
Pekka [16]. PFA’s primary objective is to ensure the novelty of part families and accompa-
nying machine assemblies for Group Layout by utilizing production route cards rather than
part drawings. The work parts with identical or similar routings are classified into part
families. These part families are then arranged to form machine cells in accordance with
the layout of Group Technology (GT). In order to identify part families, the PFA technique
utilizes manufacturing data rather than design statistics. It can obliterate two potential
differences that may occur during part classification and coding:

# Parts with dissimilar geometries may entail parallel or uniform indistinguishable
process routing.

# Parts with similar geometries may nonetheless require process routings that are
fairly different.

# This technique consists of three continuous stages. The first stage is known as the
factory flow analysis. In this stage, the statistics of part processing requests is exam-
ined to acquire an overall flow between the groups of machines. In the second stage,
known as the group analysis, focus on information about the relationship between
parts and machines is utilized in order to form part families. The third stage scruti-
nizes the arrangement of the machine’s layout and operations by using the flow line
concept [16].

2.3. The Hierarchical Clustering and Nonnierarchical Clustering Approaches to Solve the Cell
Problem Layout

These techniques function on the input statistics labeled in relationship to the similarity
or distance function by forming a hierarchy of clusters. These approaches encompass two
stages. The first stage computes the similarity coefficients among each pair of parts. The
second stage determines in what way the pairs with approximately correspondent similarity
levels should be merged [17,18].

Nonhierarchical clustering methods generate a single data partition based on an input
set of clusters to be formed using a similarity or distance function and a predetermined
number of clusters. The tendency to design a varying number of clusters distinguishes
the nonhierarchical clustering approach from the hierarchical approach as its primary
advantage. In the initial stages of clustering, the data participants are not permanently tied
to the group [19]. The primary disadvantage is that the number of clusters to be formed
must be given strong priority by requiring the natural clusters to be divided or merged.
The nonhierarchical clustering methods are developed by [20] taking into account the Ideal
Seed Nonhierarchical (ISNC) method based on the evaluation of grouping efficiency, which
measures within-cell machine utilization and intercell movement [20,21].

2.4. Mathematical Programming Techniques

The mathematical programming techniques for clustering problems are linear or
nonlinear integer programming techniques. The Cell Formation problems are formulated
as optimization problems, with the objective function being the maximization of the total
sum of similarities between each pair of individuals (parts or machines) or the minimization
of the distances between each pair. The distinctive benefit of employing these techniques is
that they permit the combination of other manufacturing data, such as processing times,
operation sequence, etc. These methods, however, are computationally exhaustive for
large problems [22,23]. Different programming techniques, such as the branch and bound
method and bond energy, are proposed to solve Cell Formation problems. In addition,
goal programming techniques and evolutionary programming techniques [24,25] have
been proposed.

2.5. Heuristics Approaches

• Apart from the mathematical programming approaches to resolve Cell Formation
problems, most methods are founded on the heuristics which are accumulated into
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array-based clustering. Other heuristics, which are the combination of multiple tech-
niques, have also been developed by several researchers, including [26,27]. The
drawbacks associated with heuristic approaches are as follows:

• Machine operations arrangements are ignored.
• Numerous visits for the product of the same machine are not considered.
• Volumes of the intercellular moves are not considered.
• Material handling cost is ignored.
• Multiple visits to the same machines are disregarded.
• Volume of production, material handling cost, and component cost are not considered.

To deal with these shortcomings, researchers developed the GA and Hybrid GA
approaches to solve the CMS problems very effectively.

GA and Hybrid GA Approaches to Solve Cell Formation and Machine Layout

The cell arrangement concept was introduced by Filho and Tiberti [28] via GA and
established for group encoding, as opposed to conventional machine encoding, in order to
simultaneously create manufacturing cells and select CM groupings. Wu et al. designed
a hierarchical GA with intrinsic features, such as a hierarchical chromosomal structure,
in order to encode two crucial cell design decisions. These features include (i) a new
selection scheme that dynamically takes into account two correlated fitness functions and
(ii) a group mutation operator to increase the probability of a mutation occurring. The
application of this method yielded results that demonstrate its effectiveness in improving
solution quality and accelerating convergence. Deep and Singh [29] proposed utilizing
GA to design dependable machine cells and configurations for the production of dynamic
parts. The objective was to develop a production cost model that accounts for various
manufacturing costs, including production volume, multiple process routes, machine
capacity, material handling, and subcontracting of component operation. Rezazadah and
Khiali [30] utilized a two-layer GA to find a design for dependable CMs that can assist
in achieving near-perfect solutions with the lowest potential transportation costs. Using
computer tests, the usefulness of the proposed algorithm was demonstrated. Tabriz, Iran’s
Iranian Diesel Engine Manufacturing Company presented the results of a design case study
for a CM. Javadi et al. [26] developed an electromagnetism-like (EM-like) method and a
Genetic Algorithm to solve the design problem of inter- and intracellular architecture in a
dynamic environment. The goal was to reduce the overall cost of material handling flows
during cell rearrangement and intra- and inter-cell. In order to evaluate the performance of
this pairing of two algorithms, statistical tests were conducted on a number of numerical
examples divided into small, medium, and large problems that were solved using the
proposed method. The test results demonstrated that the proposed strategy outperformed
the competing algorithms. The primary objective of Modrak et al. [31] was to discover how
to solve the issues of Cell Formation and layout design. Changes to the GA parameter set
resulting from research have an effect on the CMS issue. Since noise factors are represented
by the size of the matrix in that study, they used the Taguchi method to determine the
optimal combination of GA parameters that can increase the algorithm’s efficiency and to
determine whether this optimal combination is influenced by noise factors. The objectives
of the proposed GA in Ponnambalam’s study [32] include simultaneously designing the
input and output locations for each cell’s stations and figuring out the material handling
systems’ flow paths.

The total material handling cost for the GA that was used to optimize the solution
design was the lowest. The suggested approach was put to the test on four different
layouts using various sets of the original problem data. The tests’ findings led to the
conclusion that the suggested logarithm can provide appropriate solutions and adhere
to realistic computational constraints. A hierarchical GAs technique was employed by
Chandrasekar and Venkumar’s research [33] to address the issues of cell generation and
cell machine layout design. The input data for designing the CMS consists of a machine
part incidence matrix with an operational sequence. Both grouping efficacy and grouping
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efficiency were used to assess the effectiveness of the CMS. When the proposed algorithm
was applied, the consistency and the outcomes revealed that it performed better than
the counterpart from earlier approaches. Forghani and Mohammadi [34] developed an
integrated strategy based on developing the GA to successfully resolve such complicated
problems in reasonable computational time in order to simultaneously tackle the Cell
Formation and layout challenges. Alternative process routings served as a representation
of design inputs. The proposed approach takes into account factors such as the demand
for parts, machine capacity, and multirow machine arrangements within cells, cell size,
aisle distances, etc., to make it more practical. Applying the suggested GA to a number of
already published instances from the literature allowed for an evaluation of its performance.
According to the findings, compared with the sequential design approach, decisions about
Cell Formation, inter- and intracellular layouts, and part routing result in a significant
decrease in overall material handling costs. In order to reduce the overall cost of part
relocations, as well as cell reconfigurations, a bi-objective optimization model is created to
incorporate the Cell Formation and inter/intracell layouts in continuous space while taking
fuzzy conditions into consideration [35]. In order to identify concurrent machine cells, the
layout of facilities (machines, workstations, and cells), processing routes, and processing
speed of operations while minimizing electric energy consumption and material handling
costs, Forghani et al. [36] proposed a hybrid solution approach that combines GAs and
SA (Simulated Annealing). The computational outcomes demonstrated the efficacy of the
suggested strategy and its superiority to CPLEX, conventional GAs, and SA.

3. Research Design

The research flow is shown in Figure 2. The first step is to define the objectives and
problems associated with cellular manufacturing design. In order to form the cells, a
novel Genetic Algorithm (GA) based on an encoding scheme is carried out. The encoding
scheme is deployed in machines. The encoding scheme is used as input for the Genetic
Algorithm (GA). After that, the GA is deployed to the specific cellular manufacturing
problem for Cell Formation. MATLAB is used for model initiation. The Cell Formation
and intracell machine arrangement are designed based on MATLAB simulation results.
All the grouped (formation) cells are analyzed prudently based on their performance.
For validation and optimization, a small- and medium-sized problem is presented. For
this purpose, a mathematical problem with objective function is designed to maximize
production rate and minimize production cost. This research will end with the optimization
of results. If there are any problems remaining in the optimization, then the research will
be repeated to sort out the problem.
Steps involved in research methodology are described in detail below.

3.1. Research Problem

The issues related to manufacturing involve machines’ locations and relocations,
bottlenecking of machines and parts, inter- and intracellular material transferring, part
routing, dynamics, part demands, exceptional elements, machine distances, number of
voids, cell load variation, cell reconfiguring, operation, and completion times, which
result in higher costs and lower production. In order to solve these issues, a Cellular
Manufacturing System is designed by using a novel Genetic Algorithm (based on encoding
scheme).

3.2. Genetic Algorithm Based on Encoding Scheme

The 2nd stage of this research consists of two phases. In the first stage, an encoding
scheme is deployed in machines. This encoding scheme is used as input for the Genetic
Algorithm (GA). In the 2nd stage, the GA is deployed to the specific cellular manufacturing
problem for Cell Formation. The steps involved in GA-based encoding are described below.
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3.2.1. Encoding Scheme

Individuals need encoding for the representation of solutions stored in it. In the
current problem, a machine location matrix is considered as a chromosome, and real
number encrypting is presented. Figure 3 indicates the chromosomes, which represent
a layout solution for machine arrangement. The magnitude of the chromosome is close
to the number of machines assigned on behalf of the layout. The numbers shown in the
chromosomes indicate the machine number, while the position of this number in the matrix
indicates the location of the machine in the layout. From Figure 3, the number “5” indicates
that machine 5 is located in LocL25 in layout type. Similarly, from Figure 2, machine 1 is
positioned at LocL54.
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3.2.2. The Genetic Algorithm (GA) for Cell Formation

In the Genetic Algorithm (GA), the chromosomes are encoded with all of the required
solutions. The fitness of each chromosome is then assessed, and two fit chromosomes
are chosen for reproduction. The chromosomes chosen for reproduction are known as
parents. The crossover of parental chromosomes results in the formation of two offspring.
These offspring share characteristics with their parents. During crossover, it is possible
that some genetic material from the parent chromosome will be lost. Therefore, mutation
is performed. After mutation, the fitness value of the offspring is determined. Then, in
accordance with the replacement scheme, these progenies are introduced into the new
generation by replacing some of the older individuals. This concludes one cycle of the
Genetic Algorithm. After one generational cycle, a new generation is formed. The Genetic
Algorithm repeats the same procedures to produce the subsequent generations.

Initial Population

The procedure to create the initial population and the concentration of fit and weak
individuals in the initial population are very important. If the initial solution consists of
only fit individuals, then the GA will produce results in the short term.

Fitness Evaluation

An individual’s fitness is determined by a mathematical value derived from the
solution stored in a chromosome. The fitness function is a function that describes the
mathematical value of individuals. The greater a person’s capabilities, the closer the
optimal solution will be to them. In the current problem, the fitness function is represented
by the following mathematical expression:

f (s)L = max[
ML
∑

j=1

FijmL
djmL
× XijmL × XijlL × XimlL]

∀ L = {Ass, cel, machine, Pr }0 < s < S
(1)

where

Ass stands for Assign, cel stands for cell, Pr stands for probability, and
FijmL is the quantity of the part i moved from the machine j to m in layout type L;
djmL the distance of machine j from m in layout type L;
XijmL is the binary variable equivalent to 1 if part i is moved from machine j to m in layout
type L, and it is zero otherwise;
XijlL is the binary variable equivalent to 1 if machine j is on location l in layout type L, and
it is zero otherwise;
XimlL is the binary variable equivalent to 1 if machine m is on location l in layout type L,
and it is zero otherwise.

Subject to the conditions already explained while defining the objective function, in
the above-mentioned fitness function, s indicates any individual in the population, and S
describes the population size. The other variables used in the fitness function equation are
explained in the previous section.

The Selection

Selection is the process of selecting the two parents. The GA proceeds with this
study’s tournament selection. The choice of the tournament is intended to be made by the
parents. Two people are chosen at random to participate in the tournament. Among these
two offspring, the best individual is placed into the coupling pool, and this procedure is
repeated until the pool is full. Many researchers utilize this strategy because it is effective.
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The Crossover

This study uses the precedence preservative (PPX) crossover because, in comparison
with other crossovers, PPX is particularly effective in creating a solution. A detailed
description of the PPX crossover procedure is shown in Figure 4. The numbers 1 or 2, which
are similar to the parent numbers 1 and 2, are randomly filled into the random vector with
length (where length is comparable to the frequency of jobs in the permutation flow shop).
The numbers 1 and 2 denote the orders that were given by parents 1 and 2, respectively.
The order indicated in the random vector is permitted by the extreme left genetic elements
from the parents. When a parent’s gene is activated, it is squeezed into the children’s
chromosomes, and the same gene from another parent, chosen from left to right, is then
eliminated. This process continues until all the parents’ chromosomes are empty, resulting
in children from all genes.
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The quality of the solution is substantially impacted by the crossover operator in
Genetic Algorithms. The crossover operator should be able to impart positive traits from
their parents to their children. The crossover operators are made in such a way that they
take into account population diversity in addition to transferring desirable traits to progeny.
As seen in Figure 4, a new crossover operator is introduced for the current situation in
order to incorporate these features.

Mutation

After crossing, mutation is carried out to boost population variety. In Figure 5, two
randomly chosen genes, 3 and 1, are switched around to create a mutant offspring. The
most common type of mutation is swap mutation. The swap mutation mechanism is shown
in Figure 6. Two occupied genetic components are chosen at random from an offspring’s
location matrix during swap mutation. As seen in the picture, both of the targeted genes
have changed locations
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3.2.3. The Replacement

The final stage of the breeding cycle is the replacement (the breeding cycle involves
the processes from crossover to replacement). Two chromosomes were selected for the
crossover to create two offspring, but in new generations, all four of these individuals will
not enter. This is to maintain the constant size of the population. So, two individuals of
the population must be replaced with newly generated chromosomes. Fundamentally, two
types of methods are available for sustaining the population: steady-state updates and
generational updates.

3.2.4. Selection of New Generations

After replacement, a new generation is obtained which will go through all the tradi-
tional steps of GA, which are indicated in Figure 6. It is to be noted that in a traditional
Genetic Algorithm, the offspring formed are recognized to enter in the next generation if
they do not have the good topographies of their parents. Therefore, some good character-
istics of parents may be lost during the process. In this dissertation, the new generations’
scheme proposed by Q. Liu, Saif Ullah, and C.Y. Zhang [37] is used. The generation scheme
presented by them permits the offspring encompassing the good features of their parents
to go into the new generation. The new generations’ scheme is shown in Figure 6. In
this generation method, tournament selection is used to select parents. The selected and
nominated parents create different children after n times crossovers and mutations. The
best two offspring that comprise the worthy characteristics of their parents are nominated
from all the offspring. The nominated offspring are used to switch the parents to create the
new generation.

This scheme ensures that the right features of parents are conserved in new generations.

3.2.5. Termination

The termination condition in a GA indicates the condition at which the GA stops.
Different termination conditions are shown in Table 1. In this research, for the best result,
the maximum number of generations is accepted as the stopping criteria.

Table 1. Termination conditions for GA [37].

Maximum Generations Algorithm Will Stop When Maximum No of Generations Is Produced

Elapsed Time
When specified time is finished.

Comment: The process will stop if the maximum number of the generations has been
reached before the indicated time has elapsed.

No Change in Fitness If there is no change in the maximum fitness value for the specified number of generations.

Stall Generations If improvements are not found in the objective function for the sequence of successive
generations of the stall generations

Stall Time limits If the improvement is not found in the objective function during an intermission of time in
seconds equal to the stall time limit.

Once the number of parts processed on every machine in every cell is calculated, then
machines are arranged in a layout using the proposed GA.
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4. Mathematical Model

A mathematical model is presented to evaluate the performance of Cell Formation.
The objective function and constraints of the mathematical models are defined below.

4.1. Objective Function

It is crucial to arrange or designate a place for each machine in each cell in order to
minimize production costs and flow times. The objective function with constraints, which
is important for decreasing flow time and raising production rate, is provided below. Every
cell has the same set of constraints and the same goal function.

Objective = max[
ML

∑
j=1

FijmL

djmL
× XijmL × XijlL × XimlL] (2)

Subject to
LocL
∑

l=1
XijlL ≤ 1

∀ j = 1, 2, . . . , M and L = {Ass, Cel, Pro}
(3)

ML
∑

j=1
XijlL ≤ rjL

f orall l = 1, 2, . . . , LocL and L = {Ass, Cel, Pro}
(4)

ML
∑

j=1
FijmL × XijmL ≤ demiL

∀ i = 1, 2, . . . , N and L = {Ass, Cel, Pro}
(5)

where

FijmL is the quantity of the part i moved from machine j to m in layout type L,
djmL is the distance of machine j from m in layout type L,
XijmL is the binary variable equivalent to 1 if part i is moved from machine j to m in layout
type L, and it is zero otherwise,
XijlL is the binary variable equivalent to 1 if machine j is on location l in layout type L, and
it is zero otherwise,
XimlL is the binary variable equivalent to 1 if machine m is on location l in layout type L,
and it is zero otherwise.

The first constraint states that for ∀, j = 1, 2, . . . , M, and L = {Ass, Cel, Pro},
all locations are assigned by only one location. The second constraint states that for ∀,
l = 1, 2, . . . , LocL, and L = {Ass, Cel, Pro}, each replicate of a machine in a particular layout
type is to be assigned one location. The third constraint indicates that for ∀ i = 1, 2, . . . , N,
the total quantity of the parts to be produced in ∀ L = {Ass, Cel, Pro} should not exceed its
production demand in that layout type.

LocL indicates a location matrix for each type of layout. Since the number of machines
in each layout type is different, the location matrix has different sizes depending on the
number of machines assigned to the layout type.

4.2. Case Study of Automobile Industry (SMEs)

A CMS can be designed by small- and medium-sized machine manufacturers. When
various actual manufacturing costs are considered, these types of machinery can be relo-
cated. The SAMCO Ltd. (Jubail, Saudi Arabia) has a number of significant automotive
groups in the KSA. The proposed model was applied to Cell Formation design and man-
ufacturing data to demonstrate its applicability. The capacity of the SAMCO automobile
manufacturing facility, which operates 8 h per day, 26 days per month, and 12 months per
year, is 2880 h per year. Pins, pierce punches, bottom dies, guides, and pallet guide pins
are manufactured using a variety of machines, such as drilling machines, CNC milling
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machines, traditional milling machines, electro-erosion machines, etc., with a production
horizon of two months and two production cycles. Table 2 depicts the product routing
and process plan for the industrial case study, while Table 3 depicts the parts/machine
incidence matrix.

Table 2. Product Information.

Part No. Machine Sequence Processing Time (Sec) Demand

P1 1-2-5 90-60-45 3500
P2 13-6-7-8 120-300-360-280 1400
P3 4-11-12-15 75-60-120-240 2200
P4 3-1-6-7-9-12-14 200-80-260-340-500-90-4200 1200
P5 14-15-10 3000-340-720 1800
P6 2-6-7-10-13-14 80-290-210-640-110-3500 4200
P7 4-5-15-8-7-9 90-90-180-210-390-170 4600
P8 3-2-1-6-8-9-10-15-7 150-110-140-270-240-190-70-300 7000
P9 14-15-1-9 3500-320-110-180 3200

P10 5-7-11-13 90-240-110-140 1800

Table 3. Parts/Machine Incidence Matrix.

M/P P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

M1 1 0 0 1 0 0 0 1 1 0
M2 1 0 0 0 0 1 0 1 0 0
M3 0 0 0 1 0 0 0 1 0 0
M4 0 0 1 0 0 0 1 0 0 0
M5 1 0 0 0 0 0 1 0 0 1
M6 0 1 0 1 0 1 0 1 0 0
M7 0 1 0 1 0 1 1 1 0 1
M8 0 1 0 0 0 0 1 1 0 0
M9 0 0 0 1 0 0 1 1 1 0
M10 0 0 0 0 1 1 0 1 0 0
M11 0 0 1 0 0 0 0 0 0 1
M12 0 0 1 1 0 0 0 0 0 0
M13 0 1 0 0 0 1 0 0 0 1
M14 0 0 0 1 1 1 0 0 1 0
M15 0 0 1 0 1 0 1 1 1 0

Combining four GA fundamental parameters—0.5 for crossover probability, 0.2 for mu-
tation probability, 50 for population size, and 500 for the maximum number of generations—
allows for the resolution of the CMS design problem. The GA program was created using
MATLAB (R2022a) software. A discussion of the results is presented in detail in the
section below.

5. Results Discussion and Analysis

The results obtained for each cell are indicated below.

5.1. Machine Encoding for Cell 1 and Formation of Cell 1 by GA

In order to avoid the complexities of the programming, the following machine num-
bers were programmed instead of the original numbers. Machines are encoded by using
MATLAB. Table 4 shows the nomenclature of machines. Machines are encoded with spe-
cific numbers using MATLAB programming. These encoded machines are used as input
for Cell 1 formation.

Table 4. Machine Encoding for formation of Cell 1.

5a 5b 5c 14a 14b 14c 9a 9b 9c 1a 1b 1c 11 7 20

b 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Figure 7 shows the formation of Cell 1. Cells are formed by using Genetic Algorithm
(GA). In Cell Formation, machines with similar functions are grouped into similar group,
as shown in the table below.
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Table 5 shows the machine chromosomes and intracell machine arrangements. Similar
machines are located in a similar group based on their product and design functions.

Table 5. Machine Chromosome and arrangement of Machines in Cell 1.

Machine Chromosomes 4 4 3 4 3 3 1 2 2 4 2 3 3 2 1 2 4 2 2

Machine Group 1 1a 5a 5b 5c 11
Machine Group 2 1b 9a 9b 9c 20
Machine Group 3 7
Machine Group 4 1c 14a 14c 14b

5.2. Machine Encoding for Cell 2 and Formation of Cell 2 by GA

In order to avoid the complexities of the programming, the following machine numbers
were programmed instead of the original numbers. Machines are encoded using MATLAB.

Table 6 shows the nomenclature of the machines. Machines are encoded with specific
nomenclature using MATLAB programming. These encoded machines are used as input
for Cell 2 formation.

Table 6. Machine Encoding for formation of Cell 2.

19a 19b 19c 19d 18a 18b 18c 18d 16a 16b 16c 16d 17a 17b 17c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 8 shows the formation of Cell 2. Cells are formed using the Genetic Algorithm
(GA). In Cell 2, formation machines with similar functions are grouped into similar groups,
as shown in the table below.
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Figure 8. Formation of Cell 2.

Table 7 shows the machine chromosomes and intracell machine arrangements. Similar
machines are located in a similar group based on their product and design functions.
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Table 7. Machine Chromosome and arrangement of Machines in Cell 2.

Machine Chromosomes 3 3 4 4 3 3 1 3 2 2 4 3 3 2 1 1 3 2 4

Machine Group 1 19a 16a 19c 16d
Machine Group 2 19a 18a 18c 19d
Machine Group 3 16b 17a 17b 17c
Machine Group 4 18b 19b 16c 18d

5.3. Machine Encoding for Cell 3 and Formation of Cell 3 by GA

Table 8 shows that the machines are encoded first, and then these encoded machines
are used as input for the formation of Cell 3.

Table 8. Machine Encoding for Formation of Cell 3.

19a 19b 8a 8b 8c 2a 2b 17 15a 15b 18 3 11 6 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 9 shows the formation of Cell 2. Cells are formed using the Genetic Algorithm
(GA). In Cell 3 formation, machines with similar functions are grouped into similar groups,
as shown in the table below.
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Figure 9. Formation of Cell 3.

Table 9 shows the machine chromosomes and intracell machine arrangements. Similar
machines are located in a similar group based on their product and design functions.

Table 9. Machine Chromosome and arrangement of Machines in Cell 3.

Machine Chromosomes 2 3 2 4 3 3 1 4 2 4 2 3 3 2 1 2 4 4 3

Machine Group 1 3 2a 2b 19b 12
Machine Group 2 15a 15b 18 19a 11
Machine Group 3 6 8a 8b 17 13

5.4. Machine Encoding for Cell 4 and Formation of Cell 4 by GA

Table 10 shows the nomenclature of the machines. Machines are encoded with specific
numbers using MATLAB programming. These encoded machines are used as input for the
formation of Cell 4.

Table 10. Machine Encoding for formation of Cell 4.

3a 3b 4c 4 a 4b 4 c 7a 7 b 11a 11b 8c 8 a 8b 7c 8c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4 shows the formation of Cell 4. Cells are formed using the Genetic Algorithm
(GA). In Cell 11, formations of machines with similar functions are grouped into similar
group, as shown in the table below.
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Table 11 and Figure 10 show the machine chromosomes and intracell machine ar-
rangements. Similar machines are located in a similar group based on their product and
design functions.

Table 11. Machine Chromosome and arrangement of Machines in Cell 4.

Machine Chromosomes 4 4 3 4 3 3 1 2 2 4 2 2 3 2 1 2 4 3 3

Machine Group 1 8b
Machine Group 2 7b 4b 4c 3a
Machine Group 3 3b 11b 7c 4a
Machine Group 4 8c 11c 7a
Machine Group 5 4c 11a 8a
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5.5. Machine Encoding for Cell 5 and Formation of Cell 5 by GA

Table 12 shows the nomenclature of machines, while Table 13 represents machine chro-
mosome and arrangement. Machines are encoded with specific numbers using MATLAB
programming. These encoded machines are used as input for the formation Cell 5.

Table 12. Machine Encoding for formation of Cell 5.

13a 13b 15c 13d 6a 6b 6c 10a 10b 2a 2b 2c 2d 15a 15d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 13. Machine Chromosome and arrangement of Machines in Cell 5.

Machine Chromosomes 1 1 3 4 3 3 4 2 2 4 2 3 3 2 1 2 4 2 2

Machine Group 1 13a 13c 15c
Machine Group 2 10a 10b 2c
Machine Group 3 2d 6a 6b 6c
Machine Group 4 6d 2a 13b 2b
Machine Group 5 13d
Machine Group 6 15d 15a 15c

Figure 11 shows the formation of Cell 5. Cells are formed using the Genetic Algorithm
(GA). In Cell 5, formations of machines with similar functions are grouped into similar
groups, as shown in the table below.

Table 14 shows the results’ evaluation. Each machine’s utilization and flexibility are
shown in Section 1 of the table. Cell Formation utilization and flexibility are shown in
Section 2 of the table. System utilization and flexibility are shown in Section 3.
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Table 14. Results Evaluation.

Machine Cell Formation System

Machine No. Utilization Flexibility Cell Formation Utilization Flexibility Productivity Flexibility

1 0.4222 0 Cell 1 0.5809 0.0547 0.0885 0.1466
2 0.2435 0 Cell 2 0.4867 0.2457
3 0.1166 0.6534 Cell 3 0.3722 0.1854
4 0.5644 0 Cell 4 0.6789 0.2377
5 0.8633 0.5878 Cell 5 0.8422 0.2244
6 0.2366 0.4932
7 0.1722 0
8 0.9344 0
9 0.6788 0.8124
10 0.1635 0.3544
11 0.3577 0
12 0.8511 0.1268
13 0.6633 0
14 0.9244 0
15 0.4446 0.2541

5.6. Comparison of Performance of Cell Formation Efficiency with Other Methods

Ten problems chosen from the literature are used to test the algorithm’s performance.
The problem size varies from “5 machines × 7 parts” to “20 machines × 20 parts”. The
results from earlier reports are compared with the solution obtained for these problems
based on the efficiency of Cell Formation (grouping). The method is run multiple times
using the given parameters in order to guarantee a high-quality solution. There are ten
runs by default. The part machine incidence matrix is related to the parameters that affect
the quality of the solution. A matrix might not be well-structured, making it difficult to
classify with optimal effectiveness. The problem size is another consideration. It takes a lot
of runs and iterations (generations) to solve an unstructured large-sized problem. These
variables determine the number of runs and algorithm parameters. The comparison of
Cell Formation (grouping) efficiency is carried out with grouping efficiency (GE) by the
following five methods, and the methods were chosen based on the literature: clustering
algorithm [38], Genetic Algorithm [39], hybrid algorithm [40], genetic programming [41],
and evolutionary algorithm [42].

Data set problems 1–4, 6, 7, 9, and 10 are taken from Gonclaves and Resende [42], data
set problem 5 from Chandrasekharan and Rajagopalan [43], and data set problem 8 from
Tariq, Hussain, and Ghafoor [40]. The group efficiency (GE) of the above methods is taken
from [40,42,43]. The problem magnitude, their sources, and the outcomes are displayed in
Table 4. Following the completion of the 10 issues, it was discovered that, for the most part,
a superior configuration based on GE could be achieved. The results are listed below:
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Total number of problem sets—10.
Problem sets with improvements—9 (70%).
Maximum improvement of GE—8.85 (problem 4).
Average improvement of 7 problems—4.9.
Number of problems without improvement—1.

It is obvious that regardless of the size of the problem, better results are attained.
This is particularly conspicuous when the data in an ill-structured part machine

incidence matrix are difficult to aggregate. The suggested method provides the ideal
solution for the ideal problems listed in the literature, when the GE of one is feasible. Most
approaches yield the best results when used for ideal or nearly ideal problems, when
grouping with a minimal number of exceptional parts and voids is possible. However,
those models do not work well with input data that are not organized. In this regard, the
suggested algorithm performs fairly well. In this approach, the novel GA based on machine
encoding is crucial to obtaining better solutions.

6. Conclusions

Though there has been a lot of research on CMS design issues, there have been few
studies on taking Cell Formation and a dynamic flexible architecture into consideration.
This study created a novel method that uses a number of flexibility parameters to direct the
formation of cells. The proposed method was created to address complex, multiobjective
design problems in CMS on a big scale. It incorporated a Genetic Algorithm (GA), an
encoding function technique, and machine layout cell designs that maximize performance
outcomes in order to obtain Cell Formation. The machines and their components were
introduced as a matrix. In GA runs, a number of chromosomal evolution and selection
throughput adjustment techniques were used. In order to determine the best Cell Formation
and machine layout, Genetic Algorithms (GAs) were used. The machines were programmed
for each Cell Formation. This approach is distinctive in a number of ways, particularly
when flexibility is viewed as an expression of the trade-off between machine usage and the
number of exceptional features, i.e., in terms of Cell Formation dimensions Cell Formation
based on any required flexibility ranging from 0.1 to 0.8, resolving issues in real-world
case studies. The effectiveness of the established approach was demonstrated through
the resolution of a Pakistani automotive real-world case study. It is concluded that the
proposed GA based on the machine encoding technique optimizes the design of CMS and
improves the group efficiency to 72.81 (average value) compared with other metaheuristics
algorithms, as shown in Table 15.

Table 15. Performance metric group efficiency comparison with other methods.

Problem Set
Problem

Size
(M × P)

Clustering
Algorithm

(M.ST)

Genetic
Algorithm

(GA)

Hybrid
Algorithm

(HA)

Genetic Pro-
gramming

(GP)

Evolutionary
Algorithm

(EA)

Proposed
Algorithm

1 5 × 7 - - 73.68 - 73.68 74.58
2 6 × 8 - 76.92 76.92 - 76.92 79.44
3 7 × 11 - 46.88 53.13 - 53.13 61.95
4 8 ×12 - - 68.3 - 68.3 68.56
5 8 × 20 58.72 58.32 58.70 58.33 - 59.45
6 10 × 10 70.59 70.59 70.59 - 70.59 74.33
7 10 × 15 91.00 91.00 92.00 91.00 92.00 89.56
8 10 × 20 - - - - 90.00 90.23
9 14 × 24 - 67.44 70.50 - 69.33 78.60
10 20 × 20 - 37.12 42.96 - 43.20 51.45

Additionally, it would be beneficial to investigate whether the current production
processes can accommodate a new part throughout cell manufacturing operations. When
admitting additional parts, logistics and cell reorganization costs should be taken into
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account in the objective functions, and a new strategy should be designed to deal with the
optimization model’s high level of complexity.
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