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Abstract: Gastric cancer is a significant health concern, particularly in Korea, and its accurate
detection is crucial for effective treatment. However, a gastroscopic biopsy can be time-consuming
and may, thus, delay diagnosis and treatment. Thus, this study proposed a gastric cancer diagnostic
method, CADx, to facilitate a more efficient image analysis. Owing to the challenges in collecting
medical image data, small datasets are often used in this field. To overcome this limitation, we used
AutoAugment’s ImageNet policy and applied cut-and-paste techniques using a sliding window
algorithm to further increase the size of the dataset. The results showed an accuracy of 0.8317 for
T-stage 1 and T-stage 4 image classification and an accuracy of 0.8417 for early gastric cancer and
normal image classification, indicating improvements of 7 and 9%, respectively. Furthermore, through
the application of test-time augmentation to the early gastric cancer and normal image datasets,
the image classification accuracy was improved by 5.8% to 0.9000. Overall, the results of this study
demonstrate the effectiveness of the proposed augmentation methods for enhancing gastric cancer
classification performance.

Keywords: convolutional neural network; Computer-Aided Diagnosis (CADx); deep learning; gastric
cancer; image augmentation

1. Introduction

According to a report released by the International Agency for Research on Cancer in
2020, gastric cancer records indicated 1,089,103 new cases and 769,000 deaths worldwide [1].
Among them, East Asia, including Korea, exhibited a higher incidence rate of 32.5 per
100,000 individuals, which is higher by 15.1 than the value of 17.4 in Eastern Europe, the
second highest region. Figure 1 depicts the incidence of gastric cancer among distinct
geographical regions, expressed as a percentage per 100,000 individuals, as reported by
the International Agency for Research. In addition, the severity of gastric cancer can be
confirmed in terms of both incidence and survival. According to the National Cancer
Registration Program Annual Report released by the Ministry of Health and Welfare in
South Korea in 2021, for stage 1 patients with localized lesions, the 5 y survival rate was
relatively high (97%). However, the 5 y survival rate of stage 2–3 patients was only 62.1%.
The proportion of patients with late-stage gastric cancer and distant metastases was 6.4%,
indicating a rapidly decreasing trend [2].

To improve the early detection rate of gastric cancer, the National Health Insurance Cor-
poration of Korea has implemented a regular gastric endoscopy program every two years
for Koreans aged 40 years or older. Therefore, the number of gastroscopies performed
in Korea steadily increased from 4,729,407 in 2013 to 7,093,024 in 2019 [3]. The detec-
tion and classification of gastric cancer during the gastric endoscopy stage can facilitate
the early conduction of additional tests, such as blood tests, radiography, and PET-CT
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scans. However, with an increase in the number of people undergoing gastroscopy, the
workload of specialists also increases, which may result in delays in the examination and
biopsy periods.
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Numerous strategies and techniques have been investigated to improve the efficacy
of medical procedures [4–6]. In particular, Computer-Aided Diagnosis (CADx), a system
designed to support physicians in the diagnostic process across diverse clinical settings,
has been a subject of extensive research [7–9]. It can improve the speed and accuracy of
diagnoses by providing a consistent second opinion to doctors. Previous studies have
demonstrated the practicality of deep learning, and further research is currently being
conducted to optimize its performance and efficacy. Li et al. [10] and Li et al. [11] classified
gastric cancers using the characteristics learned from gastric endoscopy histopathology
slice images. They employed deep learning techniques to develop a model to distinguish
between gastric cancer and noncancerous tissues. The results confirmed that CADx could
accurately classify gastric cancer, achieving an accuracy of over 96% for slice-based classifi-
cation. Thus, CADx can potentially improve the accuracy of diagnosis and early detection
of gastric cancer, which is crucial for early treatment and improved patient outcomes. In ad-
dition to detection using gastric biopsy, detection that identifies the location of lesions using
gastric endoscopic imaging has also been studied. Hirasawa et al. [12] conducted a study
to detect gastric cancer lesions using gastroscopic imaging. They used data collected from
two hospitals in Japan (Cancer Institute Hospital Ariake and Tokatsu-Tsujinaka Hospital)
between April 2004 and December 2016, and 13,584 images of 2639 gastric cancer lesions
were used as the training dataset. They employed a convolutional neural network (CNN)
called the single-shot multibox detector (SSD) as the detection model. The developed
CADx exhibited a sensitivity of 92.2% and could detect 70 of 71 lesions with a diameter
of 6 mm or greater, as well as all invasive cancers. Yoon et al. [13] studied early gastric
cancer (EGC) and invasion depth classifications. They collected data from 800 patients di-
agnosed with EGC at Gangnam Severance Hospital, Yonsei University College of Medicine
in Seoul, South Korea, between January 2012 and March 2018. In total, 11,539 images
(896 T1a-EGC, 809 T1b-EGC, and 9834 non-EGC images) were used in this study. Using
VGG-16, they achieved detection accuracies of 0.981 for EGC and 0.851 for tumor depth
classification. Hu et al. [14] identified EGC using narrow-band magnification images. They



Appl. Sci. 2023, 13, 12325 3 of 12

collected 1777 magnifying endoscopy with narrow-band imaging (ME-NBI) images from
three hospitals in China (Endoscopic Center of Zhongshan Hospital, Affiliated Dongnan
Hospital of Xiamen University, and Central Hospital of Wuhan) and used the VGG-19
architecture to identify EGC. The accuracies achieved in this study were 0.808 and 0.813,
respectively, similar to those of senior endoscopists. Horiuchi et al. [15] conducted a study
using 1492 cancer ME-NBI images and 1078 normal ME-NBI images collected between
April 2005 and February 2016. They achieved an accuracy of 0.8684 and compared the
results with those determined by 11 doctors for verification. They reported that the CADx
system exhibited higher accuracy and sensitivity than those of the experts. However, in
contrast to general endoscopes, ME-NBI has an optical system and an imaging system
to increase resolution and sharpness, which slows the shooting speed and increases the
inspection cost. Consequently, instead of ME-NBI, studies have been conducted using
white light endoscopy to segment and classify benign gastric ulcer (BGU), EGC, and ad-
vanced gastric cancer (AGC) lesions and to classify T1a and T1b by the depth of invasion
through normal gastric endoscopy images. Nam et al. [16] conducted a study classifying
gastric mucosal lesions, including BGU, EGC, and AGC, using normal endoscopic images.
This study included 1366 patients from two hospitals in Korea (Seoul National University
Hospital and Samsung Medical Center). They utilized a CNN model for gastric lesion
classification and achieved internal and external verification accuracies of 0.923 and 0.813,
respectively. Furthermore, they achieved an internal verification accuracy of 0.77 and an
external verification accuracy of 0.72 with the depth of invasion classification performance
for T1a and T1b.

A common characteristic of previous studies is that the medical images contain per-
sonal patient information, which requires a long time for data collection, resulting in the
construction of a small dataset. However, a small dataset size increases the risk of problems
such as overfitting or underfitting in the model training owing to the possible requirement
of more than one learning process. Data augmentation can ensure diversity in a dataset
and facilitate the development of models with improved performance by learning the char-
acteristics of various lesions. Consequently, this could enhance the accuracy and reliability
of medical image analysis, ultimately leading to better patient conditions. A study was
conducted to classify gastric cancers using data augmentation. Cho et al. [17] studied
patients with gastric tumors detected at Chuncheon Sacred Heart Hospital in Gangwon
Province, South Korea, between 2010 and 2017. Eventually, 2899 images from 846 patients
were included in this study. Among them, images of submucosa-invaded lesions accounted
for 34.5% (n = 999), and those of mucosa-confined lesions accounted for 65.5% (n = 1900).
The mucosa-confined lesions were rotated by 90◦ to double their size and overcome data
imbalance. The entire image dataset was then augmented four times by flipping it verti-
cally and horizontally. Dense-Net-16 and Inception-ResNet-v2 were used for the training.
Overall accuracies of 0.774 and 0.841 were achieved for internal validation, and accuracies
of 0.661 and 0.714 were achieved when only classifying the invasion depth of EGC. Further,
an external test dataset was constructed by collecting the images of consecutive patients
who underwent gastric endoscopy between 2019 and 2020. Overall accuracies of 0.741
and 0.773 were achieved for external validation, and accuracies of 0.650 and 0.672 were
achieved when only the invasion depth of the EGC was classified.

Most previous studies only applied simple image augmentation techniques, such as
flip and rotation, without the use of additional methods for image augmentation. It is
challenging to enhance the diversity of data features by applying simple augmentation tech-
niques only. Therefore, this study used AutoAugment, a technique that adds geometric and
color changes to the collected dataset, and introduced the Cut-and-Paste technique, which
uses the sliding window algorithm to improve the performance of CADx for gastroscopy
classification.
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2. Materials and Methods
2.1. Dataset

Early gastric cancer is typically classified as T-stage 1, indicating that the tumor has
invaded the mucosal or submucosal layers of the gastric wall. T-stage 4 gastric cancer
indicates that the tumor has penetrated the serous layer and invaded significant organs,
such as the spleen, transverse colon, liver, diaphragm, pancreas, abdominal wall, adrenal
gland, kidney, small intestine, and retroperitoneum. The accurate staging of gastric cancer
is crucial for determining the appropriate treatment plan for each patient. This study
aimed to improve the performance of the gastric endoscopy diagnostic system through
augmentation techniques, and two datasets were utilized to validate the performance of
the proposed augmentation method.

The T-stage 1 and T-stage 4 data used in this study were obtained from the AI Hub [18],
which provides gastric cancer diagnosis medical images using the tumor–node–metastasis
(TNM) staging classification, presented in its 8th edition, of the American Joint Committee
on Cancer (AJCC) as a standard for gastric cancer staging [19]. The data were extracted and
purified from The Catholic University of Korea, Seoul St. Mary’s Hospital electronic medical
record (EMR) and picture archiving communication system (PACS), and patient consent
and approval were obtained from the Institutional Review Board (IRB). The dataset was
verified through three procedures: data collection officers, commentators, and researchers
in charge of the participating institutions.

Consequently, an average of 14.5 images were collected per patient for both the T-stage
1 and T-stage 4 datasets. Images obtained from the same patient inherently exhibit similarity.
Consequently, we adopted a strategy of partitioning patients into training, validation, and
test cohorts to mitigate the risk of assessing the model’s performance using substantially
similar images. The patient distribution was executed through a random process, which
was implemented to bolster the model’s overall reliability. In addition, because the number
of patients in T-stage 1 and T-stage 4 differed significantly, images of learning patients in
T-stage 1 were randomly extracted to match those in T-stage 4. The distribution of the
original dataset is presented in Table 1.

Table 1. Original dataset of T-stage 1 and T-stage 4 gastric endoscopy.

T-Stage 1 T-Stage 4

People
Training 199 35

Validation 13 13
Test 13 13

People Total 215 61

Images
Training 512 512

Validation 190 195
Test 197 207

Image Total 899 914

Normal and early gastric cancer gastroscopy data were collected by the Department of
Gastroenterology at the National Gyeongsang University Hospital in the Republic of Korea.
All data were validated by internal medicine specialists and histological examinations were
performed to improve the data quality. All data were collected after obtaining patient
consent and approval from the IRB. On average, 6.25 images were collected per patient
from this dataset. In addition, the patient composition was randomly distributed without
duplication in the training, validation, and test datasets. Table 2 presents the distribution
of the original dataset.
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Table 2. Original dataset of EGC and normal gastric endoscopy.

EGC NOR

People
Training 28 28

Validation 10 10
Test 10 10

People Total 48 48

Images
Training 180 180

Validation 60 60
Test 60 60

Image Total 300 300

2.2. Effective Augmentation to Gastric Dataset

High-quality data are essential for accurate feature learning in deep learning models,
and the data must satisfy both sufficient quantity and diversity requirements. Such data
can improve the convergence speed of the weights and prevent overfitting of the model,
thereby improving its performance. However, as observed in previous studies, there are
limitations to medical data that satisfy the above conditions because of the time and cost
required for the IRB approval process. Therefore, two data augmentation methods were
used in this study to overcome these limitations.

2.2.1. AutoAugment

To secure a sufficient dataset for training, we employed data augmentation policies
(AutoAugment) to increase the amount of data. AutoAugment is a data augmentation
policy developed by Google [20] and comprises 25 subpolicies. Each subpolicy is composed
of 2 of 16 image processing methods, such as flip and rotation, along with the probability
and intensity of the application of each method. Therefore, the original dataset was
expanded 25 times using this augmentation method.

AutoAugment provided optimal augmentation policies for three datasets: Cifar10,
ImageNet, and SVHN. Cifar10 is a dataset comprising 32 × 32 images in 10 classes [21].
ImageNet is a dataset with over 1.4 million images and 1000 classes [22]. Finally, SVHN is
a dataset of digit images collected from Google Street View and comprises approximately
100,000 images [23]. This study was conducted based on ImageNet, which contains the
largest amount of data and classes.

2.2.2. Cut and Paste Using Window Sliding Algorithm

To accurately identify the lesion, a gastroenterology specialist manually confirmed its
location and size and labeled the area. The extracted bounding box contained information
regarding the size and position of the lesion. The X- and Y-coordinates of the bounding
box were calculated to extract only the lesion. To perform augmentation with limited
data, a method for pasting the created lesion image into a normal gastric image was
used. Variances in the RGB channels of the cut lesion images were calculated to select the
appropriate location for pasting. The sliding window algorithm moved normal images
along the X- and Y-directions at equal intervals. While moving the virtual window at equal
intervals, the lesion image was pasted onto the corresponding region by finding the point
where the difference between the image variance of the corresponding region and that of
the lesion image was minimized. The following equation was used to calculate the variance
of lesion images:

The formula for calculating Icut, the average of the cut lesions images’ RGB channels,
is as follows. The size of the lesion image is w × h, and i and j are the pixel coordinates.

Icut =
1

wh

w

∑
i=1

h

∑
j=1

Icut(i, j) (1)
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The formula for calculating the variance of a cut image is as follows.

σ2
cut =

1
wh

w

∑
i=1

h

∑
j=1

(
Icut(i, j)− Icut

)2 (2)

The sliding window algorithm calculates the variance while sequentially moving
along the (x, y) area by dividing a normal gastric image of size w × h into k equal lengths
horizontally and vertically.

Islide(x, y) =
k2

wh

xw/k

∑
i=x

yh/k

∑
j=y

Islide(i, j) (3)

The formula for calculating the variance of each region is as follows.

σ2
slide(x, y) =

k2

wh

xw/k

∑
i=x

yh/k

∑
j=y

(
Islide(i, j)− Islide(x, y)

)2 (4)

It sequentially moves the position to determine the (x, y) positions, where the differ-
ence between the variances of the area located at (x, y) and the lesion image is the smallest.

(x, y) = argmin
(∣∣∣σ2

slide(x, y)− σ2
cut

∣∣∣) (5)

This method was augmented by pasting the lesion image at the (x, y) position. Figure 2
shows an example of a cut-and-pasted image obtained using the sliding window algorithm.
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2.3. EfficientNetV2

This study used a deep learning network with a CNN architecture to learn and
diagnose the characteristics of lesions in gastric endoscopic images. With the development
of neural architecture search (NAS) through artificial intelligence, networks with high
performance and few parameters have been proposed [24]. EfficientNet utilizes a method
to optimize three network components, depth, channel width, and input image resolution,
to improve the model performance [25]. Moreover, through the application of compound
scaling to each component based on a designed base model, EfficientNet facilitates the
uniform creation of models of varying sizes.

EfficientNetV1 uses a depth-wise 3 × 3 convolution from MobileNet’s MBConvolution
in the initial stage [26]. However, this type of convolution causes overhead problems,
because it is inefficient for modern accelerators that perform batch operations. To address
this issue, EfficientNetV2 uses Fused-MBConv to convert, depth-wise, 3 × 3 convolution
and 1 × 1 convolution operations into a regular 3 × 3 convolution to increase the efficiency
training speed [27]. In addition, it facilitates effective image learning by utilizing the
squeeze-and-excitation (SE) block proposed by SENet to weigh the importance of channels
in feature maps during training [28]. Figure 3 shows the architectures of MBconv and
Fused-MBConv.
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Figure 3. MBConv and Fused-MBConv architectures.

In EfficientNetV2, the maximum resolution of the compound scaling is limited to
480 × 480 for training efficiency, and the number of layers is gradually increased in the later
stages. This resulted in the proposal of three models, namely Small, Medium, and Large.
The EfficientNetV2-L model trained using the ImageNet21k dataset, which comprises
approximately 10 million images and over 22,000 categories, was used in this study.

2.4. Test-Time Augmentation

Test-time augmentation (TTA) is a technique used in machine learning to improve
the performance and generalization of a trained model during the inference phase [29].
This method involves the application of various data transformations to the input data and
obtaining predictions from the model for each transformed image. The final prediction is
determined by aggregating the predictions from the augmented data and computing their
averages. Through this process, the TTA utilizes various aspects of the image for prediction,
thereby enabling more robust and accurate classification. In addition, TTA can be a useful
technique for improving the performance of models during inference, particularly when
the test dataset is limited, resulting in low feature distribution and diversity. In this study,
the test dataset was increased by 8 times by combining horizontal flip, vertical flip, and
rotation (0◦, 90◦, 180◦, and 270◦). Figure 4 shows an example of the TTA algorithm.
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3. Results

This study aimed to improve the accuracy of gastroscopic classification using a gastric
endoscopic image augmentation policy. This effect was confirmed using two datasets.
The collected T-stage 1 and T-stage 4 data were used as training (1024 images), validation
(385 images), and test (404 images) data. Further, the collected EGC and normal data
were used as training (360 images), validation (120 images), and test (120 images) data.
AutoAugment generated 25 times more training data images. The lesions were pasted onto
normal images using a sliding window algorithm for the Cut-and-Paste technique. The
detailed composition of the dataset is presented in Table 3. T-stage 1 and T-stage 4 datasets
were defined as Dataset A, and the EGC and normal datasets were defined as Dataset B.

Table 3. Configuration of augmented gastric cancer training datasets.

Dataset A Dataset B

T-Stage 1 T-Stage 4 EGC NOR

Original 512 512 180 180
AutoAugment 13,312 13,312 4680 4680
Cut and Paste 166,912 166,912 37,080 4680

The EfficientNetV2-L model was used to evaluate classification network performance.
The performance evaluation indices of the trained model were as follows: (1) precision,
which is the proportion of predictions that are actually true; (2) sensitivity, which represents
the proportion of predictions that are true among those that are actually true; (3) the False
Positive Rate (FPR) represents the proportion of true negatives that were inaccurately
classified as positives; (4) the F1-score represents the harmonic average of precision and
sensitivity; and (5) accuracy, which is the percentage of all predictions that were correctly
predicted. The performance of the model for each dataset is summarized in Table 4.

Table 4. Gastric cancer classification results by data augmentation.

Metrics Original AutoAugment Cut and Paste

Dataset A

Precision 0.7658 0.7936 0.8320
Sensitivity 0.7655 0.7929 0.8312

FPR 0.2113 0.1780 0.1737
F1-score 0.7656 0.7933 0.8316

Accuracy 0.7649 0.7921 0.8317

Dataset B

Precision 0.7747 0.8114 0.8715
Sensitivity 0.7500 0.7833 0.8417

FPR 0.3077 0.2821 0.2338
F1-score 0.7622 0.7971 0.8563

Accuracy 0.7500 0.7833 0.8417

Early diagnosis of gastric cancer is essential for improving treatment outcomes and
prognosis. For this reason, sensitivity, representing the classification accuracy of gastric
cancer images, is a crucial evaluation metric in this study. The results showed that the
classification sensitivity using Dataset A improved by 6.5%, from 0.7655 to 0.8312, and
that using Dataset B improved by 9.1%, from 0.7500 to 0.8417. The accuracy also exhibited
a similar improvement to the sensitivity. The classification accuracy using Dataset A
improved by 6.6%, from 0.7649 to 0.8317, and that using Dataset B improved by 9.1%, from
0.7500 to 0.8417.

To address the issue of the limited test dataset in Dataset B, TTA was applied. Con-
sequently, the obtained outcomes were evaluated using a broader data range, which can
be considered as an evaluation of enhanced generalization. Table 5 presents the results
obtained by applying the TTA algorithm to Dataset B.
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Table 5. Gastric cancer classification results using TTA.

Metrics Original AutoAugment Cut and Paste

Dataset B

Precision 0.7990 0.8683 0.9114
Sensitivity 0.7750 0.8667 0.9000

FPR 0.2857 0.1563 0.1571
F1-score 0.7868 0.8675 0.9057

Accuracy 0.7750 0.8667 0.9000

The application of the TTA algorithm to Dataset B resulted in an increase in sensitivity
compared to when TTA was not applied. Specifically, the sensitivity increased by 2.2% for
the original model, 8.3% for the model with only AutoAugment, and 5.8% for the model
with Cut-and-Paste augmentation.

4. Discussion
4.1. Comparison with Prior Studies

Comparing our results with previous studies, it becomes evident that data augmen-
tation plays a crucial role in enhancing the performance of CADx systems. Hu et al. [14]
showed a performance of a 0.81 AUC and 0.77 accuracy in classifying EGC using narrow-
band magnification images. Horiuchi et al. [15] showed an accuracy of 0.87 in classifying
EGC using narrow-band magnification images. Nam et al. [16] showed an accuracy of
0.82 in classifying BGU, EGC, AGC. Furthermore, they achieved an external verification
accuracy of 0.72 with the depth-of-invasion classification performance for T1a and T1b.
Cho et al. [17] used images of lesions that were rotated by 90◦ to double their size and
overcome data imbalance. The entire image dataset was then augmented four times by
flipping it vertically and horizontally. Consequently, its study showed an accuracy of 0.77
for external validation in classifying the invasion depth of EGC.

In our study, we achieved an accuracy of 0.83 in classifying T-stages 1 and 4, and
an accuracy of 0.90 in distinguishing EGC from normal (NOR) cases. Thus, our study
validates the effectiveness of the data augmentation techniques proposed. However, it
is important to note that each study varies in terms of data quality, scale, and research
objectives. Consequently, the performance figures in each study do not represent absolute
values. A comparative overview of the performance of existing studies is presented in
Table 6.

Table 6. The performance of previous studies and our study.

Classification Class Purpose Performance

Hu et al. [14] EGC and NOR Classification AUC: 0.81
Acc: 0.77

Horiuchi et al. [15] EGC and NOR Classification Acc: 0.87

Nam et al. [16] BGU, AGC, EGC
Depth of invasion Classification Acc: 0.82

Acc: 0.72
Cho et al. [17] Depth of invasion Classification Acc: 0.77

Proposed method T-stage 1 and 4
EGC and NOR Classification Acc: 0.83

Acc: 0.90

4.2. Limitations and Potential

In this study, our Computer-Aided Diagnosis (CADx) system successfully distin-
guishes between T-stages 1 and 4 of gastric cancer, early gastric cancer, and normal cases.
However, it is essential to acknowledge that our system’s classification does not encompass
the entire spectrum of T-stages, given the intricate nature of cancer staging, which involves
factors such as tumor size, depth of invasion, and extent of metastasis. Moreover, the sole
reliance on gastroscopy images for staging poses challenges due to the complex interplay
of these variables.
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The limitations of our current CADx system also pertain to its inability to encompass
all possible lesion cases. Notwithstanding these challenges, our research underscores
the value of data augmentation techniques, such as Cut and Paste, in improving the
performance of the CADx system. This method enables more diverse and comprehensive
feature learning by generating gastric cancer tissue samples that faithfully replicate the
distinctive characteristics of lesions. These factors collectively contribute to the robust and
generalizable performance of our CADx system.

Furthermore, the improved performance of the CADx system holds the potential to
offer specialists consistent and highly accurate second opinions. This aspect represents a
significant strength of our proposed method in the context of patient care.

5. Conclusions

This study proposed a Cut-and-Paste augmentation technique that can improve gas-
troscopy classification performance in CADx systems. Data augmentation contributes to
performance improvement by enabling deep learning models to learn various character-
istics and patterns. Representative augmentation techniques in the field of deep learning
include approaches that make geometric changes to images, such as AutoAugment, which
was applied in this study. However, when data are augmented, there are factors that may
damage the characteristics of the lesion depending on the intensity of the augmentation.
From this perspective, the proposed augmentation technique is characterized by the pos-
sibility of a large amount of augmentation without damage to the perceptibility of the
characteristics of the original lesion. In addition, the effectiveness of these matters was
proven by applying the technology to two datasets and improving performance. Further-
more, the problem of a limited test dataset was addressed by applying the TTA algorithm.
This allowed the model to obtain more robust results by considering various visual changes
and variations.

However, the current lesion images were manually marked and cut into rectangular
shapes by a specialist. Rectangular images are likely to include lesions and normal mucosa.
In addition, the location and size of the lesion must be known before applying the Cut-and-
Paste technique. These issues can be addressed by utilizing Grad-CAM, which visualizes
the regions of interest during the decision-making of the deep learning model. Thus, the
time and cost required for labeling can be reduced. In future work, we aim to develop a
CADx system that can classify all stages from 1 to 4 based on T staging.
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